Hiding Behind and Hiding Inside

Christina Chen
MIT PRIMES

May 21, 2011

Hiding Behind

A shape A can hide behind a shape B if in any direction, the shadow of B contains a translate of the corresponding shadow of A.

In 2D, all shadows are segments.

Hiding Inside

If a shape A can hide inside a shape B, then it can hide behind B.

Hiding Behind But Not Inside

Minkowski Sum

Definition

$$
A \oplus B=\{a+b \mid a \in A, b \in B\}
$$

Relating Minkowski Sums To Hiding Behind

Theorem

For convex bodies A, B, and C, if A and B can hide behind C, then for any μ such that $0 \leq \mu \leq 1, \mu A+(1-\mu) B$ can hide behind C.

Minkowski Sum of Triangle and Disk

Radius of scaled disk $r=\frac{\sqrt{3}}{4}(1-\mu)$
Side length of scaled triangle $s=\mu$
Area of Minkowski sum $=\frac{\sqrt{3}}{4} s^{2}+3 r s+\pi r^{2}$

Best Area Ratio

$$
\mu=s=\frac{6-\sqrt{3} \pi}{8-\sqrt{3} \pi} \approx 0.22
$$

$$
r=\frac{3}{2(8-\sqrt{3} \pi)} \approx 0.34
$$

Ratio of areas $=\frac{3 \pi^{2}-17 \sqrt{3} \pi+72}{(8-\sqrt{3} \pi)^{2}} \approx 1.39$

Minkowski Sum of Triangle and Inverted Triangle

Best Area Ratio

Area of hexagon $=\frac{3 \sqrt{3}}{8}$
Area of triangle $=\frac{\sqrt{3}}{4}$
Ratio of areas $=1.5$

Project Goals

- 3D shadows have shapes
- hypothesized to be impossible
- recently proved possible
- few ratio calculations

Goals:

- calculate numerical results
- improve the ratios
- prove some theorems

Minkowski Sum of Tetrahedron and Ball

$$
\begin{gathered}
r=\frac{\sqrt{6}-\sqrt{2}}{4}(1-\mu) \\
s=\mu \\
\alpha=\cos ^{-1}\left(\frac{1}{3}\right)
\end{gathered}
$$

Volume of Minkowski sum $=\frac{\sqrt{2}}{12} s^{3}+3(\pi-\alpha) s r^{2}+\sqrt{3} s^{2} r+\frac{4}{3} \pi r^{3}$

Best Volume Ratio

$$
\begin{aligned}
\mu & \approx 0.68 \\
r & \approx 0.08 \\
s & \approx 0.68
\end{aligned}
$$

Volume of Minkowski sum ≈ 0.13

Ratio of volumes ≈ 1.12

The Minkowski sum hides behind the unit tetrahedron but has a bigger volume than the unit tetrahedron.

Minkowski Sum of Tetrahedron and Inverted Tetrahedron

Side length of original tetrahedron $S(\triangle)=\alpha$
Side length of inverted tetrahedron $S(-\triangle)=\frac{1-\alpha}{2}$
Volume of Minkowski sum

$$
=\left[\alpha^{3}+\frac{9}{2} \alpha^{2}(1-\alpha)+\frac{9}{4} \alpha(1-\alpha)^{2}+\frac{1}{8}(1-\alpha)^{3}\right] V(\triangle)
$$

Best Volume Ratio

$$
\begin{gathered}
\alpha \approx 0.77 \\
S(\triangle) \approx 0.77 \\
S(-\triangle) \approx 0.11
\end{gathered}
$$

Volume of Minkowski sum ≈ 0.14

Ratio of volumes ≈ 1.16

The Minkowski sum hides behind the unit tetrahdron but has a bigger volume than the unit tetrahedron.

Theorem (jointly with T. Khovanova and D. Klain)

Suppose that Δ is an n-simplex and K is a compact convex set in \mathbb{R}^{n} such that the following assertions hold:
(i) Each projection Δ_{u} contains a translation of the corresponding projection K_{u}.
(ii) Each simplex Δ does not contain a translate of K.

Then there exists $t \in(0,1)$ and a convex body $L=(1-t) K+t \Delta$ such that the following assertions hold:
(i) Each projection Δ_{u} contains a translate of the corresponding projection L_{u}.
(ii)) $V_{n}(L)>V_{n}(\Delta)$.

Results Summary

- calculated the best volume ratio for the Minkowski sum of a tetrahedron and a ball, 1.12
- found a NEW example with a better ratio - the Minkowski sum of a tetrahedron and an inverted tetrahedron, 1.16
- related hiding behind and hiding inside to volume

Conjecture

Conjecture

The largest volume ratio for the three-dimensional case is 1.16 . Furthermore, in any dimension n, the largest volume ratio is generated by a simplex and an inverted simplex.

Future Developments

- higher dimensions?
- simplices always generate the best ratio?
- other than Minkowski sums?

Acknowledgments

want to thank

- Tanya Khovanova, for mentoring me in my research, for teaching me many technical skills, and for her useful and interesting ideas,
- Dan Klain, for suggesting the project, for carefully explaining new concepts, and for his contagious enthusiasm,
- PRIMES, for this amazing opportunity and for this amazing experience,
- my family, for always supporting me in any way they can.

