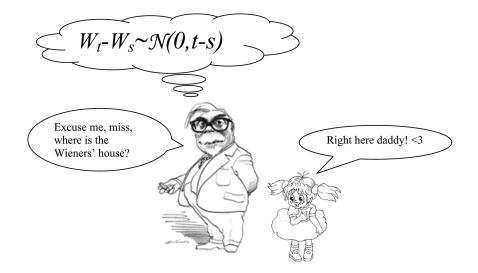
Rotor-Routers

Xiaoyu He

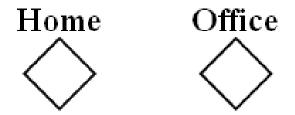
MIT PRIMES

May 21, 2011

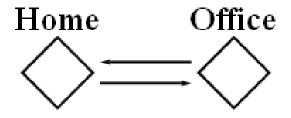
A Problem: The Anterograde Amnesiac



A Problem: The Anterograde Amnesiac

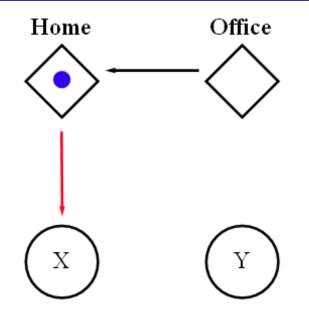


A Solution: Leave Notes



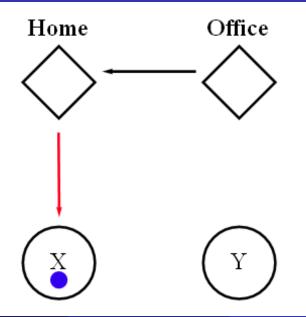


Day 1

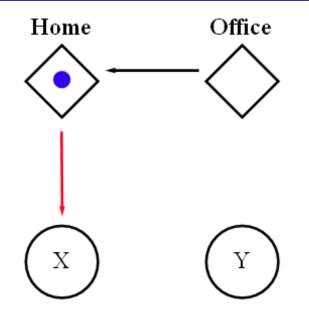


Xiaoyu He (MIT PRIMES)

May 21, 2011 6 / 27

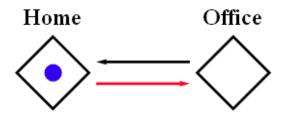


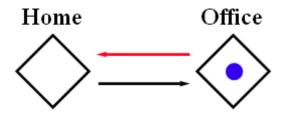
Day 2

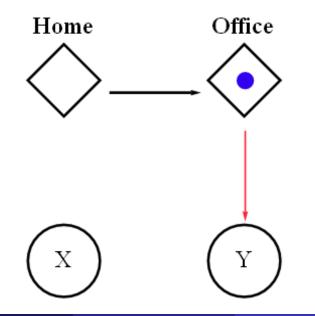


Xiaoyu He (MIT PRIMES)

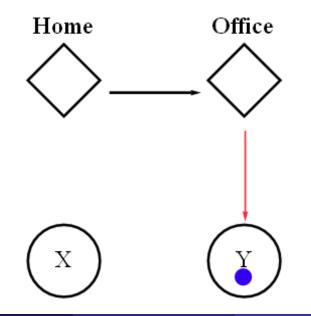
May 21, 2011 8 / 27







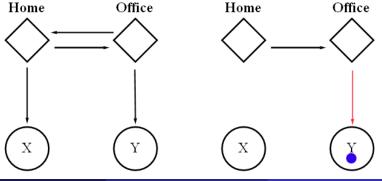
May 21, 2011 11 / 27



May 21, 2011 12 / 27

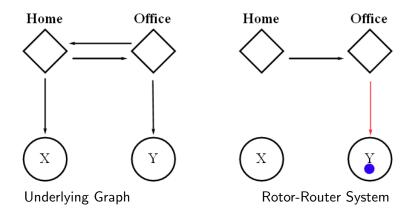
What is a Rotor-Router?

A **rotor-router system** defines a mechanism for travelling around a (directed) graph. At each vertex is a **rotor** that defines the edge the next **particle** entering that vertex will leave by. The rotor consists of a cyclic ordering of the edges emanating from that vertex, some of which may be repeated, and one designated current edge. When a particle enters the node it shifts the current edge and moves out along the new one.

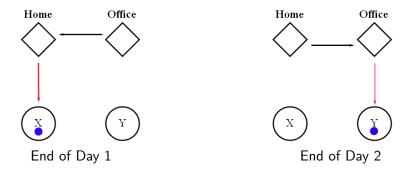


Rotor-Routers

Particles travel through the graph beginning at the designated **source** vertex until they reach one of the **target** vertices, whereupon they leave the system.

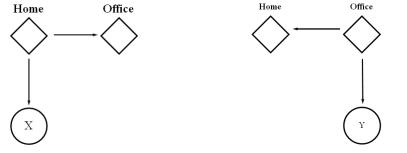


In the example, the hitting sequence began XY...



The **hitting sequence** of a rotor system is the sequence of targets hit by particles when they are fed into the system one by one. The hitting sequence is always periodic.

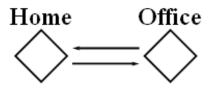
The **rotor type** of a rotor defines the rule by which the rotor cycles through its out-going edges. For instance the rotors in the example are both of type **12**.



Rotor type of the Home rotor: 12

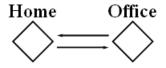
Rotor type of the Office rotor: 12

Making a 121 Rotor From 12 Rotors



The hitting sequence of the graph is XYXXYX..., which is of type 121. If a rotor type y can be the hitting sequence of a rotor system in which every rotor is of type x, then we say x can make y.

Do there exist rotors that can make all other rotors? If so, do there exist rotors that can't?



We can make 121 from 12. Is 12 universal?

12 is Universal

Any other rotor can be made from 12 rotors using a modified binary tree.

Some Rotors are Not Universal

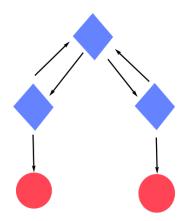
boppy rotor types: all rotors that are either **block-repetitive** or **palindromic**:

- block-repetitive comes in uniform blocks of the same length. e.g. 1122
- **2** palindromic same forwards and backwards. e.g. **121**

Universal	Not Universal
12	121
	1122

The Compressor

The **compressor** is a powerful tool working with two-state rotor types. To apply it, replace each vertex with the same rotor type, and find the hitting sequence. After one application of the compressor, a rotor type becomes balanced. Further applications do not increase its period.



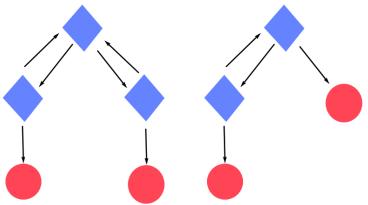
The Compressor

Using a computer search, we found that **all but 274 of the unboppy rotor types of length up to 17 are universal** by directly applying the compressor. This is out of a total of more than 100,000 possible rotor types. In particular, this settled the original question of whether **11222** is universal, proposed by Jim Propp.

Len # Un	decided
2	o
3	0
4	0
5	0
6	2
7	0
8	5
9	9
10	22
11	0
12	36
13	0
14	12
15	52
16	136
17	0

The Compressor

For balanced rotors, we proved by supplementing the compressor with another simple configuration that **all balanced**, **unboppy rotors of length up to 23 are universal**. There were 10 problematic cases for length 24.



The Reduction Theorem

If every unboppy two-state rotor is universal, then all unboppy rotors are universal.

Rotor Type: 111333332222 \rightarrow unboppy Reductions: 111222222222

The Reduction Theorem

If every unboppy two-state rotor is universal, then all unboppy rotors are universal.

Rotor Type: 111333332222 → unboppy Reductions: 111222222222 111111112222

The Reduction Theorem

If every unboppy two-state rotor is universal, then all unboppy rotors are universal.

Rotor Type: 111333332222 → unboppy Reductions: 111222222222 11111112222 111333331111 → unboppy

- The compressor still meets roadblocks at some fixed points and cycles. Can we find a different configuration that can fix this problem?
- We conjecture from empirical data that the compressor alone is sufficient to prove the universality of all unboppy rotors of prime length.
- Almost all rotor systems will exponentially increase a rotor's length, unlike the compressor. Is there a measure for this ability to keep rotor lengths small? Can we find other such systems with even more power?

Thanks to:

- Tanya Khovanova, for her big-picture insight, awesome mathematical experience, humor, and guidance.
- James Propp, for inventing rotor-routers, proposing the project, and providing fun and descriptive nomenclature.
- PRIMES staff, for their impressive organizational abilities and for making this experience possible.
- **O** My Parents, for providing transportation and other forms of support.