Starting with Two Matrices

Gilbert Strang, Massachusetts Institute of Technology

Imagine that you have never seen matrices. On the principle that examples are amazingly powerful, we study two matrices A and C. The reader is requested to be exceptionally patient, suspending all prior experience-and suspending also any hunger for precision and proof. Please allow a partial understanding to be established first.

The first sections of this paper represent an imaginary lecture, very near the beginning of a linear algebra course. That lecture shows by example where the course is going. The key ideas of linear algebra (and the key words) come very early, to point the way. My own course now includes this lecture, and Notes 1-6 below are addressed to teachers.

A first example Linear algebra can begin with three specific vectors a_{1}, a_{2}, a_{3} :

$$
a_{1}=\left[\begin{array}{r}
1 \\
-1 \\
0
\end{array}\right] \quad a_{2}=\left[\begin{array}{r}
0 \\
1 \\
-1
\end{array}\right] \quad a_{3}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] .
$$

The fundamental operation on vectors is to take linear combinations. Multiply these vectors a_{1}, a_{2}, a_{3} by numbers x_{1}, x_{2}, x_{3} and add. This produces the linear combination $x_{1} a_{1}+x_{2} a_{2}+$ $x_{3} a_{3}=b$:

$$
x_{1}\left[\begin{array}{r}
1 \tag{1}\\
-1 \\
0
\end{array}\right]+x_{2}\left[\begin{array}{r}
0 \\
1 \\
-1
\end{array}\right]+x_{3}\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
x_{1} \\
x_{2}-x_{1} \\
x_{3}-x_{2}
\end{array}\right]=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right] .
$$

Step 2 is to rewrite that vector equation as a matrix equation $A x=b$. Put a_{1}, a_{2}, a_{3} into the columns of a matrix and put x_{1}, x_{2}, x_{3} into a vector:

$$
\text { Matrix } A=\left[\begin{array}{lll}
a_{1} & a_{2} & a_{3}
\end{array}\right]=\left[\begin{array}{rrr}
1 & 0 & 0 \\
-1 & 1 & 0 \\
0 & -1 & 1
\end{array}\right] \quad \text { Vector } x=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]
$$

Key point A times x is exactly $x_{1} a_{1}+x_{2} a_{2}+x_{3} a_{3}$, a combination of the columns. This definition of $A x$ brings a crucial change in viewpoint. At first, the x s were multiplying the a s. Now, the matrix A is multiplying x. The matrix acts on the vector x to produce a vector b :

$$
\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b} \quad A x=\left[\begin{array}{rrr}
1 & 0 & 0 \tag{2}\\
-1 & 1 & 0 \\
0 & -1 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
x_{1} \\
x_{2}-x_{1} \\
x_{3}-x_{2}
\end{array}\right]=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right] .
$$

When the x s are known, the matrix A takes their differences. We could imagine an unwritten $x_{0}=0$, and put in $x_{1}-x_{0}$ to complete the pattern. A is a difference matrix.

Note 1 Multiplying a matrix times a vector is the crucial step. If students have seen $A x$ before, it was row times column. In examples they are free to compute that way (as I do). "Dot product with rows" gives
the same answer as "combination of columns". When the combination $x_{1} a_{1}+x_{2} a_{2}+x_{3} a_{3}$ is computed one component at a time, we are using the rows.

The example illustrates how the same $A x$ arrives both ways. Differences like $x_{2}-x_{1}$ come from row times column. Combining the columns of A is probably new to the class: good. The relation of the rows to the columns is truly at the heart of linear algebra.

Note 2 Three basic questions in linear algebra, and their answers, show why the column description of $A x$ is so essential:

- When does a linear system $A x=b$ have a solution?
$A x=b$ asks us to express b as a combination of the columns of A. So there is a solution exactly when b is in the column space of A.
- When are vectors a_{1}, \ldots, a_{n} linearly independent?

The combinations of a_{1}, \ldots, a_{n} are the vectors $A x$. For independence, $A x=0$ must have only the zero solution. The nullspace of A must contain only the vector $x=0$.

- How do you express b as a combination of basis vectors?

Put those basis vectors into the columns of A. Solve $A x=b$.

Note 3 The reader may object that we have only answered questions by introducing new words. My response is, those ideas of column space and nullspace and basis are crucial definitions in this subject. The student moves to a higher level—a subspace level—by understanding these words. We are constantly putting vectors into the columns of a matrix, and then working with that matrix.

I don't accept that inevitably "The fog rolls in" when linear independence is defined [1]. The concrete way to dependence vs. independence is through $A x=0$: many solutions or only the solution $x=0$. This comes immediately in returning to the example of specific a_{1}, a_{2}, a_{3}.

Suppose the numbers x_{1}, x_{2}, x_{3} are not known but b_{1}, b_{2}, b_{3} are known. Then $A x=b$ becomes an equation for x, not an equation for b. We start with the differences (the $b \mathrm{~s}$) and ask which x s have those differences. This is a new viewpoint of $A x=b$, and linear algebra is always interested first in $b=0$:

$$
A x=\left[\begin{array}{l}
x_{1} \tag{3}\\
x_{2}-x_{1} \\
x_{3}-x_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] . \quad \text { Then } \begin{aligned}
& x_{1}=0 \\
& x_{2}=0 \\
& x_{3}=0
\end{aligned}
$$

For this matrix, the only solution to $A x=0$ is $x=0$. That may seem automatic but it's not. A key word in linear algebra (we are foreshadowing its importance) describes this situation. These column vectors a_{1}, a_{2}, a_{3} are independent. Their combination $x_{1} a_{1}+x_{2} a_{2}+x_{3} a_{3}$ is $A x=0$ only when all the $x \mathrm{~s}$ are zero.

Move now to nonzero differences $b_{1}=1, b_{2}=3, b_{3}=5$. Is there a choice of x_{1}, x_{2}, x_{3} that produces those differences $1,3,5$? Solving the three equations in forward order, the x are $1,4,9$:

$$
\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b} \quad\left[\begin{array}{l}
x_{1} \tag{4}\\
x_{2}-x_{1} \\
x_{3}-x_{2}
\end{array}\right]=\left[\begin{array}{l}
1 \\
3 \\
5
\end{array}\right] \quad \text { leads to } \quad\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
1 \\
4 \\
9
\end{array}\right]
$$

This case $x=1,4,9$ has special interest. When the b s are the odd numbers in order, the x s are the perfect squares in order. But linear algebra is not number theory-forget that special case! For any b_{1}, b_{2}, b_{3} there is a neat formula for x_{1}, x_{2}, x_{3} :

$$
\left[\begin{array}{l}
x_{1} \tag{5}\\
x_{2}-x_{1} \\
x_{3}-x_{2}
\end{array}\right]=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right] \quad \text { leads to }\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
b_{1} \\
b_{1}+b_{2} \\
b_{1}+b_{2}+b_{3}
\end{array}\right]
$$

This general solution includes the examples with $b=0,0,0$ (when $x=0,0,0$) and $b=1,3,5$ (when $x=1,4,9$). One more insight will complete the example.

We started with a linear combination of a_{1}, a_{2}, a_{3} to get b. Now b is given and equation (5) goes backward to find x. Write that solution with three new vectors whose combination gives x :

$$
x=b_{1}\left[\begin{array}{l}
1 \tag{6}\\
1 \\
1
\end{array}\right]+b_{2}\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]+b_{3}\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]=S b
$$

This is beautiful, to see a sum matrix S in the formula for x. The equation $A x=b$ is solved by $x=S b$. The matrix S is the "inverse" of the matrix A. The difference matrix is inverted by the sum matrix. Where A took differences of x_{1}, x_{2}, x_{3}, the new matrix S takes sums of b_{1}, b_{2}, b_{3}.
Note 4 I believe there is value in naming these matrices. The words "difference matrix" and "sum matrix" tell how they act. It is the action of matrices, when we form $A x$ and $C x$ and $S b$, that makes linear algebra such a dynamic and beautiful subject.

The linear algebra symbol for the inverse matrix is $A^{-1}($ not $1 / A)$. Thus $S=A^{-1}$ finds x from b. This example shows how linear algebra goes in parallel with calculus. Sums are the inverse of differences, and integration is the inverse of differentiation:

$$
\begin{equation*}
S=A^{-\mathbf{1}} \quad A x=\frac{d x}{d t}=b(t) \quad \text { is solved by } \quad x(t)=S b=\int_{0}^{t} b \tag{7}
\end{equation*}
$$

The integral starts at $x(0)=0$, exactly as the sum started at $x_{0}=0$.

The second example This example begins with almost the same three vectors-only one component is changed:

$$
c_{1}=\left[\begin{array}{r}
1 \\
-1 \\
0
\end{array}\right] \quad c_{2}=\left[\begin{array}{r}
0 \\
1 \\
-1
\end{array}\right] \quad c_{3}=\left[\begin{array}{r}
-\mathbf{1} \\
0 \\
1
\end{array}\right] .
$$

The combination $x_{1} c_{1}+x_{2} c_{2}+x_{3} c_{3}$ is again a matrix multiplication $C x$:

$$
C x=\left[\begin{array}{lll}
c_{1} & c_{2} & c_{3}
\end{array}\right]\left[\begin{array}{l}
x_{1} \tag{8}\\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{rrr}
1 & 0 & -\mathbf{1} \\
-1 & 1 & 0 \\
0 & -1 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
x_{1}-x_{3} \\
x_{2}-x_{1} \\
x_{3}-x_{2}
\end{array}\right]=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right] .
$$

With the new vector in the third column, C is a "cyclic" difference matrix. Instead of $x_{1}-0$ we have $x_{1}-x_{3}$. The differences of x s "wrap around" to give the new $b s$. The inverse direction begins with b_{1}, b_{2}, b_{3} and asks for x_{1}, x_{2}, x_{3}.

We always start with $0,0,0$ as the $b \mathrm{~s}$. You will see the change: nonzero $x \mathrm{~s}$ can have zero differences. As long as the x s are equal, all their differences will be zero:

$$
C \boldsymbol{x}=\mathbf{0} \quad\left[\begin{array}{l}
x_{1}-x_{3} \tag{9}\\
x_{2}-x_{1} \\
x_{3}-x_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \quad \text { is solved by } \quad x=\left[\begin{array}{l}
x_{1} \\
x_{1} \\
x_{1}
\end{array}\right]=x_{1}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] .
$$

The zero solution $x=0$ is included (when $x_{1}=0$). But $1,1,1$ and $2,2,2$ and π, π, π are also solutionsall these constant vectors have zero differences and solve $C x=0$. The columns c_{1}, c_{2}, c_{3} are dependent and not independent.

In the row-column description of $A x$, we have found a vector $x=(1,1,1)$ that is perpendicular to every row of A. The columns combine to give $A x=0$ when x is perpendicular to every row.

This misfortune produces a new difficulty, when we try to solve $C x=b$:

$$
\left[\begin{array}{l}
x_{1}-x_{3} \\
x_{2}-x_{1} \\
x_{3}-x_{2}
\end{array}\right]=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right] \quad \text { cannot be solved unless } \quad b_{1}+b_{2}+b_{3}=0
$$

The three left sides add to zero, because x_{3} is now cancelled by $-x_{3}$. So the b s on the right side must add to zero. There is no solution like equation (5) for every b_{1}, b_{2}, b_{3}. There is no inverse matrix like S to give $x=S b$. The cyclic matrix C is not invertible.

Summary Both examples began by putting vectors into the columns of a matrix. Combinations of the columns (with multipliers x) became $A x$ and $C x$. Difference matrices A and C (noncyclic and cyclic) multiplied x-that was an important switch in thinking. The details of those column vectors made $A x=b$ solvable for all b, while $C x=b$ is not always solvable. The words that express the contrast between A and C are a crucial part of the language of linear algebra:

The vectors a_{1}, a_{2}, a_{3} are independent.
The nullspace for $A x=0$ contains only $x=0$.
The equation $A x=b$ is solved by $x=S b$.
The square matrix A has the inverse matrix $S=A^{-1}$.
The vectors c_{1}, c_{2}, c_{3} are dependent.
The nullspace for $C x=0$ contains every "constant vector" x_{1}, x_{1}, x_{1}.
The equation $C x=b$ cannot be solved unless $b_{1}+b_{2}+b_{3}=0$.
C has no inverse matrix.
A picture of the three vectors, a_{1}, a_{2}, a_{3} on the left and c_{1}, c_{2}, c_{3} on the right, explains the difference in a useful way. On the left, the three directions are independent. The three arrows don't lie in a plane. The combinations $x_{1} a_{1}+x_{2} a_{2}+x_{3} a_{3}$ produce every three-dimensional vector b. The good multipliers x_{1}, x_{2}, x_{3} are given by $x=S b$.

On the right, the three arrows do lie in a plane. The vectors c_{1}, c_{2}, c_{3} are dependent. Each vector has components adding to $1-1=0$, so all combinations of these vectors will have $b_{1}+b_{2}+b_{3}=0$ (this is the equation for the plane). The differences $x_{1}-x_{3}$ and $x_{2}-x_{1}$ and $x_{3}-x_{2}$ can never be $1,1,1$ because those differences add to zero.

Note 5 Almost unconsciously, one way of teaching a new subject is illustrated by these examples. The ideas and the words are used before they are fully defined. I believe we learn our own language this wayby hearing words, trying to use them, making mistakes, and eventually getting it right. A proper definition is certainly needed, it is not at all an afterthought. But maybe it is an afterword.

Note 6 Allow me to close these lecture ideas by returning to Note 1: $A x$ is a combination of the columns of A. Extend that matrix-vector multiplication to matrix-matrix: If the columns of B are b_{1}, b_{2}, b_{3} then the columns of $A B$ are $A b_{1}, A b_{2}, A b_{3}$.

The crucial fact about matrix multiplication is that $(\boldsymbol{A B}) \boldsymbol{C}=\boldsymbol{A}(\boldsymbol{B C})$. By the previous sentence we may prove this fact by considering one column vector c.

$$
\begin{align*}
& \text { Left side } \quad(A B) c=\left[\begin{array}{lll}
A b_{1} & A b_{2} & A b_{3}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3}
\end{array}\right]=c_{1} A b_{1}+c_{2} A b_{2}+c_{3} A b_{3} \tag{10}\\
& \text { Right side } \\
& A(B c)=A\left(c_{1} b_{1}+c_{2} b_{2}+c_{3} b_{3}\right) . \tag{11}
\end{align*}
$$

In this way, $(A B) C=A(B C)$ brings out the even more fundamental fact that matrix multiplication is linear: $(10)=(11)$.

Expressed differently, the multiplication $A B$ has been defined to produce the composition rule: $A B$ acting on c is equal to A acting on B acting on c.

Time after time, this associative law is the heart of short proofs. I will admit that these "proofs by parenthesis" are almost the only ones I present in class. Here are examples of $(A B) C=A(B C)$ at three key points in the course. (I don't always use the ominous word proof in the video lectures [2] on ocw.mit.edu, but the reader will see through this loss of courage.)

- If $A B=I$ and $B C=I$ then $C=A$.

$$
\text { Right inverse }=\text { Left inverse } \quad C=(A B) C=A(B C)=A
$$

- If $y^{\mathrm{T}} A=0$ then y is perpendicular to every $A x$ in the column space.

Nullspace of $A^{\mathrm{T}} \perp$ column space of $A \quad y^{\mathrm{T}}(A x)=\left(y^{\mathrm{T}} A\right) x=0$

- If an invertible B contains eigenvectors b_{1}, b_{2}, b_{3} of A, then $B^{-1} A B$ is diagonal.

Multiply $A B$ by columns $\quad A\left[\begin{array}{lll}b_{1} & b_{2} & b_{3}\end{array}\right]=\left[\begin{array}{lll}A b_{1} & A b_{2} & A b_{3}\end{array}\right]=\left[\begin{array}{lll}\lambda_{1} b_{1} & \lambda_{2} b_{2} & \lambda_{3} b_{3}\end{array}\right]$

Then separate this $A B$ into B times the eigenvalue matrix Λ :

$$
A B=\left[\begin{array}{lll}
\lambda_{1} b_{1} & \lambda_{2} b_{2} & \lambda_{3} b_{3}
\end{array}\right]=\left[\begin{array}{lll}
b_{1} & b_{2} & b_{3}
\end{array}\right]\left[\begin{array}{lll}
\lambda_{1} & & \\
& \lambda_{2} & \\
& & \lambda_{3}
\end{array}\right] \quad \text { (again by columns!) }
$$

$A B=B \Lambda$ gives the diagonalization $B^{-1} A B=\Lambda$. Equivalently it produces the factorization $A=B \Lambda B^{-1}$. Parentheses are not necessary in any of these triple factorizations:

Spectral theorem for a symmetric matrix	$A=Q \Lambda Q^{\mathrm{T}}$
Elimination on a symmetric matrix	$A=L D L^{\mathrm{T}}$
Singular Value Decomposition of any matrix	$A=U \Sigma V^{\mathrm{T}}$

One final comment: Factorizations express the central ideas of linear algebra in a very effective way. The eigenvectors of a symmetric matrix can be chosen orthonormal: $Q^{\mathrm{T}} Q=I$ in the spectral theorem $A=Q \Lambda Q^{\mathrm{T}}$. For all matrices, eigenvectors of $A A^{\mathrm{T}}$ and $A^{\mathrm{T}} A$ are the columns of U and V in the Singular Value Decomposition. And our favorite rule $\left(A A^{\mathrm{T}}\right) A=A\left(A^{\mathrm{T}} A\right)$ is the key step in establishing that SVD, long after this early lecture...
These orthonormal vectors u_{1}, \ldots, u_{m} and v_{1}, \ldots, v_{n} are perfect bases for the Four Fundamental Subspaces: the column space and nullspace of A and A^{T}. Those subspaces become the organizing principle of the course [2]. The Fundamental Theorem connects their dimensions to the rank of A. The flow of ideas is from numbers to vectors to subspaces. Each level comes naturally, and everyone can get it-by seeing examples.

References

[1] David Carlson, Teaching Linear Algebra: Must the Fog Always Roll in?, College Mathematics Journal, 24 (1993) 29-40.
[2] Gilbert Strang, Introduction to Linear Algebra, Fourth edition, Wellesley-Cambridge Press (2009). Video lectures on web.mit.edu/18.06 and on ocw.mit.edu.

