Kruskal's Greedy Algorithm

Jonas Hofmann Kantonsschule Uster 5th year Mentor: Kaloyan Slavov Primes-Switzerland

23. Juni 2018

Mentor: Kaloyan Slavov

You have a graph G and a function $\omega : E(G) \to \mathbb{R}^+$. Find a spanning-tree T such that the sum of the weight of all edges in T is minimal.

• What is a Graph?

- What is a Graph?
- What is a Tree?

What is a graph?

What is a graph?

A set of vertices connected by edges

The edges don't have to be straight, and they're allowed to intersect

What is a graph?

A set of vertices connected by edges

The edges don't have to be straight, and they're allowed to intersect

A connected graph without any cycles

A connected graph without any cycles

A connected graph without any cycles

What is a forest?

What is a forest?

Like a tree, but it doesn't need to be connected. \Rightarrow A graph without a cycle

That is Kruskal's algorithm

Always add a edge with the lowest weight, which isn't already in the forest and doesn't create a cycle.

A graph is a tree on n vertices \Rightarrow it has n-1 edges

Induction on the number of vertices.

A graph is a tree on n vertices \Rightarrow it has n-1 edges

Induction on the number of vertices. Trivial case: 1 vertex

A graph is a tree on n vertices \Rightarrow it has n-1 edges

Induction on the number of vertices.

Suppose it holds for n vertices. Let T be a tree on n + 1 vertices. Find a longest path.

A graph is a tree on n vertices \Rightarrow it has n-1 edges

Induction on the number of vertices.

Suppose it holds for n vertices. Let T be a graph on n+1 vertices. Find a longest path. Remove one of the vertices where it ends, you get a new tree T^\prime

T' is a tree on n vertices \Rightarrow (inductive hypothesis) it has n-1 edges. $\Rightarrow T$ has n edges.

A graph is a forest on n vertices with k components \Rightarrow it has n - k edges.

Apply Lemma 1 on all components

A graph is a forest on n vertices with k components \Rightarrow it has n - k edges.

Apply Lemma 1 on all components

by Lemma 1 : in every component # edges = # vertices - 1

A graph is a forest on n vertices with k components \Rightarrow it has n - k edges.

Apply Lemma 1 on all components

by Lemma 1 : in every component # edges = # vertices - 1 \Rightarrow # all edges = # all vertices - k

F, F' are forests on the same n vertices, with |E(F)| < |E(F')|. \Rightarrow There exists $e \in F'$ such that $F \cup e$ is still a forest.

F, F' are forests on the same n vertices, with |E(F)| < |E(F')|. \Rightarrow There exists $e \in F'$ such that $F \cup e$ is still a forest.

If that wasn't the case, adding any $e \in F'$ to F would create a cycle.

F, F' are forests on the same n vertices, with |E(F)| < |E(F')|. \Rightarrow There exists $e \in F'$ such that $F \cup e$ is still a forest.

F, F' are forests on the same n vertices, with |E(F)| < |E(F')|. \Rightarrow There exists $e \in F'$ such that $F \cup e$ is still a forest.

F, F' are forests on the same n vertices, with |E(F)| < |E(F')|. \Rightarrow There exists $e \in F'$ such that $F \cup e$ is still a forest.

F, F' are forests on the same n vertices, with |E(F)| < |E(F')|. \Rightarrow There exists $e \in F'$ such that $F \cup e$ is still a forest.

If that wasn't the case, adding any $e \in F'$ to F would create a cycle. \Rightarrow All $e \in F'$ connect two vertices in a component in F

 \Rightarrow # components in $F \leq$ #components in F'.

F, F' are forests on the same n vertices, with |E(F)| < |E(F')|. \Rightarrow There exists $e \in F'$ such that $F \cup e$ is still a forest.

$$\Rightarrow |C(F)| \le |C(F')|$$

F, F' are forests on the same n vertices, with |E(F)| < |E(F')|. \Rightarrow There exists $e \in F'$ such that $F \cup e$ is still a forest.

If that wasn't the case, adding any $e \in F'$ to F would create a cycle. \Rightarrow All $e \in F'$ connect two vertices in a component in F

 $\Rightarrow |C(F)| \le |C(F')|$ |E(F)| < |E(F')|

F, F' are forests on the same n vertices, with |E(F)| < |E(F')|. \Rightarrow There exists $e \in F'$ such that $F \cup e$ is still a forest.

$$\Rightarrow |C(F)| \le |C(F')|$$
$$|E(F)| < |E(F')|$$
$$\Rightarrow n - |C(F)| < n - |C(F')|$$

F, F' are forests on the same n vertices, with |E(F)| < |E(F')|. \Rightarrow There exists $e \in F'$ such that $F \cup e$ is still a forest.

Let k be the first step $\omega(H_k)$ is smaller than $\omega(T_k)$ i.e $\omega(H_k) < \omega(T_k)$ but $\omega(H_{k-1}) \ge \omega(T_{k-1})$

Let k be the first step $\omega(H_k)$ is smaller than $\omega(T_k)$ i.e $\omega(H_k) < \omega(T_k)$ but $\omega(H_{k-1}) \ge \omega(T_{k-1}) \Rightarrow \omega(h_k) < \omega(t_k)$

Let k be the first step $\omega(H_k)$ is smaller than $\omega(T_k)$ i.e $\omega(H_k) < \omega(T_k)$ but $\omega(H_{k-1}) \ge \omega(T_{k-1}) \Rightarrow \omega(h_k) < \omega(t_k)$

Let k be the first step $\omega(H_k)$ is smaller than $\omega(T_k)$ i.e $\omega(H_k) < \omega(T_k)$ but $\omega(H_{k-1}) \ge \omega(T_{k-1}) \Rightarrow \omega(h_k) < \omega(t_k)$

$\omega(h_k) < \omega(t_k)$

 $\omega(h_k) < \omega(t_k)$ Lemma 3 \Rightarrow there is a $h_j \in H_k$ such that $T_{k-1} \cup h_j$ is a forest. $\omega(h_k) < \omega(t_k)$ Lemma 3 \Rightarrow there is a $h_j \in H_k$ such that $T_{k-1} \cup h_j$ is a forest. We know $\omega(h_j) \le \omega(h_k)$ because h is sorted.
$$\begin{split} & \omega(h_k) < \omega(t_k) \\ \text{Lemma 3} \Rightarrow \text{there is a } h_j \in H_k \text{ such that } T_{k-1} \cup h_j \text{ is a forest.} \\ & \text{We know } \omega(h_j) \leq \omega(h_k) \text{ because } h \text{ is sorted.} \\ & \Rightarrow \omega(h_j) \leq \omega(h_k) < \omega(t_k) \end{split}$$

$$\begin{split} & \omega(h_k) < \omega(t_k) \\ \text{Lemma 3} \Rightarrow \text{there is a } h_j \in H_k \text{ such that } T_{k-1} \cup h_j \text{ is a forest.} \\ & \text{We know } \omega(h_j) \leq \omega(h_k) \text{ because } h \text{ is sorted.} \\ & \Rightarrow \omega(h_j) \leq \omega(h_k) < \omega(t_k) \end{split}$$

Kruskal's algorithm wouldn't chose t_k at step k.

 $\omega(h_k) < \omega(t_k)$

Lemma 3 \Rightarrow there is a $h_j \in H_k$ such that $T_{k-1} \cup h_j$ is a forest. We know $\omega(h_j) \leq \omega(h_k)$ because h is sorted.

$$\Rightarrow \omega(h_j) \le \omega(h_k) < \omega(t_k)$$

Kruskal's algorithm wouldn't chose t_k at step k.

 \Rightarrow contradiction \Rightarrow Kruskal's Algorithm finds a minimum weight spanning-tree!