Q1) Given a polynomial f ∈ Z[x], how many coefficients are nonzero?

Q1) Given a polynomial f ∈ Z[x], how many coefficients are nonzero?

Q2) What kind of information do they carry?

- Look at the polynomial $(1 + x + \cdots + x^{r-1})^n$, for n > 0.
 - (A1) The number of nonzero coefficients is (r-1)n+1 (not very interesting).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Look at the polynomial $(1 + x + \cdots + x^{r-1})^n$, for n > 0.

• (A1) The number of nonzero coefficients is (r-1)n+1 (not very interesting).

(A2)

• The coefficient of x is the power of the polynomial.

Look at the polynomial $(1 + x + \cdots + x^{r-1})^n$, for n > 0.

- (A1) The number of nonzero coefficients is (r-1)n+1 (not very interesting).
- (A2)
 - The coefficient of x is the power of the polynomial.
 - The coefficient of x^2 is the sum of the first *n* numbers for $r \ge 3$, and is n(n-1)/2 for r = 2.

Look at the polynomial $(1 + x + \cdots + x^{r-1})^n$, for n > 0.

- (A1) The number of nonzero coefficients is (r-1)n+1 (not very interesting).
- (A2)
 - The coefficient of *x* is the power of the polynomial.
 - The coefficient of x^2 is the sum of the first *n* numbers for $r \ge 3$, and is n(n-1)/2 for r = 2.
 - In general the coefficient of x^k corresponds to the number of ordered trees having n+1 leaves, all at level r and n+k+r edges.

For r = 2, we have the polynomial $(1 + x)^n$. The coefficients of this polynomial mod p are well known.

For r = 2, we have the polynomial $(1 + x)^n$. The coefficients of this polynomial mod p are well known.

$$(1+x)^n = \sum_{i=0}^n \binom{n}{k} x^k.$$

For r = 2, we have the polynomial $(1 + x)^n$. The coefficients of this polynomial mod p are well known.

$$(1+x)^n = \sum_{i=0}^n \binom{n}{k} x^k.$$

Lucas Theorem tells us what $\binom{n}{k}$ is mod p. Caroline will discuss about it in more details.

For r = 2, we have the polynomial $(1 + x)^n$. The coefficients of this polynomial mod p are well known.

$$(1+x)^n = \sum_{i=0}^n \binom{n}{k} x^k.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Lucas Theorem tells us what $\binom{n}{k}$ is mod p. Caroline will discuss about it in more details.

• The case r = 3 is the one Caroline mostly dealt with.

For r = 3 we encode the coefficients of $(1 + x + x^2)^n$, for n > 0 in the following table:

n = 1	1	1	1								
<i>n</i> = 2	1	2	3	2	1						
<i>n</i> = 3	1	3	6	7	6	3	1				
<i>n</i> = 4	1	4	10	16	19	16	10	4	1		
<i>n</i> = 5	1	5	15	30	45	51	45	30	15	5	1
:											
•											

were the n-th row corresponds to the coefficients of $(1 + x + x^2)^n$.

If we look at the same polynomial over a finite field \mathbb{F}_p our table looks completely different.

If we look at the same polynomial over a finite field \mathbb{F}_p our table looks completely different.

• For example for p = 3 we have:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

If we look at the same polynomial over a finite field \mathbb{F}_p our table looks completely different.

• For example for p = 3 we have:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• The first question becomes more interesting.

Caroline will now tell us more about the number of nonzero coefficients for r = 3 for various p's although she will also give some results for larger r.

Polynomial Coefficients over Finite Fields

Caroline Ellison MIT PRIMES

May 21, 2011

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The answer has already been found in the following cases:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The answer has already been found in the following cases:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The answer has already been found in the following cases:

■ Case *p* = 3, using *Lucas Theorem*.

Lucas Theorem

Theorem

Let $\sum_{i=1}^{r} a_i p^i$ and $\sum_{i=1}^{r} b_i p^i$ be the base p expansions of a and b respectively. Then

$$egin{pmatrix} {a} \\ {b} \end{pmatrix} \equiv \prod_{i=0}^r egin{pmatrix} {a}_i \\ {b}_i \end{pmatrix} \pmod{p}.$$

Notation

$$f_p(n) = \begin{cases} \text{number of nonzero coefficients} \\ \text{of } (1 + x + x^2)^n \pmod{p} \end{cases}$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

If $\sum_{i=0}^{r} a_i 3^i$ is the base 3 expansion of 2n

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ = のへで

If
$$\sum_{i=0}^{r} a_i 3^i$$
 is the base 3 expansion of $2n$

then $f_3(n) = \prod_{i=0}^{r} (1 + a_i)$

If
$$\sum_{i=0}^{r} a_i 3^i$$
 is the base 3 expansion of $2n$

then $f_3(n) = \prod_{i=0}^r (1 + a_i)$

Lucas Theorem applies because $(1 + x + x^2) \equiv (1 - x)^2 \pmod{3}$. This result is due to R. Stanley and T. Amdeberhan.

Write *n* as $n = \sum_{i=1}^{r} 2^{j_i} (2^{k_i} - 1)$, i.e. splits binary expansion of *n* into maximal strings of 1's.

Write *n* as $n = \sum_{i=1}^{r} 2^{j_i} (2^{k_i} - 1)$, i.e. splits binary expansion of *n* into maximal strings of 1's. For instance

$$54 = 2 + 2^{2} + 2^{4} + 2^{5}$$

= 110110
= 2(2² - 1) + 2⁴(2² - 1)

Write *n* as $n = \sum_{i=1}^{r} 2^{j_i} (2^{k_i} - 1)$, i.e. splits binary expansion of *n* into maximal strings of 1's. For instance

$$54 = 2 + 2^{2} + 2^{4} + 2^{5}$$

= 1101102
= 2(2² - 1) + 2⁴(2² - 1)

$$f_2(2^k - 1) = \begin{cases} rac{2^{k+2}+1}{3} & k \text{ odd} \\ rac{2^{k+2}-1}{3} & k \text{ even} \end{cases}$$

and $f_2(n) = \prod_{i=1}^r f_2(2^{k_i} - 1)$ This result is due to R. Stanley. **1** generalized the p = 3 case to all p with the polynomial $(1 + x + ... + x^{p-1})^n$

- **1** generalized the p = 3 case to all p with the polynomial $(1 + x + ... + x^{p-1})^n$
- 2 found a formula that works for some particular digits in the expression of n in base p

- **1** generalized the p = 3 case to all p with the polynomial $(1 + x + ... + x^{p-1})^n$
- 2 found a formula that works for some particular digits in the expression of n in base p

3 found answer for all p for selected values of n

- **1** generalized the p = 3 case to all p with the polynomial $(1 + x + ... + x^{p-1})^n$
- 2 found a formula that works for some particular digits in the expression of n in base p
- 3 found answer for all p for selected values of n
- found expressions for coefficients when 1 + x + x² is reducible mod p

1. Generalization to $f(x) = (1 + x + \ldots + x^{p-1})^n$

The generalization of p = 3 to every p uses Lucas Theorem. We were able to use it because $(1 + x + ... + x^{p-1}) \equiv (1 - x)^{p-1} \pmod{p}$.

1. Generalization to
$$f(x) = (1 + x + \ldots + x^{p-1})^n$$

The generalization of p = 3 to every p uses Lucas Theorem. We were able to use it because $(1 + x + ... + x^{p-1}) \equiv (1 - x)^{p-1} \pmod{p}$.

Proposition

If $\sum_{i=0}^{r} a_i p^i$ is the base p expansion of np - n then $f_p(n) = \prod_{i=0}^{r} (1 + a_i).$

$$n = \sum_{i=0}^{r} a_i 5^i$$
 is the base 5 expansion of n

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ 三回 - のへで

$$n = \sum_{i=0}^{r} a_i 5^i \text{ is the base 5 expansion of } n$$

$$(1 + x + x^2)^n = (1 + x + x^2)^{\sum_{i=0}^{r} a_i 5^i}$$

$$\equiv \prod_{i=0}^{r} (1 + x^{5^i} + x^{2 \cdot 5^i})^{a_i} \pmod{5}$$

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ 三回 - のへで

$$n = \sum_{i=0}^{r} a_i 5^i \text{ is the base 5 expansion of } n$$

$$(1 + x + x^2)^n = (1 + x + x^2)^{\sum_{i=0}^{r} a_i 5^i}$$

$$\equiv \prod_{i=0}^{r} (1 + x^{5^i} + x^{2 \cdot 5^i})^{a_i} \pmod{5}$$

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ = のへで

would be nice to have $f_5(n) = \prod_{i=0}^r f_5(a_i)$

$$n = \sum_{i=0}^{r} a_i 5^i \text{ is the base 5 expansion of } n$$

$$(1 + x + x^2)^n = (1 + x + x^2)^{\sum_{i=0}^{r} a_i 5^i}$$

$$\equiv \prod_{i=0}^{r} (1 + x^{5^i} + x^{2 \cdot 5^i})^{a_i} \pmod{5}$$

would be nice to have $f_5(n) = \prod_{i=0}^r f_5(a_i)$ NOT TRUE

$$n = \sum_{i=0}^{r} a_i 5^i \text{ is the base 5 expansion of } n$$
$$(1 + x + x^2)^n = (1 + x + x^2)^{\sum_{i=0}^{r} a_i 5^i}$$
$$\equiv \prod_{i=0}^{r} (1 + x^{5^i} + x^{2 \cdot 5^i})^{a_i} \pmod{5}$$

would be nice to have $f_5(n) = \prod_{i=0}^r f_5(a_i)$ NOT TRUE

It is true if $a_i \in \{0, 1, 2\}$. In general we have the following:

Proposition

If $n = \sum_{i=0}^{r} a_i p^i$ is the base p expansion of n, and if $a_i \in \{0, 1, \dots, \frac{p-1}{2}\}$, then

$$f_p(n) = \prod_{i=0}^r f_p(a_i).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

3.
$$n = p^k - 1$$

coefficients of $(1 + x + x^2)^{p^k - 1}$ in \mathbb{F}_p alternate in the following way:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

3.
$$n = p^k - 1$$

coefficients of $(1 + x + x^2)^{p^k - 1}$ in \mathbb{F}_p alternate in the following way: 1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0...

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

3.
$$n = p^k - 1$$

coefficients of $(1 + x + x^2)^{p^k - 1}$ in \mathbb{F}_p alternate in the following way:

$$1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0 \dots$$

$$f_{p}(p^{k}-1) = \begin{cases} \frac{4p^{k}-1}{3} & p^{k} \equiv 1 \pmod{3} \\ \frac{4p^{k}+1}{3} & p^{k} \equiv 2 \pmod{3} \end{cases}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ● ● ●

3.
$$n = p^k - 1$$

coefficients of $(1 + x + x^2)^{p^k - 1}$ in \mathbb{F}_p alternate in the following way:

$$1, -1, 0, 1, -1, 0, 1, -1, 0, 1, -1, 0 \dots$$

$$f_p(p^k - 1) = \begin{cases} \frac{4p^k - 1}{3} & p^k \equiv 1 \pmod{3} \\ \frac{4p^k + 1}{3} & p^k \equiv 2 \pmod{3} \end{cases}$$

(日) (日) (日) (日) (日) (日) (日) (日)

We found the coefficients by starting at $n = p^k$ and working backwards by dividing.

(4日) (個) (目) (目) (目) (の)

• if
$$n = p^k - 2$$
, then $f(n) = 2p^k - 2p^{k-1} - 1$ ($p \equiv 1 \pmod{3}$
or k odd) or $2p^k - 2p^{k-1} + 1$ ($p \equiv 2 \pmod{3}$ and k even)

if
$$n = p^k - 2$$
, then $f(n) = 2p^k - 2p^{k-1} - 1$ ($p \equiv 1 \pmod{3}$)
or k odd) or $2p^k - 2p^{k-1} + 1$ ($p \equiv 2 \pmod{3}$) and k even)
if $n = p^k - 3$, then $f(n) = \frac{1}{3}(6p^k - 10p^{k-1} - 5)$ ($p \equiv 1 \pmod{3}$) or k odd) or $\frac{1}{3}(6p^k - 10p^{k-1} + 5)$ ($p \equiv 2 \pmod{3}$)
and k even)

- if $n = p^k 2$, then $f(n) = 2p^k 2p^{k-1} 1$ ($p \equiv 1 \pmod{3}$ or k odd) or $2p^k - 2p^{k-1} + 1$ ($p \equiv 2 \pmod{3}$ and k even)
- if $n = p^k 3$, then $f(n) = \frac{1}{3}(6p^k 10p^{k-1} 5)$ $(p \equiv 1 \pmod{3}$ or k odd) or $\frac{1}{3}(6p^k 10p^{k-1} + 5)$ $(p \equiv 2 \pmod{3})$ and k even)

• if
$$n = p^k - 4$$
, then $f(n) = 2p^k - 6p^{k-1} - 2$ ($p \equiv 1 \pmod{3}$),
 $2p^k - 6p^{k-1} + 1$ ($p \equiv 2 \pmod{3}$ and k even), or
 $2p^k - 6p^{k-1} - 1$ ($p \equiv 2 \pmod{3}$ and k odd)

4. $p \equiv 1 \pmod{3}$

Fact: The polynomial $(1 + x + x^2)$ is reducible in \mathbb{F}_p iff $p \equiv 1 \pmod{3}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

4. $p \equiv 1 \pmod{3}$

Fact: The polynomial $(1 + x + x^2)$ is reducible in \mathbb{F}_p iff $p \equiv 1 \pmod{3}$. For example

$$(1 + x + x^2) \equiv (x - 2)(x - 4) \pmod{7}$$

4. $p \equiv 1 \pmod{3}$

Fact: The polynomial $(1 + x + x^2)$ is reducible in \mathbb{F}_p iff $p \equiv 1 \pmod{3}$. For example

$$(1+x+x^2) \equiv (x-2)(x-4) \pmod{7}$$

Proposition

Let a be a root of the polynomial $(1 + x + x^2)^n$, then for d < n,

$$a_d = (-1)^d \sum_{k=0}^d \binom{n}{k} \binom{n}{d-k} a^{2d-k},$$

where a_d is the coefficient of x^d .

Further Research

(日) (個) (目) (日) (日) (の)

• using findings for specific cases of n, solve p = 5 case

- using findings for specific cases of n, solve p = 5 case
- investigate expressions for coefficients in reducible cases

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- using findings for specific cases of n, solve p = 5 case
- investigate expressions for coefficients in reducible cases

$$(-1)^{3d+1} \sum_{k=0}^{3d+1} \binom{n}{k} \binom{n}{3d+1-k} 2^{2-k} \equiv 1 \pmod{7}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

My mentor, Giorgia Fortuna, for her insight, hard work, and patience.

Professor Richard P. Stanley for suggesting this problem.

The PRIMES program for providing me with this experience.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

My family, for their love and support.