Progress on Parallel Chip-Firing

Ziv Scully
MIT PRIMES
May 21, 2011

Motivation

- Simple rules
- "Obvious" patterns which are difficult to prove, or even wrong
- Potential connections to other fields of mathematics and science

Graphs

Graphs

Graphs

Graphs

Graphs

The Parallel Chip-Firing Game

- Played on a graph
- Assign a number of chips to each vertex
- On each turn:
- If a vertex has at least as many chips as neighbors, it fires
- Otherwise, we say it waits
- When a vertex fires, it gives one chip to each of its neighbors
- Happens for all vertices in parallel

The Parallel Chip-Firing Game

Basic Properties

- All games are eventually periodic
- All vertices fire the same number of times in a period
- In a periodic-1 position, either all vertices fire or all vertices wait
- Period >2 needs a cycle

Notation

- $\sigma(t)$ is the position after taking t turns, starting with position $\sigma(0)$
- $\sigma_{v}(t)$ is the number of chips on vertex v in position $\sigma(t)$
- $\Phi_{v}(t)$ is the number of v 's neighbors that fire at time $t ; v$ gets one chip from each
- $F_{v}(t)$ is 1 if v fires at time t and 0 otherwise
- c is the total number of chips in a position
- If G is a graph, $V(G)$ is its vertex set and $E(G)$ is its edge set

Outline of Literature

- Bitar's conjecture: maximum period \leq number of vertices
- Bitar and Goles: Trees have period 1 or 2
- Kiwi et al.: Bitar's conjecture is false!
- Dall'Asta: Period on C_{n} divides n
- Levine: Period on $K_{n} \leq n$
- Jiang: Period on $K_{a, b} \leq 2 \min (a, b)$

Periodic or Not?

Periodic-2 Positions

Theorem (Characterization of periodic-2 positions)
A position $\sigma(t)$ on graph G is periodic-2 if and only if for all $v \in V(G)$, $\operatorname{deg}(v) \leq \sigma_{v}(t)+\Phi_{v}(t) \leq 2 \operatorname{deg}(v)-1$.

Proof.

When the period is 2 , vertices alternate between firing and waiting. The above inequality is true if and only if v is about to switch states.

Understanding Trees

Understanding Trees

Theorem (Number of chips on a tree determines period)
If a game on a tree graph G has c chips, its eventual period is 2 if and only if $|E(G)| \leq c \leq 2|E(G)|-1$.

Understanding Trees

Theorem (Number of chips on a tree determines period)
If a game on a tree graph G has c chips, its eventual period is 2 if and only if $|E(G)| \leq c \leq 2|E(G)|-1$.

Proof.

If the period is n, then for some time $t, \sigma(t)$ will be periodic- n.
If $n=1$:

$$
\begin{array}{rlrl}
\sigma_{v}(t) & \leq \operatorname{deg}(v)-1 & \operatorname{deg}(v) & \leq \sigma_{v}(t) \\
c & \leq|E(G)|-1 & 2|E(G)| & \leq c
\end{array}
$$

If $n=2$:

$$
\begin{gather*}
\operatorname{deg}(v) \leq \sigma_{v}(t)+\Phi_{v}(t) \leq 2 \operatorname{deg}(v)-1 \\
2|E(G)| \leq c+\sum \frac{\Phi_{v}(t)+\Phi_{v}(t+1)}{2} \leq 3|E(G)|-1 \\
|E(G)| \leq c \leq 2|E(G)|-1
\end{gather*}
$$

Firing Patterns

- String of 1 s and 0 s indicating firing and waiting, respectively
- Classification
- Alternating: $(1,0)$
- Sparse: not alternating, two types
- Sparsely firing: never fires twice in a row
- Sparsely waiting: never waits twice in a row
- Clumpy: neither sparse nor alternating

Motors

- A special vertex with a fixed firing pattern
- Doesn't care about receiving chips
- Natural motors
- Subgraphs that follow normal chip firing rules
- One key vertex behaves like a motor
- Receiving external chips doesn't change its firing pattern

Motorized Trees

Motorized Trees

Motorized Trees

Theorem (Periodic behavior of trees with one sparse motor)
If motor m in tree graph G is sparse, then for all $v \in V(G)$ at any periodic time $t, F_{v}(t)=F_{m}(t-d)$, where d is the distance from m to v.

Motorized Trees

Theorem (Periodic behavior of trees with one sparse motor)
If motor m in tree graph G is sparse, then for all $v \in V(G)$ at any periodic time $t, F_{v}(t)=F_{m}(t-d)$, where d is the distance from m to v.

Motorized Trees

Theorem (Periodic behavior of trees with one sparse motor)
If motor m in tree graph G is sparse, then for all $v \in V(G)$ at any periodic time $t, F_{v}(t)=F_{m}(t-d)$, where d is the distance from m to v.

Motorized Trees

Theorem (Periodic behavior of trees with one sparse motor)
If motor m in tree graph G is sparse, then for all $v \in V(G)$ at any periodic time $t, F_{v}(t)=F_{m}(t-d)$, where d is the distance from m to v.

Motorized Trees

Theorem (Periodic behavior of trees with one sparse motor)
If motor m in tree graph G is sparse, then for all $v \in V(G)$ at any periodic time $t, F_{v}(t)=F_{m}(t-d)$, where d is the distance from m to v.

Motorized Trees

Theorem (Periodic behavior of trees with one sparse motor)
If motor m in tree graph G is sparse, then for all $v \in V(G)$ at any periodic time $t, F_{v}(t)=F_{m}(t-d)$, where d is the distance from m to v.

Motorized Trees

Theorem (Periodic behavior of trees with one sparse motor)
If motor m in tree graph G is sparse, then for all $v \in V(G)$ at any periodic time $t, F_{v}(t)=F_{m}(t-d)$, where d is the distance from m to v.

Constructing Natural Sparse and Alternating Motors

Constructing Natural Sparse and Alternating Motors

(0,

Constructing Natural Sparse and Alternating Motors

(0, 0,

Constructing Natural Sparse and Alternating Motors

Further Questions

- Can a vertex have a clumpy firing pattern in a period?
- Can every vertex firing be traced back to a "driving cycle"?
- If a graph has a possible period of length $m p$ for some prime p, must the graph have a cycle of length $n p$?

Acknowledgments

- Mentor, Yan Zhang, MIT
- Collaborator, Damien Jiang, MIT
- MIT Program for Research in Mathematics, Engineering and Science
- Dr. Anne Fey, TU Delft
- Dr. Tanya Khovanova, MIT
- Dr. Lionel Levine, MIT

