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Generalized Stokes Theorem

Theorem (Generalized Stokes Theorem)∫
∂M

ω =

∫
M

dω

where M is a k-manifold, the border of M, ∂M is an oriented
k − 1-manifold, ω is a differential k − 1-form.
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k-manifolds

M ⊂ Rn, that locally looks like Rk , i.e. any point inside M has a
neighborhood that is a deformed k-dimensional hypersphere, for a
point on the border – half of the hypersphere.
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Examples of manifolds

A circle is a 1-manifold.
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Examples of manifolds

A lemniscate is not a manifold.
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Examples of manifolds

A ball is a 3-manifold whose boundary (a sphere) is a 2-manifold.
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Examples of manifolds

A torus is a 2-manifold.
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Examples of manifolds

Klein bottle is a non-oriented 2-manifold.
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Differential form

Definition

ω =
∑

f (x1, . . . , xn)dxi1 ∧ dxi2 ∧ · · · ∧ dxik

is called a k-differential form.

The operation ∧ is called the wedge product and satisfies the
following properties:

dxi ∧ dxj = −dxj ∧ dxi = ±dxidxj , i ̸= j ,

dxi ∧ dxi = 0.
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Differential forms examples

Examples

In R3 1-form is the following expression:

ω = P(x , y , z)dx + Q(x , y , z)dy + R(x , y , z)dz .

2-form is the expression

ω = P(x , y , z)dx ∧ dy + Q(x , y , z)dy ∧ dz + R(x , y , z)dz ∧ dx ,

whereas 3-form is the expression

ω = f (x , y , z)dx ∧ dy ∧ dz .
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Derivative of ω

If ω is a k-form, we shall denote the derivative of ω by dω.

If f is a 0-form, then

df =
n∑

j=1

∂f

∂xj
dxj .

If ω1 and ω2 are k-forms, then

d(ω1 + ω2) = dω1 + dω2.

Therefore,

dω =
∑

df ∧ dxi1 ∧ dxi2 ∧ · · · ∧ dxik

=
∑ n∑

j=1

∂f

∂xj
dxj

 ∧ dxi1 ∧ · · · ∧ dxik .
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Integration on manifolds

∫
[a,b]fdx- a simple Riemann integral,∫
P dxdy -the area of the projection of P on the xy plane
where P is a region on a plane in the space R3.
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Corollaries

FTC(Fundamental theorem of calculus)

Green’s theorem

Kelvin-Stokes’ theorem

Divergence theorem
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Fundamental theorem of calculus

Theorem ∫ b

a
f
′
(x)dx = f (a)− f (b)

Stokes theorem ⇒ FTC
Let ω = f (x), 0-differential form and M = [a, b], then
∂M = {a−, b+}.
By Stokes theorem for n = k = 1 M is 1-manifold and ω is a
0-differential form we have:∫
∂M

f =
∫
M

df ⇒ f (b)− f (a) =
b∫
a
f
′
(x)dx .
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Green’s theorem

Theorem ∫
∂M

Pdx + Qdy =

∫∫
M

∂Q

∂x
− ∂P

∂y
dxdy

Stokes theorem ⇒ Green’s theorem
ω = Pdx + Qdy , where P and Q are functions on x , y .
dω = dPdx+dQdy = (∂P∂x dx+

∂P
∂y dy)∧dx+(∂Q∂x dx+

∂Q
∂y dy)∧dy =

∂P
∂y dy ∧ dx + ∂Q

∂x dx ∧ dy = (∂Q∂x − ∂P
∂y )dxdy .

The Stokes theorem for n = k = 2, ω and 2-manifold M completes
the proof.
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Kelvin-Stokes’ theorem

Theorem

∫
∂M

(Fx dx + Fy dy + Fz dz) =

∫∫
M

((
∂Fz
∂y

− ∂Fy
∂z

)
dy dz+

(
∂Fx
∂z

− ∂Fz
∂x

)
dz dx +

(
∂Fy
∂x

− ∂Fx
∂y

)
dx dy

)

Stokes theorem ⇒ Kelvin-Stokes’ theorem
Let ω = Fxdx + Fydy + Fzdz , where Fx ,Fy ,Fz are functions on
x , y , z , so ω is a differential 1-form.
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Kelvin-Stokes’ theorem

Then the exterior derivative of ω is

dω = dFxdx + dFydy + dFzdz

=

(
∂Fx
∂x

dx +
∂Fx
∂y

dy +
∂Fx
∂z

dz

)
∧ dx

+

(
∂Fy
∂x

dx +
∂Fy
∂y

dy +
∂Fy
∂z

dz

)
∧ dy

+

(
∂Fz
∂x

dx +
∂Fz
∂y

dy +
∂Fz
∂z

dz

)
∧ dz =
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Kelvin-Stokes’ theorem

∂Fx
∂y

dy ∧ dx +
∂Fx
∂z

dz ∧ dx +
∂Fy
∂x

dx ∧ dy

+
∂Fy
∂z

dz ∧ dy +
∂Fz
∂x

dx ∧ dz +
∂Fz
∂y

dy ∧ dz =(
∂Fz
∂y

− ∂Fy
∂z

)
dy dz +

(
∂Fx
∂z

− ∂Fz
∂x

)
dz dx +

(
∂Fy
∂x

− ∂Fx
∂y

)
dx dy .

The Stokes theorem for n = 3, k = 2, ω and 2-manifold M
completes the proof.
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Divergence theorem

Theorem ∫
∂M

(
Fx dydz + Fy dzdx + Fz dxdy

)
=

∫
M

(
∂Fz
∂z

+
∂Fx
∂x

+
∂Fy
∂y

)
dxdydz .

Stokes theorem ⇒ Divergence theorem
Let ω = Fxdy ∧ dz + Fydz ∧ dx + Fzdx ∧ dy , where Fx ,Fy ,Fz are
functions on x , y , z , so ω is a differential 2-form. Then

dω = dFz ∧ dx ∧ dy + dFx ∧ dy ∧ dz + dFy ∧ dz ∧ dx =
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Divergence theorem

=

(
∂Fz
∂x

dx +
∂Fz
∂y

dy +
∂Fz
∂z

dz

)
∧ dx ∧ dy

+

(
∂Fx
∂x

dx +
∂Fx
∂y

dy +
∂Fx
∂z

dz

)
∧ dy ∧ dz

+

(
∂Fy
∂x

dx +
∂Fy
∂y

dy +
∂Fy
∂z

dz

)
∧ dz ∧ dx

=
∂Fz
∂z

dz ∧ dx ∧ dy +
∂Fx
∂x

dx ∧ dy ∧ dz +
∂Fy
∂y

dy ∧ dz ∧ dx

=

(
∂Fz
∂z

+
∂Fx
∂x

+
∂Fy
∂y

)
dxdydz .

The Stokes theorem for n = 3, k = 3, ω and 3-manifold M
completes the proof.
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