Kruskal's Greedy Algorithm

Jonas Hofmann
Kantonsschule Uster 5th year
Mentor: Kaloyan Slavov
Primes-Switzerland

23.Juni 2018

Mentor: Kaloyan Slavov

Problem

You have a graph G and a function $\omega: E(G) \rightarrow \mathbb{R}^{+}$.
Find a spanning-tree T such that the sum of the weight of all edges in T is minimal.

Problem

You have a graph G and a function $\omega: E(G) \rightarrow \mathbb{R}^{+}$.
Find a spanning-tree T such that the sum of the weight of all edges in T is minimal.

- What is a Graph?

Problem

You have a graph G and a function $\omega: E(G) \rightarrow \mathbb{R}^{+}$.
Find a spanning-tree T such that the sum of the weight of all edges in T is minimal.

- What is a Graph?
- What is a Tree?

What is a graph?

What is a graph?

A set of vertices connected by edges

The edges don't have to be straight, and they're allowed to intersect

What is a graph?

A set of vertices connected by edges

The edges don't have to be straight, and they're allowed to intersect

What is a tree?

What is a tree?

A connected graph without any cycles

What is a tree?

A connected graph without any cycles

What is a tree?

A connected graph without any cycles

What is a forest?

What is a forest?

Like a tree, but it doesn't need to be connected.
\Rightarrow A graph without a cycle

Problem

You have a graph G and a function $\omega: E(G) \rightarrow \mathbb{R}^{+}$.
Find a tree T such that the sum of the weight of all edges in T is minimal.

Problem

You have a graph G and a function $\omega: E(G) \rightarrow \mathbb{R}^{+}$.
Find a tree T such that the sum of the weight of all edges in T is minimal.

Problem

You have a graph G and a function $\omega: E(G) \rightarrow \mathbb{R}^{+}$.
Find a tree T such that the sum of the weight of all edges in T is minimal.

Problem

You have a graph G and a function $\omega: E(G) \rightarrow \mathbb{R}^{+}$.
Find a tree T such that the sum of the weight of all edges in T is minimal.

That is Kruskal's algorithm

Always add a edge with the lowest weight, which isn't already in the forest and doesn't create a cycle.

Lemma 1

A graph is a tree on n vertices \Rightarrow it has $n-1$ edges
Induction on the number of vertices.

Lemma 1

A graph is a tree on n vertices \Rightarrow it has $n-1$ edges
Induction on the number of vertices.
Trivial case: 1 vertex

Lemma 1

A graph is a tree on n vertices \Rightarrow it has $n-1$ edges
Induction on the number of vertices.
Suppose it holds for n vertices. Let T be a tree on $n+1$ vertices. Find a longest path.

Lemma 1

A graph is a tree on n vertices \Rightarrow it has $n-1$ edges
Induction on the number of vertices.
Suppose it holds for n vertices. Let T be a graph on $n+1$ vertices. Find a longest path. Remove one of the vertices where it ends, you get a new tree T^{\prime}

T^{\prime} is a tree on n vertices \Rightarrow (inductive hypothesis) it has $n-1$ edges. $\Rightarrow T$ has n edges.
\square

Lemma 2

A graph is a forest on n vertices with k components \Rightarrow it has $n-k$ edges.

Apply Lemma 1 on all components

Lemma 2

A graph is a forest on n vertices with k components \Rightarrow it has $n-k$ edges.

Apply Lemma 1 on all components

by Lemma 1 : in every component $\#$ edges $=\#$ vertices - 1

Lemma 2

A graph is a forest on n vertices with k components \Rightarrow it has $n-k$ edges.

Apply Lemma 1 on all components

by Lemma 1 : in every component $\#$ edges $=\#$ vertices - 1 $\Rightarrow \#$ all edges $=\#$ all vertices $-k$

Lemma 3

F, F^{\prime} are forests on the same n vertices, with $|E(F)|<\left|E\left(F^{\prime}\right)\right|$.
\Rightarrow There exists $e \in F^{\prime}$ such that $F \cup e$ is still a forest.

Lemma 3

F, F^{\prime} are forests on the same n vertices, with $|E(F)|<\left|E\left(F^{\prime}\right)\right|$.
\Rightarrow There exists $e \in F^{\prime}$ such that $F \cup e$ is still a forest.
If that wasn't the case, adding any $e \in F^{\prime}$ to F would create a cycle.

Lemma 3

F, F^{\prime} are forests on the same n vertices, with $|E(F)|<\left|E\left(F^{\prime}\right)\right|$.
\Rightarrow There exists $e \in F^{\prime}$ such that $F \cup e$ is still a forest.
If that wasn't the case, adding any $e \in F^{\prime}$ to F would create a cycle. \Rightarrow All $e \in F^{\prime}$ connect two vertices in a component in F

Lemma 3

F, F^{\prime} are forests on the same n vertices, with $|E(F)|<\left|E\left(F^{\prime}\right)\right|$.
\Rightarrow There exists $e \in F^{\prime}$ such that $F \cup e$ is still a forest.
If that wasn't the case, adding any $e \in F^{\prime}$ to F would create a cycle. \Rightarrow All $e \in F^{\prime}$ connect two vertices in a component in F

Lemma 3

F, F^{\prime} are forests on the same n vertices, with $|E(F)|<\left|E\left(F^{\prime}\right)\right|$.
\Rightarrow There exists $e \in F^{\prime}$ such that $F \cup e$ is still a forest.
If that wasn't the case, adding any $e \in F^{\prime}$ to F would create a cycle. \Rightarrow All $e \in F^{\prime}$ connect two vertices in a component in F

Lemma 3

F, F^{\prime} are forests on the same n vertices, with $|E(F)|<\left|E\left(F^{\prime}\right)\right|$.
\Rightarrow There exists $e \in F^{\prime}$ such that $F \cup e$ is still a forest.
If that wasn't the case, adding any $e \in F^{\prime}$ to F would create a cycle. \Rightarrow All $e \in F^{\prime}$ connect two vertices in a component in F

$\Rightarrow \#$ components in $F \leq \#$ components in F^{\prime}.

Lemma 3

F, F^{\prime} are forests on the same n vertices, with $|E(F)|<\left|E\left(F^{\prime}\right)\right|$.
\Rightarrow There exists $e \in F^{\prime}$ such that $F \cup e$ is still a forest.
If that wasn't the case, adding any $e \in F^{\prime}$ to F would create a cycle. \Rightarrow All $e \in F^{\prime}$ connect two vertices in a component in F

$$
\Rightarrow|C(F)| \leq\left|C\left(F^{\prime}\right)\right|
$$

Lemma 3

F, F^{\prime} are forests on the same n vertices, with $|E(F)|<\left|E\left(F^{\prime}\right)\right|$.
\Rightarrow There exists $e \in F^{\prime}$ such that $F \cup e$ is still a forest.
If that wasn't the case, adding any $e \in F^{\prime}$ to F would create a cycle. \Rightarrow All $e \in F^{\prime}$ connect two vertices in a component in F

$$
\begin{array}{r}
\Rightarrow|C(F)| \leq\left|C\left(F^{\prime}\right)\right| \\
|E(F)|<\left|E\left(F^{\prime}\right)\right|
\end{array}
$$

Lemma 3

F, F^{\prime} are forests on the same n vertices, with $|E(F)|<\left|E\left(F^{\prime}\right)\right|$. \Rightarrow There exists $e \in F^{\prime}$ such that $F \cup e$ is still a forest.

If that wasn't the case, adding any $e \in F^{\prime}$ to F would create a cycle. \Rightarrow All $e \in F^{\prime}$ connect two vertices in a component in F

Lemma 3

F, F^{\prime} are forests on the same n vertices, with $|E(F)|<\left|E\left(F^{\prime}\right)\right|$. \Rightarrow There exists $e \in F^{\prime}$ such that $F \cup e$ is still a forest.

If that wasn't the case, adding any $e \in F^{\prime}$ to F would create a cycle. \Rightarrow All $e \in F^{\prime}$ connect two vertices in a component in F

contradiction! \square

Graph G, trees T and H, with $\omega(T)>\omega(H)$
Sort the edges in H and T by weight. $\Rightarrow h_{1}, \ldots, h_{n}$ and t_{1}, \ldots, t_{n} H_{i} and T_{i} are the forests made by the first i edges of H and T

Graph G, trees T and H, with $\omega(T)>\omega(H)$
Sort the edges in H and T by weight. $\Rightarrow h_{1}, \ldots, h_{n}$ and t_{1}, \ldots, t_{n} H_{i} and T_{i} are the forests made by the first i edges of H and T

Let k be the first step $\omega\left(H_{k}\right)$ is smaller than $\omega\left(T_{k}\right)$
i.e $\omega\left(H_{k}\right)<\omega\left(T_{k}\right)$ but $\omega\left(H_{k-1}\right) \geq \omega\left(T_{k-1}\right)$

Graph G, trees T and H, with $\omega(T)>\omega(H)$
Sort the edges in H and T by weight. $\Rightarrow h_{1}, \ldots, h_{n}$ and t_{1}, \ldots, t_{n} H_{i} and T_{i} are the forests made by the first i edges of H and T

Let k be the first step $\omega\left(H_{k}\right)$ is smaller than $\omega\left(T_{k}\right)$
i.e $\omega\left(H_{k}\right)<\omega\left(T_{k}\right)$ but $\omega\left(H_{k-1}\right) \geq \omega\left(T_{k-1}\right) \Rightarrow \omega\left(h_{k}\right)<\omega\left(t_{k}\right)$

Graph G, trees T and H, with $\omega(T)>\omega(H)$
Sort the edges in H and T by weight. $\Rightarrow h_{1}, \ldots, h_{n}$ and t_{1}, \ldots, t_{n} H_{i} and T_{i} are the forests made by the first i edges of H and T

Let k be the first step $\omega\left(H_{k}\right)$ is smaller than $\omega\left(T_{k}\right)$
i.e $\omega\left(H_{k}\right)<\omega\left(T_{k}\right)$ but $\omega\left(H_{k-1}\right) \geq \omega\left(T_{k-1}\right) \Rightarrow \omega\left(h_{k}\right)<\omega\left(t_{k}\right)$

Graph G, trees T and H, with $\omega(T)>\omega(H)$
Sort the edges in H and T by weight. $\Rightarrow h_{1}, \ldots, h_{n}$ and t_{1}, \ldots, t_{n} H_{i} and T_{i} are the forests made by the first i edges of H and T

Let k be the first step $\omega\left(H_{k}\right)$ is smaller than $\omega\left(T_{k}\right)$
i.e $\omega\left(H_{k}\right)<\omega\left(T_{k}\right)$ but $\omega\left(H_{k-1}\right) \geq \omega\left(T_{k-1}\right) \Rightarrow \omega\left(h_{k}\right)<\omega\left(t_{k}\right)$

$$
\omega\left(h_{k}\right)<\omega\left(t_{k}\right)
$$

$\omega\left(h_{k}\right)<\omega\left(t_{k}\right)$
Lemma $3 \Rightarrow$ there is a $h_{j} \in H_{k}$ such that $T_{k-1} \cup h_{j}$ is a forest.
$\omega\left(h_{k}\right)<\omega\left(t_{k}\right)$
Lemma $3 \Rightarrow$ there is a $h_{j} \in H_{k}$ such that $T_{k-1} \cup h_{j}$ is a forest. We know $\omega\left(h_{j}\right) \leq \omega\left(h_{k}\right)$ because h is sorted.
$\omega\left(h_{k}\right)<\omega\left(t_{k}\right)$
Lemma $3 \Rightarrow$ there is a $h_{j} \in H_{k}$ such that $T_{k-1} \cup h_{j}$ is a forest. We know $\omega\left(h_{j}\right) \leq \omega\left(h_{k}\right)$ because h is sorted.

$$
\Rightarrow \omega\left(h_{j}\right) \leq \omega\left(h_{k}\right)<\omega\left(t_{k}\right)
$$

$\omega\left(h_{k}\right)<\omega\left(t_{k}\right)$
Lemma $3 \Rightarrow$ there is a $h_{j} \in H_{k}$ such that $T_{k-1} \cup h_{j}$ is a forest. We know $\omega\left(h_{j}\right) \leq \omega\left(h_{k}\right)$ because h is sorted.
$\Rightarrow \omega\left(h_{j}\right) \leq \omega\left(h_{k}\right)<\omega\left(t_{k}\right)$
Kruskal's algorithm wouldn't chose t_{k} at step k.
$\omega\left(h_{k}\right)<\omega\left(t_{k}\right)$
Lemma $3 \Rightarrow$ there is a $h_{j} \in H_{k}$ such that $T_{k-1} \cup h_{j}$ is a forest.
We know $\omega\left(h_{j}\right) \leq \omega\left(h_{k}\right)$ because h is sorted.
$\Rightarrow \omega\left(h_{j}\right) \leq \omega\left(h_{k}\right)<\omega\left(t_{k}\right)$
Kruskal's algorithm wouldn't chose t_{k} at step k.
\Rightarrow contradiction \Rightarrow Kruskal's Algorithm finds a minimum weight spanning-tree!

