
(Q1) Given a polynomial f ∈ Z[x ], how many coefficients are
nonzero?

(Q2) What kind of information do they carry?
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Example

Look at the polynomial (1 + x + · · ·+ x r−1)n, for n > 0.

(A1) The number of nonzero coefficients is (r − 1)n + 1 (not
very interesting).

(A2)

The coefficient of x is the power of the polynomial.
The coefficient of x2 is the sum of the first n numbers for
r ≥ 3, and is n(n − 1)/2 for r = 2.
In general the coefficient of xk corresponds to the number of
ordered trees having n + 1 leaves, all at level r and n + k + r
edges.
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What happens if we look at the same polynomial over a finite field
Fp, for p prime?

For r = 2, we have the polynomial (1 + x)n. The coefficients
of this polynomial mod p are well known.

(1 + x)n =
n∑

i=0

(
n

k

)
xk .

Lucas Theorem tells us what
(n
k

)
is mod p. Caroline will

discuss about it in more details.

The case r = 3 is the one Caroline mostly dealt with.
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The case r = 3.

For r = 3 we encode the coefficients of (1 + x + x2)n, for n > 0 in
the following table:

n = 1 1 1 1
n = 2 1 2 3 2 1
n = 3 1 3 6 7 6 3 1
n = 4 1 4 10 16 19 16 10 4 1
n = 5 1 5 15 30 45 51 45 30 15 5 1

...

were the n-th row corresponds to the coefficients of (1 + x + x2)n.



If we look at the same polynomial over a finite field Fp our table
looks completely different.

For example for p = 3 we have:

n = 1 1 1 1
n = 2 1 -1 0 -1 1
n = 3 1 0 0 1 0 0 1
n = 4 1 1 1 1 1 1 1 1 1
n = 5 1 -1 0 0 0 0 0 0 0 -1 1

...

The first question becomes more interesting.
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Caroline will now tell us more about the number of nonzero
coefficients for r = 3 for various p’s although she will also give
some results for larger r.
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Problem Statement

Investigate the number of nonzero coefficients of the polynomial
(1 + x + x2)n over the finite field Fp.

The answer has already been found
in the following cases:

Case p = 2
Case p = 3, using Lucas Theorem.



Problem Statement

Investigate the number of nonzero coefficients of the polynomial
(1 + x + x2)n over the finite field Fp.

The answer has already been found
in the following cases:

Case p = 2
Case p = 3, using Lucas Theorem.



Problem Statement

Investigate the number of nonzero coefficients of the polynomial
(1 + x + x2)n over the finite field Fp.

The answer has already been found
in the following cases:

Case p = 2

Case p = 3, using Lucas Theorem.



Problem Statement

Investigate the number of nonzero coefficients of the polynomial
(1 + x + x2)n over the finite field Fp.

The answer has already been found
in the following cases:

Case p = 2
Case p = 3, using Lucas Theorem.



Lucas Theorem

Theorem

Let
∑r

i=1 aip
i and

∑r
i=1 bip

i be the base p expansions of a and b
respectively. Then (

a

b

)
≡

r∏
i=0

(
ai

bi

)
(mod p).



Notation

fp(n) =

{
number of nonzero coefficients

of (1 + x + x2)n (mod p)

}



p = 3

If
∑r

i=0 ai3
i is the base 3 expansion of 2n

then f3(n) =
∏r

i=0(1 + ai )

Lucas Theorem applies because (1 + x + x2) ≡ (1− x)2 (mod 3).
This result is due to R. Stanley and T. Amdeberhan.
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p = 2

Write n as n =
∑r

i=1 2ji (2ki − 1), i.e. splits binary expansion of n
into maximal strings of 1’s.

For instance

54 = 2 + 22 + 24 + 25

= 1101102

= 2(22 − 1) + 24(22 − 1)

f2(2k − 1) =

{
2k+2+1

3 k odd
2k+2−1

3 k even

and f2(n) =
∏r

i=1 f2(2ki − 1)
This result is due to R. Stanley.
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Results

1 generalized the p = 3 case to all p with the polynomial
(1 + x + . . . + xp−1)n

2 found a formula that works for some particular digits in the
expression of n in base p

3 found answer for all p for selected values of n

4 found expressions for coefficients when 1 + x + x2 is reducible
mod p
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1. Generalization to f (x) = (1 + x + . . . + xp−1)n

The generalization of p = 3 to every p uses Lucas Theorem. We
were able to use it because (1 + x + . . . + xp−1) ≡ (1− x)p−1

(mod p).

Proposition

If
∑r

i=0 aip
i is the base p expansion of np − n then

fp(n) =
∏r

i=0(1 + ai ).
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2. p = 5

n =
∑r

i=0 ai5
i is the base 5 expansion of n

(1 + x + x2)n = (1 + x + x2)
Pr

i=0 ai5
i

≡
r∏

i=0

(1 + x5i
+ x2·5i

)ai (mod 5)

would be nice to have f5(n) =
∏r

i=0 f5(ai )
NOT TRUE

It is true if ai ∈ {0, 1, 2}. In general we have the following:
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Proposition

If n =
∑r

i=0 aip
i is the base p expansion of n, and if

ai ∈ {0, 1, . . . , p−1
2 }, then

fp(n) =
r∏

i=0

fp(ai ).



3. n = pk − 1

coefficients of (1 + x + x2)pk−1 in Fp alternate in the following
way:

1,−1, 0, 1,−1, 0, 1,−1, 0, 1,−1, 0 . . .

fp(pk − 1) =

{
4pk−1

3 pk ≡ 1 (mod 3)
4pk+1

3 pk ≡ 2 (mod 3)

We found the coefficients by starting at n = pk and working
backwards by dividing.
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3. More Special Cases

if n = pk − 2, then f (n) = 2pk − 2pk−1 − 1 (p ≡ 1 (mod 3)
or k odd) or 2pk − 2pk−1 + 1 (p ≡ 2 (mod 3) and k even)

if n = pk − 3, then f (n) = 1
3(6pk − 10pk−1 − 5) (p ≡ 1

(mod 3) or k odd) or 1
3(6pk − 10pk−1 + 5) (p ≡ 2 (mod 3)

and k even)

if n = pk − 4, then f (n) = 2pk − 6pk−1 − 2 (p ≡ 1 (mod 3)),
2pk − 6pk−1 + 1 (p ≡ 2 (mod 3) and k even), or
2pk − 6pk−1 − 1 (p ≡ 2 (mod 3) and k odd)
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4. p ≡ 1 (mod 3)

Fact: The polynomial (1 + x + x2) is reducible in Fp iff p ≡ 1
(mod 3).

For example

(1 + x + x2) ≡ (x − 2)(x − 4) (mod 7)

Proposition

Let a be a root of the polynomial (1 + x + x2)n, then for d < n,

ad = (−1)d
d∑

k=0

(
n

k

)(
n

d − k

)
a2d−k ,

where ad is the coefficient of xd .
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Further Research

using findings for specific cases of n, solve p = 5 case

investigate expressions for coefficients in reducible cases
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