CLASSICAL SPACES AND COMMUTATIVE ALGEBRA

- In classical physics, systems are described in terms of observables:

CLASSICAL SPACES AND COMMUTATIVE ALGEBRA

- In classical physics, systems are described in terms of observables:
e.g. velocity v, position p, energy e, momentum m, \ldots

CLASSICAL SPACES AND COMMUTATIVE ALGEBRA

- In classical physics, systems are described in terms of observables:
e.g. velocity v, position p, energy e, momentum m, \ldots
- These observables evolve through time by "Hamilton's equations".

CLASSICAL SPACES AND COMMUTATIVE ALGEBRA

- In classical physics, systems are described in terms of observables:
e.g. velocity v, position p, energy e, momentum m, \ldots
- These observables evolve through time by "Hamilton's equations".
- Measurements cannot occur simultaneously, but...

CLASSICAL SPACES AND COMMUTATIVE ALGEBRA

- In classical physics, systems are described in terms of observables:
e.g. velocity v, position p, energy e, momentum m, \ldots
- These observables evolve through time by "Hamilton's equations".
- Measurements cannot occur simultaneously, but... The order of observation does not matter!

CLASSICAL SPACES AND COMMUTATIVE ALGEBRA

- In classical physics, systems are described in terms of observables:
e.g. velocity v, position p, energy e, momentum m, \ldots
- These observables evolve through time by "Hamilton's equations".
- Measurements cannot occur simultaneously, but... The order of observation does not matter!

$$
p m=m p
$$

QUANTUM SPACES AND NON-COMMUTATIVE

 ALGEBRA- In quantum physics, systems are also studied in terms of observable quantities:

QUANTUM SPACES AND NON-COMMUTATIVE

 ALGEBRA- In quantum physics, systems are also studied in terms of observable quantities:
e.g. velocity V, position P, energy E, momentum M, \ldots

QUANTUM SPACES AND NON-COMMUTATIVE

 ALGEBRA- In quantum physics, systems are also studied in terms of observable quantities:
e.g. velocity V, position P, energy E, momentum M, \ldots
- These observables evolve through time by "Schrödinger's equations".

QUANTUM SPACES AND NON-COMMUTATIVE

 ALGEBRA- In quantum physics, systems are also studied in terms of observable quantities:
e.g. velocity V, position P, energy E, momentum M, \ldots
- These observables evolve through time by "Schrödinger's equations".
- Measurements cannot occur simultaneously, and...

QUANTUM SPACES AND NON-COMMUTATIVE

 ALGEBRA- In quantum physics, systems are also studied in terms of observable quantities: e.g. velocity V, position P, energy E, momentum M, \ldots
- These observables evolve through time by "Schrödinger's equations".
- Measurements cannot occur simultaneously, and... Heisenberg: the order of observation does matter!

QUANTUM SPACES AND NON-COMMUTATIVE

 ALGEBRA- In quantum physics, systems are also studied in terms of observable quantities:
e.g. velocity V, position P, energy E, momentum M, \ldots
- These observables evolve through time by "Schrödinger's equations".
- Measurements cannot occur simultaneously, and... Heisenberg: the order of observation does matter!

$$
P M=M P+\hbar
$$

QUANTUM SPACES AND NON-COMMUTATIVE

 ALGEBRA- In quantum physics, systems are also studied in terms of observable quantities:
e.g. velocity V, position P, energy E, momentum M, \ldots
- These observables evolve through time by "Schrödinger's equations".
- Measurements cannot occur simultaneously, and... Heisenberg: the order of observation does matter!

$$
P M=M P+\hbar
$$

- Study of such systems is called "non-commutative algebra."

QUANTUM SPACES AND NON-COMMUTATIVE ALGEBRA

- In quantum physics, systems are also studied in terms of observable quantities: e.g. velocity V, position P, energy E, momentum M, \ldots
- These observables evolve through time by "Schrödinger's equations".
- Measurements cannot occur simultaneously, and... Heisenberg: the order of observation does matter!

$$
P M=M P+\hbar
$$

- Study of such systems is called "non-commutative algebra."
- Setting $\hbar=0$, we recover classical physics.

Perspective on Quantum spaces

In order to model mathematically Heisenberg's principle, ...

Perspective on Quantum spaces

In order to model mathematically Heisenberg's principle, ...

- We should study algebras A (of observables).

Perspective on Quantum spaces

In order to model mathematically Heisenberg's principle, ...

- We should study algebras A (of observables).
- They should come in families A_{q}

Perspective on Quantum spaces

In order to model mathematically Heisenberg's principle, ...

- We should study algebras A (of observables).
- They should come in families A_{q} (trad. $q=e^{\hbar}$).

Perspective on Quantum spaces

In order to model mathematically Heisenberg's principle, ...

- We should study algebras A (of observables).
- They should come in families A_{q} (trad. $q=e^{\hbar}$).
- There should be a special value $(\hbar=0 \Leftrightarrow q=1)$ such that A_{1} is commutative.

PERSPECTIVE ON QUANTUM SPACES

In order to model mathematically Heisenberg's principle, ...

- We should study algebras A (of observables).
- They should come in families A_{q} (trad. $q=e^{\hbar}$).
- There should be a special value $(\hbar=0 \Leftrightarrow q=1)$ such that A_{1} is commutative.
- We should study A_{q} (quantum) by exporting knowledge of $A_{q=1}$ (classical), and vice versa.

A determinant formula for quantum GL(N)

Masahiro Namiki
MIT PRIMES

May 21, 2011

DETERMINANTS

The determinant for $\mathrm{n} \times \mathrm{n}$ matrix is

$$
\operatorname{det}(A)=\sum_{\sigma \in S_{n}} \operatorname{sgn}(\sigma) a_{\sigma(1)}^{1} \cdots a_{\sigma(N)}^{N}
$$

DETERMINANTS

The determinant for $\mathrm{n} \times \mathrm{n}$ matrix is

$$
\operatorname{det}(A)=\sum_{\sigma \in S_{n}} \operatorname{sgn}(\sigma) a_{\sigma(1)}^{1} \cdots a_{\sigma(N)}^{N}
$$

Here, "sgn" is the unique homomorphism $S_{n} \rightarrow\{-1,+1\}$ sending each transposition to -1

DETERMINANTS

The determinant for $\mathrm{n} \times \mathrm{n}$ matrix is

$$
\operatorname{det}(A)=\sum_{\sigma \in S_{n}} \operatorname{sgn}(\sigma) a_{\sigma(1)}^{1} \cdots a_{\sigma(N)}^{N}
$$

Here, "sgn" is the unique homomorphism $S_{n} \rightarrow\{-1,+1\}$ sending each transposition to -1
$\operatorname{Det}\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ is $a d-b c$

DETERMINANTS

The determinant for $\mathrm{n} \times \mathrm{n}$ matrix is

$$
\operatorname{det}(A)=\sum_{\sigma \in S_{n}} \operatorname{sgn}(\sigma) a_{\sigma(1)}^{1} \cdots a_{\sigma(N)}^{N}
$$

Here, "sgn" is the unique homomorphism $S_{n} \rightarrow\{-1,+1\}$ sending each transposition to -1
$\operatorname{Det}\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ is $a d-b c$
$\operatorname{Det}\left(\begin{array}{lll}a_{1}^{1} & a_{2}^{1} & a_{3}^{1} \\ a_{1}^{2} & a_{2}^{2} & a_{3}^{2} \\ a_{1}^{3} & a_{2}^{3} & a_{3}^{3}\end{array}\right)$ is $a_{1}^{1} a_{2}^{2} a_{3}^{3}+a_{2}^{1} a_{3}^{2} a_{1}^{3}+a_{3}^{1} a_{1}^{2} a_{2}^{3}-a_{a}^{1} a_{3}^{2} a_{2}^{3}-a_{2}^{1} a_{1}^{2} a_{3}^{3}-a_{3}^{1} a_{2}^{2} a_{1}^{3}$

DETERMINANTS

The determinant for $\mathrm{n} \times \mathrm{n}$ matrix is

$$
\operatorname{det}(A)=\sum_{\sigma \in S_{n}} \operatorname{sgn}(\sigma) a_{\sigma(1)}^{1} \cdots a_{\sigma(N)}^{N}
$$

Here, "sgn" is the unique homomorphism $S_{n} \rightarrow\{-1,+1\}$ sending each transposition to -1
$\operatorname{Det}\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ is $a d-b c$
$\operatorname{Det}\left(\begin{array}{lll}a_{1}^{1} & a_{2}^{1} & a_{3}^{1} \\ a_{1}^{2} & a_{2}^{2} & a_{3}^{2} \\ a_{1}^{3} & a_{2}^{3} & a_{3}^{3}\end{array}\right)$ is $a_{1}^{1} a_{2}^{2} a_{3}^{3}+a_{2}^{1} a_{3}^{2} a_{1}^{3}+a_{3}^{1} a_{1}^{2} a_{2}^{3}-a_{a}^{1} a_{3}^{2} a_{2}^{3}-a_{2}^{1} a_{1}^{2} a_{3}^{3}-a_{3}^{1} a_{2}^{2} a_{1}^{3}$
Invertible matrices are characterized by non-zero determinant.

Algebra

Definition: An algebra over \mathbb{C} is

Algebra

Definition: An algebra over \mathbb{C} is

- A vector space over \mathbb{C}

Algebra

Definition: An algebra over \mathbb{C} is

- A vector space over \mathbb{C}
- With a multiplication map m: $\mathrm{A} \times \mathrm{A} \rightarrow \mathrm{A}$ with the properties:

$$
\begin{aligned}
& a \cdot(b c)=(a b) \cdot c \\
& a \cdot(b+c)=a \cdot b+a \cdot c \quad(a+b) \cdot c=a \cdot b+a \cdot c \\
& a \cdot(\lambda b)=\lambda \cdot(a b)
\end{aligned}
$$

Algebra

Definition: An algebra over \mathbb{C} is

- A vector space over \mathbb{C}
- With a multiplication map m: $\mathrm{A} \times \mathrm{A} \rightarrow \mathrm{A}$ with the properties:

$$
\begin{aligned}
& a \cdot(b c)=(a b) \cdot c \\
& a \cdot(b+c)=a \cdot b+a \cdot c \quad(a+b) \cdot c=a \cdot b+a \cdot c \\
& a \cdot(\lambda b)=\lambda \cdot(a b)
\end{aligned}
$$

- With a unit $1 \in A$ such that

$$
1 \cdot a=a \cdot 1=a \quad \forall a
$$

Algebra

Definition: An algebra over \mathbb{C} is

- A vector space over \mathbb{C}
- With a multiplication map m: $\mathrm{A} \times \mathrm{A} \rightarrow \mathrm{A}$ with the properties:

$$
\begin{aligned}
& a \cdot(b c)=(a b) \cdot c \\
& a \cdot(b+c)=a \cdot b+a \cdot c \quad(a+b) \cdot c=a \cdot b+a \cdot c \\
& a \cdot(\lambda b)=\lambda \cdot(a b)
\end{aligned}
$$

- With a unit $1 \in A$ such that

$$
1 \cdot a=a \cdot 1=a \quad \forall a
$$

- e.g.)
\mathbb{C} itself
$\mathrm{Mat}_{2}(\mathbb{C}) \quad(=2 \times 2$ matrices $)$

$$
\begin{aligned}
& \mathbb{C}[x, y] \quad(=\text { polynomials in two variables }) \\
& =\mathbb{C}\langle x, y\rangle /(x y=y x)
\end{aligned}
$$

$A_{q}\left(\mathrm{Mat}_{\mathrm{N}}\right)$

$$
A_{q}\left(\operatorname{Mat}_{N}\right)=\mathbb{C}\left\langle a_{j}^{i} \mid i=1,2 \cdots N, j=1,2 \cdots N\right\rangle / \text { Relations }
$$

$A_{q}\left(M a t_{N}\right)$
$A_{q}\left(\mathrm{Mat}_{N}\right)=\mathbb{C}\left\langle a_{j}^{i} \mid i=1,2 \cdots N, j=1,2 \cdots N\right\rangle /$ Relations
The R-Matrix: $\quad R_{k l}^{i j}=q^{\delta_{i j}} \delta_{i k} \delta_{j l}+\left(q-q^{-1}\right) \theta(i-j) \delta_{i l} \delta_{j k}$
which

$$
\theta(s)=\left(\begin{array}{ccc}
1 & \text { if } & s>0 \\
0 & \text { otherwise }
\end{array}\right) \quad \delta_{m n}=\left(\begin{array}{ccc}
1 & \text { if } & m=n \\
0 & \text { if } & m \neq n
\end{array}\right)
$$

$A_{q}\left(M a t_{N}\right)$

$$
A_{q}\left(\mathrm{Mat}_{N}\right)=\mathbb{C}\left\langle a_{j}^{i} \mid i=1,2 \cdots N, j=1,2 \cdots N\right\rangle / \text { Relations }
$$

The R-Matrix: $\quad R_{k l}^{i j}=q^{\delta_{i j}} \delta_{i k} \delta_{j l}+\left(q-q^{-1}\right) \theta(i-j) \delta_{i l} \delta_{j k}$ which

$$
\theta(s)=\left(\begin{array}{clc}
1 & \text { if } & s>0 \\
0 & \text { otherwise }
\end{array}\right) \quad \delta_{m n}=\left(\begin{array}{ccc}
1 & \text { if } & m=n \\
0 & \text { if } & m \neq n
\end{array}\right)
$$

$$
R_{22}^{22}=q^{1} \cdot 1 \cdot 1+\left(q-q^{-1}\right) \cdot 0 \cdot 1 \cdot 1=q
$$

$A_{q}\left(M a t_{N}\right)$

$$
A_{q}\left(\mathrm{Mat}_{N}\right)=\mathbb{C}\left\langle a_{j}^{i} \mid i=1,2 \cdots N, j=1,2 \cdots N\right\rangle / \text { Relations }
$$

The R-Matrix: $\quad R_{k l}^{i j}=q^{\delta_{i j}} \delta_{i k} \delta_{j l}+\left(q-q^{-1}\right) \theta(i-j) \delta_{i l} \delta_{j k}$
which

$$
\begin{aligned}
& \theta(s)=\left(\begin{array}{cc}
1 & \text { if } s>0 \\
0 & \text { otherwise }
\end{array}\right) \quad \delta_{m n}=\left(\begin{array}{ccc}
1 & \text { if } & m=n \\
0 & \text { if } & m \neq n
\end{array}\right) \\
& R_{22}^{22}=q^{1} \cdot 1 \cdot 1+\left(q-q^{-1}\right) \cdot 0 \cdot 1 \cdot 1=q \quad\left(\begin{array}{cccc}
q & 0 & 0 & 0 \\
0 & 1 & q-q^{-1} & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & q
\end{array}\right)
\end{aligned}
$$

$A_{q}\left(M a t_{N}\right)$

$$
A_{q}\left(\mathrm{Mat}_{N}\right)=\mathbb{C}\left\langle a_{j}^{i} \mid i=1,2 \cdots N, j=1,2 \cdots N\right\rangle / \text { Relations }
$$

The R-Matrix: $\quad R_{k l}^{i j}=q^{\delta_{i j}} \delta_{i k} \delta_{j l}+\left(q-q^{-1}\right) \theta(i-j) \delta_{i l} \delta_{j k}$
which

$$
\begin{aligned}
& \theta(s)=\left(\begin{array}{cc}
1 & \text { if } s>0 \\
0 & \text { otherwise }
\end{array}\right) \quad \delta_{m n}=\left(\begin{array}{ccc}
1 & \text { if } & m=n \\
0 & \text { if } & m \neq n
\end{array}\right) \\
& R_{22}^{22}=q^{1} \cdot 1 \cdot 1+\left(q-q^{-1}\right) \cdot 0 \cdot 1 \cdot 1=q \quad\left(\begin{array}{cccc}
q & 0 & 0 & 0 \\
0 & 1 & q-q^{-1} & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & q
\end{array}\right)
\end{aligned}
$$

Relations: for all $i, j=1 \cdots N$

$$
\sum_{k, l, m, o} R_{k l}^{i j} a_{m}^{l} R_{n o}^{m k} a_{p}^{o}=\sum_{s, u, t, v} a_{s}^{i} R_{t u}^{s j} a_{v}^{u} R_{n p}^{v t}
$$

$A_{q}\left(M a t_{N}\right)$

$$
A_{q}\left(\mathrm{Mat}_{N}\right)=\mathbb{C}\left\langle a_{j}^{i} \mid i=1,2 \cdots N, j=1,2 \cdots N\right\rangle / \text { Relations }
$$

The R-Matrix: $\quad R_{k l}^{i j}=q^{\delta_{i j}} \delta_{i k} \delta_{j l}+\left(q-q^{-1}\right) \theta(i-j) \delta_{i l} \delta_{j k}$
which

$$
\begin{aligned}
& \theta(s)=\left(\begin{array}{cc}
1 & \text { if } s>0 \\
0 & \text { otherwise }
\end{array}\right) \quad \delta_{m n}=\left(\begin{array}{ccc}
1 & \text { if } & m=n \\
0 & \text { if } & m \neq n
\end{array}\right) \\
& R_{22}^{22}=q^{1} \cdot 1 \cdot 1+\left(q-q^{-1}\right) \cdot 0 \cdot 1 \cdot 1=q \quad\left(\begin{array}{cccc}
q & 0 & 0 & 0 \\
0 & 1 & q-q^{-1} & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & q
\end{array}\right)
\end{aligned}
$$

Relations: for all $i, j=1 \cdots N$

$$
\sum_{k, l, m, o} R_{k l}^{i j} a_{m}^{l} R_{n o}^{m k} a_{p}^{o}=\sum_{s, u, t, v} a_{s}^{i} R_{t u}^{s j} a_{v}^{u} R_{n p}^{v t}
$$

$$
\text { e.g.) } \quad a_{1}^{2} a_{2}^{1}=a_{2}^{1} a_{1}^{2}+\left(1-q^{-2}\right) a_{1}^{1} a_{2}^{2}+\left(q^{-2}-1\right) a_{2}^{2} a_{2}^{2}
$$

THE QUANTUM DETERMINANT

For $q=1, A_{q}\left(\operatorname{Mat}_{N}\right)=\mathbb{C}\left[a_{j}^{i} \mid i, j=1, \ldots N\right]$ is a polynomial algebra. (e.g. $\left.a_{1}^{2} a_{2}^{1}=a_{2}^{1} a_{1}^{2}+\left(1-q^{-2}\right) a_{1}^{1} a_{2}^{2}+\left(q^{-2}-1\right) a_{2}^{2} a_{2}^{2}\right)$

THE QUANTUM DETERMINANT

For $q=1, A_{q}\left(\operatorname{Mat}_{N}\right)=\mathbb{C}\left[a_{j}^{i} \mid i, j=1, \ldots N\right]$ is a polynomial algebra. (e.g. $\left.a_{1}^{2} a_{2}^{1}=a_{2}^{1} a_{1}^{2}+\left(1-q^{-2}\right) a_{1}^{1} a_{2}^{2}+\left(q^{-2}-1\right) a_{2}^{2} a_{2}^{2}\right)$
For $q \neq 1, A_{q}\left(\operatorname{Mat}_{N}\right)$ is a non-commutative algebra.

THE QUANTUM DETERMINANT

For $q=1, A_{q}\left(\operatorname{Mat}_{N}\right)=\mathbb{C}\left[a_{j}^{i} \mid i, j=1, \ldots N\right]$ is a polynomial algebra. (e.g. $\left.a_{1}^{2} a_{2}^{1}=a_{2}^{1} a_{1}^{2}+\left(1-q^{-2}\right) a_{1}^{1} a_{2}^{2}+\left(q^{-2}-1\right) a_{2}^{2} a_{2}^{2}\right)$
For $q \neq 1, A_{q}\left(\operatorname{Mat}_{N}\right)$ is a non-commutative algebra.
However it has a central element (i.e. an element which commutes with all other elements)called the quantum determinant det $_{q}$.

THE QUANTUM DETERMINANT

For $q=1, A_{q}\left(\operatorname{Mat}_{N}\right)=\mathbb{C}\left[a_{j}^{i} \mid i, j=1, \ldots N\right]$ is a polynomial algebra. (e.g. $\left.\quad a_{1}^{2} a_{2}^{1}=a_{2}^{1} a_{1}^{2}+\left(1-q^{-2}\right) a_{1}^{1} a_{2}^{2}+\left(q^{-2}-1\right) a_{2}^{2} a_{2}^{2}\right)$
For $q \neq 1, A_{q}\left(\operatorname{Mat}_{N}\right)$ is a non-commutative algebra.
However it has a central element (i.e. an element which commutes with all other elements)called the quantum determinant det $_{q}$.
Kolb-Stokman '08: "It would be interesting to write the quantum determinant explicitly in terms of the generators $\left\{a_{j}^{i}\right\}$
...This seems to be a non-trivial combinatorial task."

THE QUANTUM DETERMINANT

For $q=1, A_{q}\left(\mathrm{Mat}_{N}\right)=\mathbb{C}\left[a_{j}^{i} \mid i, j=1, \ldots N\right]$ is a polynomial algebra. (e.g. $\left.\quad a_{1}^{2} a_{2}^{1}=a_{2}^{1} a_{1}^{2}+\left(1-q^{-2}\right) a_{1}^{1} a_{2}^{2}+\left(q^{-2}-1\right) a_{2}^{2} a_{2}^{2}\right)$
For $q \neq 1, A_{q}\left(\mathrm{Mat}_{N}\right)$ is a non-commutative algebra.
However it has a central element (i.e. an element which commutes with all other elements)called the quantum determinant det $_{q}$.

Kolb-Stokman '08: "It would be interesting to write the quantum determinant explicitly in terms of the generators $\left\{a_{j}^{i}\right\}$
... This seems to be a non-trivial combinatorial task."
Kulish-Sasaki '92: found an explicit formula for $N=2$ only.
We sought a formula for the central element in the form:

THE QUANTUM DETERMINANT

For $q=1, A_{q}\left(\operatorname{Mat}_{N}\right)=\mathbb{C}\left[a_{j}^{i} \mid i, j=1, \ldots N\right]$ is a polynomial algebra. (e.g. $\left.\quad a_{1}^{2} a_{2}^{1}=a_{2}^{1} a_{1}^{2}+\left(1-q^{-2}\right) a_{1}^{1} a_{2}^{2}+\left(q^{-2}-1\right) a_{2}^{2} a_{2}^{2}\right)$
For $q \neq 1, A_{q}\left(\mathrm{Mat}_{N}\right)$ is a non-commutative algebra.
However it has a central element (i.e. an element which commutes with all other elements)called the quantum determinant det $_{q}$.

Kolb-Stokman '08: "It would be interesting to write the quantum determinant explicitly in terms of the generators $\left\{a_{j}^{i}\right\}$
... This seems to be a non-trivial combinatorial task."
Kulish-Sasaki '92: found an explicit formula for $N=2$ only.
We sought a formula for the central element in the form:

$$
z=\operatorname{det}_{q}=\sum_{\sigma \in S_{n}} \operatorname{sgn}(\sigma) q^{f(\sigma)} a_{\sigma(1)}^{1} \cdots a_{\sigma(N)}^{N}
$$

SOLVING FOR f

for $N=2$

SOLVING FOR f

for $N=2$

$$
\operatorname{det}_{q}=a_{1}^{1} a_{2}^{2}-t_{(12)} a_{2}^{1} a_{1}^{2}
$$

SOLVING FOR f

for $N=2$
$\operatorname{det}_{q}=a_{1}^{1} a_{2}^{2}-t_{(12)} a_{2}^{1} a_{1}^{2}$
Since $\operatorname{det}_{q} \cdot a_{j}^{i}-a_{j}^{i} \cdot \operatorname{det}_{q}=0, \quad \operatorname{det}_{q} \cdot a_{2}^{1}-a_{2}^{1} \cdot \operatorname{det}_{q}=0$

SOLVING FOR f

for $N=2$
$\operatorname{det}_{q}=a_{1}^{1} a_{2}^{2}-t_{(12)} a_{2}^{1} a_{1}^{2}$
Since $\operatorname{det}_{q} \cdot a_{j}^{i}-a_{j}^{i} \cdot \operatorname{det}_{q}=0, \quad \operatorname{det}_{q} \cdot a_{2}^{1}-a_{2}^{1} \cdot \operatorname{det}_{q}=0$
$\Leftrightarrow \quad\left(a_{1}^{1} a_{2}^{2}-t_{(12)} a_{2}^{1} a_{1}^{2}\right) \cdot a_{2}^{1}-a_{2}^{1} \cdot\left(a_{1}^{1} a_{2}^{2}-t_{(12)} a_{2}^{1} a_{1}^{2}\right)=0$

SOLVING FOR f

for $N=2$
$\operatorname{det}_{q}=a_{1}^{1} a_{2}^{2}-t_{(12)} a_{2}^{1} a_{1}^{2}$
Since $\operatorname{det}_{q} \cdot a_{j}^{i}-a_{j}^{i} \cdot \operatorname{det}_{q}=0, \quad \operatorname{det}_{q} \cdot a_{2}^{1}-a_{2}^{1} \cdot \operatorname{det}_{q}=0$
$\Leftrightarrow \quad\left(a_{1}^{1} a_{2}^{2}-t_{(12)} a_{2}^{1} a_{1}^{2}\right) \cdot a_{2}^{1}-a_{2}^{1} \cdot\left(a_{1}^{1} a_{2}^{2}-t_{(12)} a_{2}^{1} a_{1}^{2}\right)=0$
\longleftarrow
\longleftarrow

SOLVING FOR f

for $N=2$

$$
\operatorname{det}_{q}=a_{1}^{1} a_{2}^{2}-t_{(12)} a_{2}^{1} a_{1}^{2}
$$

Since $\operatorname{det}_{q} \cdot a_{j}^{i}-a_{j}^{i} \cdot \operatorname{det}_{q}=0, \quad \operatorname{det}_{q} \cdot a_{2}^{1}-a_{2}^{1} \cdot \operatorname{det}_{q}=0$

$$
\begin{aligned}
& \Leftrightarrow \quad\left(a_{1}^{1} a_{2}^{2}-t_{(12)} a_{2}^{1} a_{1}^{2}\right) \cdot a_{2}^{1}-a_{2}^{1} \cdot\left(a_{1}^{1} a_{2}^{2}-t_{(12)} a_{2}^{1} a_{1}^{2}\right)=0 \\
& \longleftarrow \longleftarrow \\
& \longleftarrow \\
& a_{2}^{1} \cdot\left(a_{1}^{1} a_{2}^{2}-t_{(12)} a_{2}^{1} a_{1}^{2}\right)-a_{2}^{1} \cdot\left(a_{1}^{1} a_{2}^{2}-t_{(12)} a_{2}^{1} a_{1}^{2}\right)+\alpha=0
\end{aligned}
$$

SOLVING FOR f

for $N=2$
$\operatorname{det}_{q}=a_{1}^{1} a_{2}^{2}-t_{(12)} a_{2}^{1} a_{1}^{2}$
Since $\operatorname{det}_{q} \cdot a_{j}^{i}-a_{j}^{i} \cdot \operatorname{det}_{q}=0, \quad \operatorname{det}_{q} \cdot a_{2}^{1}-a_{2}^{1} \cdot \operatorname{det}_{q}=0$
$\Leftrightarrow \quad\left(a_{1}^{1} a_{2}^{2}-t_{(12)} a_{2}^{1} a_{1}^{2}\right) \cdot a_{2}^{1}-a_{2}^{1} \cdot\left(a_{1}^{1} a_{2}^{2}-t_{(12)} a_{2}^{1} a_{1}^{2}\right)=0$
\longleftarrow
\longleftarrow
$a_{2}^{1} \cdot\left(a_{1}^{1} a_{2}^{2}-t_{(12)} a_{2}^{1} a_{1}^{2}\right)-a_{2}^{1} \cdot\left(a_{1}^{1} a_{2}^{2}-t_{(12)} a_{2}^{1} a_{1}^{2}\right)+\alpha=0$
In this case,

$$
\alpha=\left(1-q^{2}+t_{(12)}-t_{(12)} q^{-2}\right)\left(a_{2}^{1} a_{1}^{1} a_{2}^{2}-a_{2}^{1} a_{2}^{2} a_{2}^{2}\right)=0
$$

SOLVING FOR f

for $N=2$
$\operatorname{det}_{q}=a_{1}^{1} a_{2}^{2}-t_{(12)} a_{2}^{1} a_{1}^{2}$
Since $\operatorname{det}_{q} \cdot a_{j}^{i}-a_{j}^{i} \cdot \operatorname{det}_{q}=0, \quad \operatorname{det}_{q} \cdot a_{2}^{1}-a_{2}^{1} \cdot \operatorname{det}_{q}=0$
$\left.\Leftrightarrow \quad{ }^{(} a_{1}^{1} a_{2}^{2}-t_{(12)} a_{2}^{1} a_{1}^{2}\right) \cdot a_{2}^{1}-a_{2}^{1} \cdot\left(a_{1}^{1} a_{2}^{2}-t_{(12)} a_{2}^{1} a_{1}^{2}\right)=0$
\longleftarrow
\longleftarrow
$a_{2}^{1} \cdot\left(a_{1}^{1} a_{2}^{2}-t_{(12)} a_{2}^{1} a_{1}^{2}\right)-a_{2}^{1} \cdot\left(a_{1}^{1} a_{2}^{2}-t_{(12)} a_{2}^{1} a_{1}^{2}\right)+\alpha=0$
In this case,

$$
\alpha=\left(1-q^{2}+t_{(12)}-t_{(12)} q^{-2}\right)\left(a_{2}^{1} a_{1}^{1} a_{2}^{2}-a_{2}^{1} a_{2}^{2} a_{2}^{2}\right)=0
$$

So, $t_{(12)}=q^{2}, f((12))=2$

SOLVING FOR f

In order to generalize this computation for all n, we need to know all the formulas for commuting two elements $a_{j}^{i} a_{n}^{m}$.

SOLVING FOR f

In order to generalize this computation for all n, we need to know all the formulas for commuting two elements $a_{j}^{i} a_{n}^{m}$.
Using the information, we made a program which will change arbitrary order of elements in the right order.
(Right order means $(m>i)$ or $(i=m$ and $n>j)$).

SOLVING FOR f

In order to generalize this computation for all n, we need to know all the formulas for commuting two elements $a_{j}^{i} a_{n}^{m}$.
Using the information, we made a program which will change arbitrary order of elements in the right order.
(Right order means $(m>i)$ or $(i=m$ and $n>j)$).
We made this program organize $\operatorname{det}_{q} \cdot a_{2}^{1}-a_{2}^{1} \cdot \operatorname{det}_{q}$ for $N=3,4,5,6$.

SOLVING FOR f

In order to generalize this computation for all n, we need to know all the formulas for commuting two elements $a_{j}^{i} a_{n}^{m}$.
Using the information, we made a program which will change arbitrary order of elements in the right order.
(Right order means $(m>i)$ or $(i=m$ and $n>j)$).
We made this program organize
$\operatorname{det}_{q} \cdot a_{2}^{1}-a_{2}^{1} \cdot \operatorname{det}_{q}$ for $N=3,4,5,6$.
We also set a program to solve the equations that we got from this.
(such as $1-q^{2}+t_{(12)}-t_{(12)} q^{-2}=0$ in $N=2$)

SOLVING FOR f

In order to generalize this computation for all n, we need to know all the formulas for commuting two elements $a_{j}^{i} a_{n}^{m}$.
Using the information, we made a program which will change arbitrary order of elements in the right order.
(Right order means $(m>i)$ or $(i=m$ and $n>j)$).
We made this program organize
$\operatorname{det}_{q} \cdot a_{2}^{1}-a_{2}^{1} \cdot \operatorname{det}_{q}$ for $N=3,4,5,6$.
We also set a program to solve the equations that we got from this.
(such as $1-q^{2}+t_{(12)}-t_{(12)} q^{-2}=0$ in $N=2$)
Thus, we got the exponents for each of the pemutations.

LIST

A part of data for $N=4$

Cycle notation
$(1,2)$
$(2,3)$
$(3,4)$
$(1,3,2)$
$(1,3)$
$(1,2,3)$
$(1,4,3,2)$
$(1,4,3)$
$(1,3,4,2)$
$(1,2,3,4)$
$(1,2,4)$
$(1,3,4)$
$(1,3)(2,4)$
$(1,4,2,3)$

Permutation notation
[2, 1, 3, 4]
[1,3,2,4]
[1,2,4,3]
[3, 1, 2, 4]
[3, 2, 1, 4]
[2, 3, 1, 4]
[4, 1, 2, 3]
[4, 2, 1, 3]
[3, 1, 4, 2]
[2,3,4, 1]
[2, 4, 3, 1]
[3, 2, 4, 1]
[3,4, 1, 2]
[4, 3, 1, 2]

Coefficient
q^{2}
q^{2}
q^{2}
q^{3}
q^{4}
q^{4}
q^{4}
q^{5}
q^{5}
q^{6}
q^{6}
q^{6}
q^{6}

Conjecture Formula

By making more observations and looking at the connections between the exponents and the permutation, we predict that the formula is,

COnjecture Formula

By making more observations and looking at the connections between the exponents and the permutation, we predict that the formula is,

$$
\operatorname{det}_{q}=\sum_{s \in S_{n}}(-q)^{l(s)} \cdot q^{e(s)} \cdot a_{s(1)}^{1} \ldots a_{s(N)}^{N}
$$

Conjecture Formula

By making more observations and looking at the connections between the exponents and the permutation, we predict that the formula is,

$$
\operatorname{det}_{q}=\sum_{s \in S_{n}}(-q)^{l(s)} \cdot q^{e(s)} \cdot a_{s(1)}^{1} \ldots a_{s(N)}^{N}
$$

$l(s)=$ "Length of the permutation" which is the number of pairs out of order after s.
($i>j, s(i)<s(j))$
$e(s)=$ excedance, the number of i such that $s(i)>i$.

FUTURE PLANS

We confirmed our conjecture formula through $N=11$.
We are presently working on the general proof.

AcKnowledgments

First and foremost, I would like to thank David, who has really helped me throughout the program.

AcKnowledgments

First and foremost, I would like to thank David, who has really helped me throughout the program.

I would like to thank PRIMES for making this project possible.
I would also like to thank my parents who have kindly supported me.

AcKnowledgments

First and foremost, I would like to thank David, who has really helped me throughout the program.

I would like to thank PRIMES for making this project possible.
I would also like to thank my parents who have kindly supported me.

Thank you all for listening to my presentation.

