The Free Group : an introduction

Loic Remolif, Kamil Khettabi

Definition

A group G is a set equipped with an operation " \cdot " satisfying

- 1. associativity
- 2. identity
- 3. inverse

Exemples

The trivial group $\{e\}$ and $(\mathbb{Z}, +)$ are groups, but not $(\mathbb{N}, +)$.

Concatenation

Definition

Let X be a set and consider $\overline{X} = X \cup \{x^{-1} : x \in X\}$ with the concatenation law : $x \cdot y = xy$.

Example :

"Euler" is the concatenation of "E,u,l,e,r".

The set of words

Definition We define **the set of words on** X as $\mathcal{M}(X) = \{s_1 s_2 \cdots s_n : s_i \in \overline{X}\} \cup \emptyset$, where \emptyset is the empty word.

Equivalence relation

Definition

An equivalence relation \sim is a relation that is **transitive**, symmetric, reflexive. The equivalence classe of x is the set $[x] := \{y : y \sim x\}.$ We say that two words are **equivalent** if and only if one can be transformed into the other by inserting or deleting a finite number of " xx^{-1} ".

The free group on X

Definition

The **free group on** X is the collection of all such equivalence classes on $\mathcal{M}(X)$ and is denoted by $\mathcal{F}(X)$.

Proposition

The free group is a group

Proof.

 \emptyset is the identity, concatenation is the law, and since $s_i s_i^{-1} = s_i^{-1} s_i = \emptyset$, the inverse of $s_1 \cdots s_n$ is $s_n^{-1} \cdots s_1^{-1}$.

イロト 不得 トイヨト イヨト 二日

Examples

- 1. The free group on the empty set contains an unique element : the empty word.
- 2. The free group on a singleton $\{x\}$ is

$$\mathcal{F}(\{x\}) = \{x^k : k \in \mathbb{Z}\} \simeq \mathbb{Z}$$

3. **But**, $\mathcal{F}(\{x, y\})$ is not isomorphic to \mathbb{Z}^2 .

Subgroup

Definition

We say that H is a subgroup of G if $H \subset G$ and if it is a group under the law of G.

Examples :

- 1. $\{e_G\}$ is always a subgroup of G.
- 2. G is a subgroup of itself.
- 3. The set $n\mathbb{Z}$ of all multiples of $n \in \mathbb{Z}$ is a subgroup of \mathbb{Z} , and every subgroup of $(\mathbb{Z}, +)$ is of this form.

Properties of \mathcal{F} $\mathcal{F}(a, b) \leq \mathcal{F}(a, b, c) \leq \mathcal{F}(a, b)$

Proposition

 $\mathcal{F}(a, b)$ et $\mathcal{F}(a, b, c)$ are mutual subgroups.

- $\mathcal{F}(a,b) \leq \mathcal{F}(a,b,c)$ is a consequence of $\{a,b\} \subset \{a,b,c\}$
- ► The inverse inequality is obtained by proving that *F*(*a*, *b*, *c*) ≃ ⟨*a*², *b*², *ab*⟩

The homophonic group

Definition

Let $A = \{a, b, c, ..., z\}$. We define the **homophonic group** on A as $H = \mathcal{F}(A) / \sim$ with

$$x \simeq y \iff x$$
 and y are homophonic

H is trivial

Proposition

The homophonic group is trivial.

It suffices to have a sufficiently long list of homophones to conclude that $a = b = c = d = e = ... = y = z = \emptyset$. As an example, $e = \emptyset$, since bee = be.