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Abstract

Coefficients of polynomials over finite fields often encode information that can be

applied in various areas of science; for instance, computer science and representation

theory. The purpose of this project is to investigate these coefficients over the finite

field Fp. We find four exact results for the number of nonzero coefficients in special

cases of n and p for the polynomial (1 + x+ x2)n. More importantly, we use Amde-

berhan and Stanley’s matrices to find what we conjecture to be an approximation for

the sum of the number of nonzero coefficients of P (x)n over Fp. We also relate the

number of nonzero coefficients to the number of base p digits of n. These results lead

to questions in representation theory and combinatorics.
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Introduction

The Sierpinski triangle, a well-known fractal, is made when the entries in Pascal’s

Triangle are taken (mod 2). Pascal’s Triangle, in turn, is made up of the coefficients

of the polynomial (1 + x)n listed in rows, one row for each value of n. The Sierpinski

triangle raises the question: what if this were done for other polynomials? This paper

examines this problem, looking at the coefficients of the polynomial (1+x+x2)n and

other polynomials over finite fields. For instance, in F2[x], all the even coefficients

become zero, leaving only the odd coefficients as nonzero. In F3[x], coefficients not

divisible by 3 are nonzero. By researching coefficients in Fp[x], we look at the question

of how many coefficients will be nonzero for any prime p.

There have already been results on these questions for (1 +x+x2)n for a few cases

of p: F2 and F3 [2]. Both cases have formulas involving the base p representation

of n. We looked at the problem for general p, hoping to go beyond F2 and F3. In

working on this problem, we took two different approaches. The first was to look for

an exact formula for (1 + x+ x2)n, which seems to be hard.

The second approach was to focus on an approximation. On initial instinct, it

might seem that all coefficients are approximately equally likely. However, when

working in finite fields, this is not the case. In Fp, (a + b)p = ap + bp because the

other coefficients are divisible by p: this fact means that many more coefficients are
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zero than might be expected if we thought that roughly 1
p

of the coefficients would

be divisible by p.

Amdeberhan and Stanley [1] have a formula allowing the number of coefficients in

any polynomial g(x)n equal to a number α in Fp to be found as a product of certain

matrices. Willson [3] has related the number of nonzero coefficients of f(x)n in Fp[x]

to the dimension of an additive cellular automaton, and computed this dimension

using a matrix that turns out to be related to Amdeberhan and Stanley’s matrices in

a way that will be explained in the last section. The Sierpinski triangle is an example

of a fractal that is created when the grid size of such a cellular automaton goes to

zero. We use these related results to examine the asymptotic behavior of the number

of nonzero coefficients of a polynomial to the nth power.

Structure of the Article. First, in section 1, we will present some previous results.

Then, in sections 2 and 3 we will present orignal results. Exact results in section 2

include these four results:

(1) generalization of the F3 formula for all p with the polynomial (1 + x + . . . +

xp−1)n

(2) a formula when the base p expression of n contains certain digits
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(3) an answer for all p for selected values of n

(4) expressions for the coefficients when 1 + x+ x2 can be factored mod p

In section 3, we analyze the number of nonzero coefficients of the nth power of

polynomials as n goes to infinity. Results include statement and proof of our main

theorem, a formula when n = pk − 1, and a conjecture for all values of n supported

by computer evidence. We use the p = 2 case as an example.

Finally, we discuss further opportunities for research in section 5.

1. Background

Our results build on results by Amdeberhan and Stanley. For every polynomial

f(x), define fp(n) as

fp(n) = {number of nonzero coefficients of f(x)n in Fp}.

For p = 2 and 3, they have proved the following [2]:

Proposition 1. If

2n =
k∑
i=0

ai3
i
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is the base 3 expansion of 2n, then the number of nonzero coefficients of f(x) =

(1 + x+ x2)n over F3 is equal to

f3(n) =
k∏
i=0

(1 + ai).

Proposition 2. If we write n as n =
∑r

i=1 2ji(2ki−1) where ji > ki−1+ji−1, breaking

it up into 1-strings, then the number of nonzero coefficients of f(x) = (1 + x + x2)n

in F2 is equal to

f2(n) =
r∑
i=1

f(2ki − 1),

where 
f2(2

k − 1) = 2k+2+1
3

if k is odd

f2(2
k − 1) = 2k+2−1

3
if k is even.

These results provide motivation to explore the question for general p. The first

proposition serves as the model for our generalization to (1 + x+ . . .+ xp−1)n.

2. Formulae for fp(n)

This section presents exact results for fp(n), looking at special cases of n and p .

2.1. Generalization to (1 + x + . . . + xp−1)n. We look at the number of nonzero

coefficients of the polynomial (1 + x + . . . + xp−1)n over Fp[x] in order to generalize

the p = 3 case stated before. What we find is the following:
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Proposition 3. If

n(p− 1) =
k∑
i=0

aip
i

is the base p expansion of n(p − 1), then the number of non zero coefficients of

f(x) = (1 + x+ . . .+ xp−1)n is equal to

fp(n) =
k∏
i=0

(1 + ai).

Proof. Since for g(x) in Fp[x] we have g(x)p = g(xp), we have

(1 + x+ . . .+ xp−1)n

= (
1− xp

1− x
)n

= ((1− x)p−1)n

= (1− x)n(p−1)

=

np−n∑
k=0

(−1)k
(
np− n
k

)
xk.

By Luca’s Theorem, if np− n =
∑k

i=0 aip
i and k =

∑l
i=0 bip

i then

(
np− n
k

)
=

k∏
i=0

(
ai
bi

)
.

The coefficients will be nonzero when all the terms in the product are nonzero. Each

term is nonzero if ai ≥ bi, so there are ai + 1 ways for each term to be nonzero and∏k
i=0(ai + 1) nonzero coefficients. �
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2.2. Case Where n has Certain Digits. As we have seen in Section 3, for the

number of nonzero coefficients of the polynomial f(x) = (1 + x + x2)n over Fp[x],

the smallest unsolved case was p = 5; looking at it leads us to an interesting general

result involving all p. We looked at the number of nonzero coefficients of f(x)n in

F5. If n =
∑k

i=0 ai5
i is the base 5 expansion of n, then

(1 + x+ x2)n = (1 + x+ x2)
∑k

i=0 ai5
i

≡
k∏
i=0

(1 + x5
i

+ x2·5
i

)ai (mod 5).

We would have liked to say that f5(n) =
∏k

i=0 f5(ai), because calculation would be

very easy. However, this is not true. It turns out that it is true if ai ∈ {0, 1, 2}. This

led us to find more generally that this proposition is true if fp(n) denotes the number

of non zero coefficients of (1 + x+ x2)n.

Proposition 4. If n =
∑k

i=0 aip
i is the base p expansion of n, and if

ai ∈ {0, 1, . . . , p−12 }, then

fp(n) =
k∏
i=0

fp(ai).
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Proof.

(1 + x+ x2)n = (1 + x+ x2)
∑k

i=0 aip
i

=
k∏
i=0

(1 + x+ x2)aip
i

=
k∏
i=0

(1 + xp
i

+ x2ṗ
i

)ai .

If this product is expanded, consecutive terms will be

(1 + xp
i

+ x2p
i

)ai(1 + xp
i+1

+ x2p
i+1

)ai+1 .

The powers of x in the first term go from pi to 2aip
i. Similarly, the powers in the

second term go from pi+1 to 2ai+1p
i+1. If ai ≤ p−1

2
, then 2aip

i < pi+1. Because all

the powers of x in the first term are less than those in the second term and the base

p expansion of n is unique, there will be no interactions between terms. The number

of nonzero coefficients in each term is fp(ai), and with no interactions

fp(n) =
k∏
i=0

fp(ai).

�

2.3. Special Cases of n. Long division has allowed us to obtain numbers of co-

efficients for specific values of n. For instance, the coefficients of (1 + x + x2)p
k−1

alternate, the pattern being 1,−1, 0, 1,−1, 0, . . . until it reaches the middle, at which

point the coefficients are symmetric over reflection. This means that around two out
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of every three coefficients are nonzero: specifically, the number of coefficients is 4pk−1
3

when pk ≡ 1 mod 3 and 4pk+1
3

when pk ≡ 2 mod 3.

We were able to discover formulas for n = pk−2, pk−3, and pk−4 as well, though

the coefficients got more complicated.

If n = pk − 2, then
fp(n) = 2pk − 2pk−1 − 1 if p ≡ 1 (mod 3) or k is odd

fp(n) = 2pk − 2pk−1 + 1 if p ≡ 2 (mod 3) and k is even.

If n = pk − 3, then
fp(n) = 1

3
(6pk − 10pk−1 − 5) if p ≡ 1 (mod 3) or k is odd

fp(n) = 1
3
(6pk − 10pk−1 + 5) if p ≡ 2 (mod 3) and k is even.

If n = pk − 4, then

fp(n) = 2pk − 6pk−1 − 2 if p ≡ 1 (mod 3)

fp(n) = 2pk − 6pk−1 + 1 if p ≡ 2 (mod 3) and k is even

fp(n) = 2pk − 6pk−1 − 1 if p ≡ 2 (mod 3) and k is odd.

These were all found by the same method. Dividing by 1 +x+x2, we were able to

discover the alternating pattern of the coefficients. This told us approximately how
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many coefficents would be nonzero. Trying different cases of n and p (mod 3), we

calculated the exact formulas.

2.4. Case when p ≡ 1 (mod 3). For some values of p, (1 + x+ x2) can be factored.

In these cases, we can compute expressions for the coefficients of the polynomial.

Proposition 5. The polynomial (1 + x + x2) is reducible in Fp if and only if p is

equivalent to 1 (mod 3).

Proof. The polynomial 1 + x + x2 is reducible in Zp if and only if 1 + x + x2 =

(x− a)(x− b) = x2 − (a+ b)x+ ab.

This gives that ab = 1, so b = a−1 in the multiplicative group Zp. We know that

−a−b = 1, so a+a−1 = −1. We also know that 1+a+a2 = 0, so a−1 = a2 → a3 = 1.

We can see if there exists an a such that a3 = 1 then a is a root of 1+x+x2. Therefore,

1 + x+ x2 is reducible in Zp if and only if a3 = 1 in Zp for some a.

We know the multiplicative group Zp is cyclic with order p − 1. If m|p − 1, then

there exists an a such that am = 1. So if 3 divides p− 1, then there exists an a such

that a3 = 1.

Therefore, if p ≡ 1 mod 3, then 1 +x+x2 is reducible in Zp and for all p such that

1 + x+ x2 is reducible in Zp, p ≡ 1 mod 3. �
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For those primes, it is possible to find an expression for the coefficients. Let a be

a root of the polynomial (1 + x+ x2)n. Then for d < n,

ad = (−1)d
d∑

k=0

(
n

k

)(
n

d− k

)
a2d−k,

and for d > n,

ad = (−1)d
n∑

k=d−n

(
n

k

)(
n

d− k

)
a2d−k.

We find these expressions because in Fp, (1 + x+ x2)n factors to (x− a)n(x− a2)n.

Then for every k between 0 and d, there are
(
n
k

)
ways to choose k factors of a and(

n
d−k

)
ways to choose d− k factors of a2, giving a product of aka2(d−k) = a2d−k.

3. Approximation for fp(n)

This section uses Amdeberhan and Stanley’s theorem [1] about Nα(n), the number

of coefficients of the n-th power of a polynomial f(x) that are equal to α in Fp.

They prove the existence of matrices matrices A0, . . . , Ap−1 of size pdeg(f)+1, row vector

u and a column vector v (the former depending on α) such that if

r∑
i=0

aip
i

is the base q expansion of n, then

Nα(n) = uAa0 . . . Aarv.
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For the p = 2 case Willson [3] came up with a matrix A and vectors u and v that

compute the behavior of the sum of nonzero coefficients in f(x)n. This matrix is

strongly related to the matrices A0 and A1 cited before, however the size happens to

be significantly smaller (less or equal to pdeg(f)− 1). In section 4 we will focus on the

size of these matrices and explain the relations among them. This matrix led him to

prove the conjecture stated in this section; we were unaware of his work when this

research was done and the conjecture was made.

3.1. Approximation. As we state in the introduction, our main result concerns the

behavior of nonzero coefficients for f(x)n. We give a formula for rn, which we define

as

rn =
n−1∑
m=0

fp(m),

in the case n = pk.

Theorem 6. Let f(x) be a polynomial in Fp[x], and let

rn =
n−1∑
m=0

fp(m)

be the sum of nonzero coefficients of f(x)n. Then

rpk ∼
k→∞

(pk)b

where

b = logp(ρ(A))
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and ρ(A) is an algebraic integer.

Proof. Let m =
∑k

i=0 aip
i be the base p expansion of m. According to the theorem

mentioned [1], the number of coefficients equal to α in g(x)n, where g is a polynomial,

is

uαAa0 . . . Aakv.

In this expression, uα is a row vector, v is a column vector, and all A are square

matrices. Since n = pk, m takes every value between 0 and pk − 1, meaning that

every possible combination of k + 1 base p digits results.

For instance if p = 2,

2k−1∑
m=0

f(m) = u(A0 + A1)
kv,

because when (A0 +A1)
k is expanded, every combination of matrices that correspond

to digits results. If p > 2, in order to find the number of nonzero coefficients we must

sum

uα(A0 + · · ·+ Ap−1)
kv

over all α, since each term represents the sum of coefficients that are equal to α.

Summing over α gives

(u1 + · · ·+ up−1)(A0 + · · ·+ Ap−1)
k−1v.
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The sum A := (A0 + · · ·+ Ap−1) is another square matrix; giving

rpk = (u1 + · · ·+ up−1)A
kv.

The behavior of rpk , as k goes to ∞, will be determined by one eigenvalue of the

matrix A. Since A is over the integers and ρ(A) is an eigenvalue, ρ(A) is an algebraic

number. We have

rpk ∼
k→∞

ρ(A)k.

Taking logpk of both sides, we get

b = logpk(rpk) = logpk(ρ(A)k) = logp(ρ(A)).

�

Based on this theorem, we have a conjecture for all p.

Conjecture 7. logn(rn) approaches b as n goes to infinity.

For p = 2, this appears to be the case. Computer simulations find that ρ(A) is

approximately 3.25 when n is large, while 1+
√

5, an eigenvalue of the relevant matrix,

is approximately 3.24.
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3.2. Example: p = 2. For instance, we can look at the case where p = 2. The

matrices in this case are 8× 8. Calculation gives

A0 =



2 1 1 0 1 1 0 0

0 0 0 0 0 0 0 0

0 1 0 1 0 0 0 0

0 0 0 0 0 0 0 0

0 0 1 1 1 0 2 1

0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 1

0 0 0 0 0 0 0 0



A1 =



2 0 0 0 0 0 0 1

0 0 0 1 0 0 0 0

0 1 1 0 0 0 1 0

0 1 0 0 0 0 0 0

0 0 0 1 1 0 1 0

0 0 0 0 0 1 0 0

0 0 1 0 1 1 0 0

0 0 0 0 0 0 0 1



A = A0 +A1: call its characteristic polynomial d(x). Calculation shows that ρ(A)

is approximately 1 +
√

5, which is a root of d(x). In fact d(x) contains the factor

x2 − 2x− 4, and 1 +
√

5 is its largest root.

3.3. Correlation between fp(n) and base p digits. Computation of fp(n) is re-

lated to the base p expansion of n. This implies that there might be some correlation

between fp(n) and the number of nonzero digits in the base p expansion of n.

Let D(n) be the number of 1’s in the binary expansion of n. Define

rn(t) :=
2k−1∑
m=0

f2(n)tD(n).
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Proposition 8. logk r2k(t) approaches log2
t+
√
9t2+10t+1+1

2
.

Proof. Fix a polynomial over F2. Then Amdeberhan and Stanley’s formula implies

that

r2k(t) = u(A′0 + tA′1)
kv.

This formula allows us to find the correlation between f2(2
k) and D(2k) using eigen-

values of the matrix A′0+tA
′
1, which are algebraic functions of t. Computer calculation

finds that the largest eigenvalue of the matrix is t+
√
9t2+10t+1+1

2
.

�

When t = 1, this expression is equal to 1+
√

5, the eigenvalue found in the example

above.

4. Size of the matrices and relation to representation theory

By looking at the previous example we wondered whether or not it is possible to

find smaller matrices A′0, A
′
1 and vectors u′ and v′ that compute the number of nonzero

coefficients of (1 + x + x2)n in the same way the one provided by Amdeberhan and

Stanley do. The fact that the behavior of rn is determined by the root of a quadratic

polynomial suggests that we might be able to find such smaller matrices. In this
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particular example we actually found u′ = (1, 1, 2), v′ = (0, 1, 0) and matrices

A′0 =


0 0 0

1 1 2

0 0 0

 A′1 =


1 0 1

0 1 1

1 1 0

 .

Note that in particular the characteristic polynomial of A′ := A′0 + A′1 contains the

same factor x2−2x−4. As we mentioned in the introduction, Willson also gives a way

of constructing a single matrix A, that determines the behavior of rn. However what

is interesting is that his construction provides a smaller matrix. In this particular case

his matrix is already 3 by 3, and is conjugate to A′. We would like to understand how

the degree of the minimum polynomial for ρ(A) is related to the size of the matrices.

This leads to interesting questions in representation theory.

4.1. Relation to Representation Theory. By looking at the polynomial 1+x+x3

over F2, we have seen that the exponent b from theorem 6 is approximately 1.6942.

This number is a root of a factor of the characteristic polynomial d(x) of A := A0+A1

of degree 4 (call this factor d′(x)). For this polynomial, while Amdeberhan and

Stanley’s matrix A is 16× 16, Willson’s matrix (corresponding to the sum A0 +A1)

is only 7 × 7. However, the degree of d′(x) being 4 suggests the existence of some

smaller matrix A.

In general, the characteristic polynomial of A0 + A1 is usually a product of many

low degree factors with integer coefficients. This property can be explained by the
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small size and many irreducible representations of very small dimension of the algebra

generated by A0 and A1. This results in the degree of the algebraic integer ρ(A) being

much smaller than expected. It is not clear what happens for different polynomials

and for different p. However, one may expect that representation theory can be used

to gain a better understanding of the numbers ρ(A) (and in particular to find their

degrees), and to find exact formulas for fp(n).

5. Further Research

These results open up new paths for further study. Related to the results on

formulae, we hope that, using findings for specific cases of n, the p = 5 case can be

solved. Also, the expressions for coefficients that we found in reducible cases yield

identities, and we would like to determine whether or not they are trivial.

Related to the approximation approach we took in the second part of the project,

as we said in the previous section, we would like to understand the relation between

the size of the matrices Ai, for i = 0, . . . , p− 1, and the representation theory of the

algebra A =< Ai, i = 0, . . . , p− 1 >. We would like to see how much the size of the

matrices can be reduced.

Another question is whether or not there exist constants c1 and c2 such that

c1 ≤
rn

nlogp α
≤ c2,
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where α is an algebraic integer. Finally, we find the correlation between fp(n) and

base p digits for the polynomial 1 + x + x2. We hope that further study will find

general results on this question for every polynomial.
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