In *classical* physics, systems are described in terms of *observables*:

In *classical* physics, systems are described in terms of *observables*:
 e.g. velocity *v*, position *p*, energy *e*, momentum *m*, ...

- In *classical* physics, systems are described in terms of *observables*:
 e.g. velocity v, position p, energy e, momentum m, ...
- ► These observables evolve through time by "Hamilton's equations".

- In *classical* physics, systems are described in terms of *observables*:
 e.g. velocity v, position p, energy e, momentum m, ...
- ► These observables evolve through time by "Hamilton's equations".
- ► Measurements cannot occur simultaneously, but...

- In *classical* physics, systems are described in terms of *observables*:
 e.g. velocity v, position p, energy e, momentum m, ...
- ► These observables evolve through time by "Hamilton's equations".
- Measurements cannot occur simultaneously, but... The order of observation **does not** matter!

- In *classical* physics, systems are described in terms of *observables*:
 e.g. velocity v, position p, energy e, momentum m, ...
- ► These observables evolve through time by "Hamilton's equations".
- Measurements cannot occur simultaneously, but... The order of observation **does not** matter!

pm = mp.

 In *quantum* physics, systems are also studied in terms of observable quantities:

 In *quantum* physics, systems are also studied in terms of observable quantities:

e.g. velocity V, position P, energy E, momentum M, ...

- In *quantum* physics, systems are also studied in terms of observable quantities:
 e.g. velocity V, position P, energy E, momentum M, ...
- ► These observables evolve through time by "Schrödinger's equations".

- In *quantum* physics, systems are also studied in terms of observable quantities:
 e.g. velocity V, position P, energy E, momentum M, ...
- ► These observables evolve through time by "Schrödinger's equations".
- ► Measurements cannot occur simultaneously, and...

- In *quantum* physics, systems are also studied in terms of observable quantities:
 e.g. velocity V, position P, energy E, momentum M, ...
- ► These observables evolve through time by "Schrödinger's equations".
- Measurements cannot occur simultaneously, and... Heisenberg: the order of observation **does** matter!

- In *quantum* physics, systems are also studied in terms of observable quantities:
 e.g. velocity V, position P, energy E, momentum M, ...
- ► These observables evolve through time by "Schrödinger's equations".
- Measurements cannot occur simultaneously, and... Heisenberg: the order of observation **does** matter!

 $PM = MP + \hbar.$

- In *quantum* physics, systems are also studied in terms of observable quantities:
 e.g. velocity V, position P, energy E, momentum M, ...
- ► These observables evolve through time by "Schrödinger's equations".
- Measurements cannot occur simultaneously, and... Heisenberg: the order of observation does matter!

 $PM = MP + \hbar.$

Study of such systems is called "non-commutative algebra."

- In *quantum* physics, systems are also studied in terms of observable quantities:
 e.g. velocity V, position P, energy E, momentum M, ...
- ► These observables evolve through time by "Schrödinger's equations".
- Measurements cannot occur simultaneously, and... Heisenberg: the order of observation does matter!

 $PM = MP + \hbar.$

- Study of such systems is called "non-commutative algebra."
- Setting $\hbar = 0$, we recover classical physics.

In order to model mathematically Heisenberg's principle, ...

• We should study algebras *A* (of observables).

- We should study algebras *A* (of observables).
- They should come in families A_q

- ► We should study algebras *A* (of observables).
- They should come in families A_q (trad. $q = e^{\hbar}$).

- We should study algebras *A* (of observables).
- They should come in families A_q (trad. $q = e^{\hbar}$).
- There should be a special value ($\hbar = 0 \Leftrightarrow q = 1$) such that A_1 is commutative.

- ► We should study algebras *A* (of observables).
- They should come in families A_q (trad. $q = e^{\hbar}$).
- There should be a special value ($\hbar = 0 \Leftrightarrow q = 1$) such that A_1 is commutative.
- ► We should study A_q (quantum) by exporting knowledge of A_{q=1} (classical), and vice versa.

A determinant formula for quantum GL(N)

Masahiro Namiki MIT PRIMES

May 21, 2011

The determinant for $n \times n$ matrix is

$$det(A) = \sum_{\sigma \in S_n} sgn(\sigma) a^1_{\sigma(1)} \cdots a^N_{\sigma(N)}$$

The determinant for $n \times n$ matrix is

$$det(A) = \sum_{\sigma \in S_n} sgn(\sigma) a^1_{\sigma(1)} \cdots a^N_{\sigma(N)}$$

Here, "sgn" is the unique homomorphism $S_n \rightarrow \{-1, +1\}$ sending each transposition to -1

The determinant for $n \times n$ matrix is

$$det(A) = \sum_{\sigma \in S_n} sgn(\sigma) a^1_{\sigma(1)} \cdots a^N_{\sigma(N)}$$

Here, "sgn" is the unique homomorphism $S_n \rightarrow \{-1, +1\}$ sending each transposition to -1

Det
$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 is $ad - bc$

The determinant for $n \times n$ matrix is

$$det(A) = \sum_{\sigma \in S_n} sgn(\sigma) a^1_{\sigma(1)} \cdots a^N_{\sigma(N)}$$

Here, "sgn" is the unique homomorphism $S_n \rightarrow \{-1, +1\}$ sending each transposition to -1

$$Det \begin{pmatrix} a & b \\ c & d \end{pmatrix} is \quad ad - bc$$
$$Det \begin{pmatrix} a_1^1 & a_2^1 & a_3^1 \\ a_1^2 & a_2^2 & a_3^2 \\ a_1^3 & a_2^3 & a_3^3 \end{pmatrix} is \quad a_1^1 a_2^2 a_3^3 + a_2^1 a_3^2 a_1^3 + a_3^1 a_1^2 a_2^3 - a_a^1 a_3^2 a_2^3 - a_2^1 a_1^2 a_3^3 - a_3^1 a_2^2 a_1^3$$

The determinant for $n \times n$ matrix is

$$det(A) = \sum_{\sigma \in S_n} sgn(\sigma) a^1_{\sigma(1)} \cdots a^N_{\sigma(N)}$$

Here, "sgn" is the unique homomorphism $S_n \rightarrow \{-1, +1\}$ sending each transposition to -1

$$Det \begin{pmatrix} a & b \\ c & d \end{pmatrix} is \quad ad - bc$$
$$Det \begin{pmatrix} a_1^1 & a_2^1 & a_3^1 \\ a_1^2 & a_2^2 & a_3^2 \\ a_1^3 & a_2^3 & a_3^3 \end{pmatrix} is \quad a_1^1 a_2^2 a_3^3 + a_2^1 a_3^2 a_1^3 + a_3^1 a_1^2 a_2^3 - a_a^1 a_3^2 a_2^3 - a_2^1 a_1^2 a_3^3 - a_3^1 a_2^2 a_1^3$$

Invertible matrices are characterized by non-zero determinant.

Definition: An algebra over $\ensuremath{\mathbb{C}}$ is

Definition: An algebra over $\ensuremath{\mathbb{C}}$ is

• A vector space over \mathbb{C}

Definition: An algebra over $\ensuremath{\mathbb{C}}$ is

- A vector space over \mathbb{C}
- ► With a multiplication map m:A×A → A with the properties:

$$a \cdot (bc) = (ab) \cdot c$$

$$a \cdot (b+c) = a \cdot b + a \cdot c$$

$$a \cdot (\lambda b) = \lambda \cdot (ab)$$

$$(a+b) \cdot c = a \cdot b + a \cdot c$$

Definition: An algebra over $\ensuremath{\mathbb{C}}$ is

- A vector space over \mathbb{C}
- ► With a multiplication map m:A×A → A with the properties:

$$a \cdot (bc) = (ab) \cdot c$$

$$a \cdot (b + c) = a \cdot b + a \cdot c$$

$$a \cdot (\lambda b) = \lambda \cdot (ab)$$

$$(a + b) \cdot c = a \cdot b + a \cdot c$$

• With a unit $1 \in A$ such that

 $1 \cdot a = a \cdot 1 = a \quad \forall a$

Definition: An algebra over $\ensuremath{\mathbb{C}}$ is

- A vector space over \mathbb{C}
- ► With a multiplication map m:A×A → A with the properties:

$$a \cdot (bc) = (ab) \cdot c$$

$$a \cdot (b + c) = a \cdot b + a \cdot c$$

$$a \cdot (\lambda b) = \lambda \cdot (ab)$$

$$(a + b) \cdot c = a \cdot b + a \cdot c$$

• With a unit $1 \in A$ such that

 $1 \cdot a = a \cdot 1 = a \quad \forall a$

► e.g.)

 \mathbb{C} itself

 $Mat_2(\mathbb{C})$ (= 2 × 2 matrices)

 $\mathbb{C}[x, y]$ (= polynomials in two variables) = $\mathbb{C}\langle x, y \rangle / (xy = yx)$

$$A_q(Mat_N)$$

$$A_q(Mat_N) = \mathbb{C}\langle a_j^i \mid i = 1, 2 \cdots N, j = 1, 2 \cdots N \rangle / Relations$$

$$A_q(Mat_N) = \mathbb{C}\langle a_j^i \mid i = 1, 2 \cdots N, j = 1, 2 \cdots N \rangle / Relations$$

The R-Matrix:
$$R_{kl}^{ij} = q^{\delta_{ij}} \delta_{ik} \delta_{jl} + (q - q^{-1}) \theta(i - j) \delta_{il} \delta_{jk}$$

which

$$\theta(s) = \begin{pmatrix} 1 & if \quad s > 0 \\ 0 & otherwise \end{pmatrix} \qquad \delta_{mn} = \begin{pmatrix} 1 & if \quad m = n \\ 0 & if \quad m \neq n \end{pmatrix}$$

$$A_q(Mat_N) = \mathbb{C}\langle a_j^i \mid i = 1, 2 \cdots N, j = 1, 2 \cdots N \rangle / Relations$$

The R-Matrix:
$$R_{kl}^{ij} = q^{\delta_{ij}} \delta_{ik} \delta_{jl} + (q - q^{-1}) \theta(i - j) \delta_{il} \delta_{jk}$$

which

$$\theta(s) = \begin{pmatrix} 1 & if \quad s > 0 \\ 0 & otherwise \end{pmatrix}$$
 $\delta_{mn} = \begin{pmatrix} 1 & if \quad m = n \\ 0 & if \quad m \neq n \end{pmatrix}$

$$R_{22}^{22} = q^1 \cdot 1 \cdot 1 + (q - q^{-1}) \cdot 0 \cdot 1 \cdot 1 = q$$

$$A_q(Mat_N) = \mathbb{C}\langle a_j^i \mid i = 1, 2 \cdots N, j = 1, 2 \cdots N \rangle / Relations$$

The R-Matrix:
$$R_{kl}^{ij} = q^{\delta_{ij}}\delta_{ik}\delta_{jl} + (q - q^{-1})\theta(i - j)\delta_{il}\delta_{jk}$$

which

$$\theta(s) = \begin{pmatrix} 1 & if \quad s > 0 \\ 0 & otherwise \end{pmatrix} \qquad \delta_{mn} = \begin{pmatrix} 1 & if \quad m = n \\ 0 & if \quad m \neq n \end{pmatrix}$$

$$R_{22}^{22} = q^1 \cdot 1 \cdot 1 + (q - q^{-1}) \cdot 0 \cdot 1 \cdot 1 = q \qquad \begin{pmatrix} q & 0 & 0 & 0 \\ 0 & 1 & q - q^{-1} & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & q \end{pmatrix}$$

$$A_q(Mat_N) = \mathbb{C}\langle a_j^i \mid i = 1, 2 \cdots N, j = 1, 2 \cdots N \rangle / Relations$$

The R-Matrix:
$$R_{kl}^{ij} = q^{\delta_{ij}}\delta_{ik}\delta_{jl} + (q - q^{-1})\theta(i - j)\delta_{il}\delta_{jk}$$

which

$$\theta(s) = \begin{pmatrix} 1 & if \quad s > 0 \\ 0 & otherwise \end{pmatrix}$$
 $\delta_{mn} = \begin{pmatrix} 1 & if \quad m = n \\ 0 & if \quad m \neq n \end{pmatrix}$

$$R_{22}^{22} = q^1 \cdot 1 \cdot 1 + (q - q^{-1}) \cdot 0 \cdot 1 \cdot 1 = q \qquad \begin{pmatrix} q & 0 & 0 & 0 \\ 0 & 1 & q - q^{-1} & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & q \end{pmatrix}$$

Relations: for all $i, j = 1 \cdots N$

$$\sum_{k,l,m,o} R^{ij}_{kl} a^l_m R^{mk}_{no} a^o_p = \sum_{s,u,t,v} a^i_s R^{sj}_{tu} a^u_v R^{vt}_{np}$$

$$A_q(Mat_N) = \mathbb{C}\langle a_j^i \mid i = 1, 2 \cdots N, j = 1, 2 \cdots N \rangle / Relations$$

The R-Matrix:
$$R_{kl}^{ij} = q^{\delta_{ij}}\delta_{ik}\delta_{jl} + (q - q^{-1})\theta(i - j)\delta_{il}\delta_{jk}$$

which

$$\theta(s) = \begin{pmatrix} 1 & if \quad s > 0 \\ 0 & otherwise \end{pmatrix}$$
 $\delta_{mn} = \begin{pmatrix} 1 & if \quad m = n \\ 0 & if \quad m \neq n \end{pmatrix}$

$$R_{22}^{22} = q^{1} \cdot 1 \cdot 1 + (q - q^{-1}) \cdot 0 \cdot 1 \cdot 1 = q \qquad \begin{pmatrix} q & 0 & 0 & 0 \\ 0 & 1 & q - q^{-1} & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & q \end{pmatrix}$$

Relations: for all $i, j = 1 \cdots N$

$$\sum_{k,l,m,o} R^{ij}_{kl} a^l_m R^{mk}_{no} a^o_p = \sum_{s,u,t,v} a^i_s R^{sj}_{tu} a^u_v R^{vt}_{np}$$

e.g.)
$$a_1^2 a_2^1 = a_2^1 a_1^2 + (1 - q^{-2})a_1^1 a_2^2 + (q^{-2} - 1)a_2^2 a_2^2$$

For q = 1, $A_q(Mat_N) = \mathbb{C}[a_j^i \mid i, j = 1, ..., N]$ is a polynomial algebra. (e.g. $a_1^2 a_2^1 = a_2^1 a_1^2 + (1 - q^{-2})a_1^1 a_2^2 + (q^{-2} - 1)a_2^2 a_2^2)$

For q = 1, $A_q(Mat_N) = \mathbb{C}[a_j^i | i, j = 1, ..., N]$ is a polynomial algebra. (e.g. $a_1^2 a_2^1 = a_2^1 a_1^2 + (1 - q^{-2})a_1^1 a_2^2 + (q^{-2} - 1)a_2^2 a_2^2)$ For $q \neq 1$, $A_q(Mat_N)$ is a non-commutative algebra.

For q = 1, $A_q(Mat_N) = \mathbb{C}[a_j^i \mid i, j = 1, ..., N]$ is a polynomial algebra. (e.g. $a_1^2 a_2^1 = a_2^1 a_1^2 + (1 - q^{-2})a_1^1 a_2^2 + (q^{-2} - 1)a_2^2 a_2^2)$

For $q \neq 1$, $A_q(Mat_N)$ is a non-commutative algebra.

However it has a central element (i.e. an element which commutes with all other elements) called the quantum determinant det_q .

For q = 1, $A_q(Mat_N) = \mathbb{C}[a_j^i | i, j = 1, ..., N]$ is a polynomial algebra. (e.g. $a_1^2 a_2^1 = a_2^1 a_1^2 + (1 - q^{-2})a_1^1 a_2^2 + (q^{-2} - 1)a_2^2 a_2^2)$ For $q \neq 1$, $A_q(Mat_N)$ is a non-commutative algebra.

However it has a central element (i.e. an element which commutes with all other elements) called the quantum determinant det_q .

Kolb-Stokman '08: "It would be interesting to write the quantum determinant explicitly in terms of the generators $\{a_j^i\}$ This seems to be a non-trivial combinatorial task."

For q = 1, $A_q(Mat_N) = \mathbb{C}[a_j^i | i, j = 1, ..., N]$ is a polynomial algebra. (e.g. $a_1^2 a_2^1 = a_2^1 a_1^2 + (1 - q^{-2})a_1^1 a_2^2 + (q^{-2} - 1)a_2^2 a_2^2)$ For $q \neq 1$, $A_q(Mat_N)$ is a non-commutative algebra.

However it has a central element (i.e. an element which commutes with all other elements)called the quantum determinant det_q .

Kolb-Stokman '08: "It would be interesting to write the quantum determinant explicitly in terms of the generators $\{a_j^i\}$ This seems to be a non-trivial combinatorial task."

Kulish-Sasaki '92: found an explicit formula for N = 2 only.

We sought a formula for the central element in the form:

For q = 1, $A_q(Mat_N) = \mathbb{C}[a_j^i | i, j = 1, ..., N]$ is a polynomial algebra. (e.g. $a_1^2 a_2^1 = a_2^1 a_1^2 + (1 - q^{-2})a_1^1 a_2^2 + (q^{-2} - 1)a_2^2 a_2^2)$ For $q \neq 1$, $A_q(Mat_N)$ is a non-commutative algebra.

However it has a central element (i.e. an element which commutes with all other elements) called the quantum determinant det_q .

Kolb-Stokman '08: "It would be interesting to write the quantum determinant explicitly in terms of the generators $\{a_j^i\}$... This seems to be a non-trivial combinatorial task."

Kulish-Sasaki '92: found an explicit formula for N = 2 only. We sought a formula for the central element in the form:

$$z = det_q = \sum_{\sigma \in S_n} sgn(\sigma)q^{f(\sigma)}a^1_{\sigma(1)} \cdots a^N_{\sigma(N)}.$$

Solving $\operatorname{For} f$

for N = 2

Solving $\operatorname{For} f$

for N = 2 $det_q = a_1^1 a_2^2 - t_{(12)} a_2^1 a_1^2$

for N = 2 $det_q = a_1^1 a_2^2 - t_{(12)} a_2^1 a_1^2$ Since $det_q \cdot a_i^i - a_i^i \cdot det_q = 0$, $det_q \cdot a_2^1 - a_2^1 \cdot det_q = 0$

for N = 2 $det_q = a_1^1 a_2^2 - t_{(12)} a_2^1 a_1^2$ Since $det_q \cdot a_j^i - a_j^i \cdot det_q = 0$, $det_q \cdot a_2^1 - a_2^1 \cdot det_q = 0$ $\Leftrightarrow \qquad (a_1^1 a_2^2 - t_{(12)} a_2^1 a_1^2) \cdot a_2^1 - a_2^1 \cdot (a_1^1 a_2^2 - t_{(12)} a_2^1 a_1^2) = 0$

for N = 2 $det_q = a_1^1 a_2^2 - t_{(12)} a_2^1 a_1^2$ Since $det_q \cdot a_j^i - a_j^i \cdot det_q = 0$, $det_q \cdot a_2^1 - a_2^1 \cdot det_q = 0$ $\Leftrightarrow \qquad (a_1^1 a_2^2 - t_{(12)} a_2^1 a_1^2) \cdot a_2^1 - a_2^1 \cdot (a_1^1 a_2^2 - t_{(12)} a_2^1 a_1^2) = 0$ $\swarrow \qquad \swarrow \qquad \checkmark \qquad \checkmark \qquad \checkmark$

SOLVING FOR f

for N = 2 $det_q = a_1^1 a_2^2 - t_{(12)} a_2^1 a_1^2$ Since $det_q \cdot a_j^i - a_j^i \cdot det_q = 0$, $det_q \cdot a_2^1 - a_2^1 \cdot det_q = 0$ $\Leftrightarrow \qquad (a_1^1 a_2^2 - t_{(12)} a_2^1 a_1^2) \cdot a_2^1 - a_2^1 \cdot (a_1^1 a_2^2 - t_{(12)} a_2^1 a_1^2) = 0$ $\swarrow \qquad \checkmark \qquad \checkmark$ $a_2^1 \cdot (a_1^1 a_2^2 - t_{(12)} a_2^1 a_1^2) - a_2^1 \cdot (a_1^1 a_2^2 - t_{(12)} a_2^1 a_1^2) + \alpha = 0$

for N = 2 $det_a = a_1^1 a_2^2 - t_{(12)} a_2^1 a_1^2$ Since $det_q \cdot a_i^i - a_i^i \cdot det_q = 0$, $det_q \cdot a_2^1 - a_2^1 \cdot det_q = 0$ $\Leftrightarrow \qquad (a_1^1 a_2^2 - t_{(12)} a_2^1 a_1^2) \cdot a_2^1 - a_2^1 \cdot (a_1^1 a_2^2 - t_{(12)} a_2^1 a_1^2) = 0$ $\land \leftarrow \leftarrow \checkmark$ $a_{1}^{1} \cdot (a_{1}^{1}a_{2}^{2} - t_{(12)}a_{2}^{1}a_{1}^{2}) - a_{1}^{1} \cdot (a_{1}^{1}a_{2}^{2} - t_{(12)}a_{2}^{1}a_{1}^{2}) + \alpha = 0$ In this case,

$$\alpha = (1 - q^2 + t_{(12)} - t_{(12)}q^{-2})(a_2^1 a_1^1 a_2^2 - a_2^1 a_2^2 a_2^2) = 0$$

for N = 2 $det_q = a_1^1 a_2^2 - t_{(12)} a_2^1 a_1^2$ Since $det_q \cdot a_j^i - a_j^i \cdot det_q = 0$, $det_q \cdot a_2^1 - a_2^1 \cdot det_q = 0$ $\Leftrightarrow \qquad (a_1^1 a_2^2 - t_{(12)} a_2^1 a_1^2) \cdot a_2^1 - a_2^1 \cdot (a_1^1 a_2^2 - t_{(12)} a_2^1 a_1^2) = 0$ $\swarrow \qquad \swarrow \qquad \checkmark$ $a_2^1 \cdot (a_1^1 a_2^2 - t_{(12)} a_2^1 a_1^2) - a_2^1 \cdot (a_1^1 a_2^2 - t_{(12)} a_2^1 a_1^2) + \alpha = 0$

In this case,

$$\begin{aligned} \alpha &= (1 - q^2 + t_{(12)} - t_{(12)} q^{-2}) (a_2^1 a_1^1 a_2^2 - a_2^1 a_2^2 a_2^2) = 0\\ \text{So, } t_{(12)} &= q^2, \ f((12)) = 2 \end{aligned}$$

Solving $\operatorname{For} f$

In order to generalize this computation for all *n*, we need to know all the formulas for commuting two elements $a_i^i a_n^m$.

In order to generalize this computation for all n, we need to know all the formulas for commuting two elements $a_i^i a_n^m$.

Using the information, we made a program which will change arbitrary order of elements in the right order.

(Right order means (m > i) or (i = m and n > j)).

In order to generalize this computation for all n, we need to know all the formulas for commuting two elements $a_i^i a_n^m$.

Using the information, we made a program which will change arbitrary order of elements in the right order.

(Right order means (m > i) or (i = m and n > j)).

We made this program organize $det_q \cdot a_2^1 - a_2^1 \cdot det_q$ for N = 3, 4, 5, 6.

In order to generalize this computation for all n, we need to know all the formulas for commuting two elements $a_i^i a_n^m$.

Using the information, we made a program which will change arbitrary order of elements in the right order.

(Right order means (m > i) or (i = m and n > j)).

We made this program organize $det_q \cdot a_2^1 - a_2^1 \cdot det_q$ for N = 3, 4, 5, 6.

We also set a program to solve the equations that we got from this.

(such as $1 - q^2 + t_{(12)} - t_{(12)}q^{-2} = 0$ in N = 2)

In order to generalize this computation for all n, we need to know all the formulas for commuting two elements $a_i^i a_n^m$.

Using the information, we made a program which will change arbitrary order of elements in the right order.

(Right order means (m > i) or (i = m and n > j)).

We made this program organize $det_q \cdot a_2^1 - a_2^1 \cdot det_q$ for N = 3, 4, 5, 6.

We also set a program to solve the equations that we got from this.

(such as
$$1 - q^2 + t_{(12)} - t_{(12)}q^{-2} = 0$$
 in $N = 2$)

Thus, we got the exponents for each of the pemutations.

LIST

A part of data for $N = 4$		
Cycle notation	Permutation notation	Coefficient
(1, 2)	[2, 1, 3, 4]	q^2
(2,3)	$\left[1,3,2,4\right]$	q^2
(3, 4)	[1, 2, 4, 3]	q^2
(1, 3, 2)	[3, 1, 2, 4]	q^2 q^3
(1, 3)	[3, 2, 1, 4]	q^4
(1, 2, 3)	[2, 3, 1, 4]	q^4
(1, 4, 3, 2)	$\left[4,1,2,3\right]$	q^4
(1, 4, 3)	[4, 2, 1, 3]	$q^4 q^5$
(1, 3, 4, 2)	$\left[3,1,4,2 ight]$	q^5
(1, 2, 3, 4)	$\left[2,3,4,1\right]$	q^6
(1, 2, 4)	[2, 4, 3, 1]	q^6
(1, 3, 4)	[3, 2, 4, 1]	q^6
(1,3)(2,4)	[3, 4, 1, 2]	q^6
(1, 4, 2, 3)	$\left[4,3,1,2\right]$	q^7

CONJECTURE FORMULA

By making more observations and looking at the connections between the exponents and the permutation, we predict that the formula is,

CONJECTURE FORMULA

By making more observations and looking at the connections between the exponents and the permutation, we predict that the formula is,

$$det_{q} = \sum_{s \in S_{n}} (-q)^{l(s)} \cdot q^{e(s)} \cdot a_{s(1)}^{1} ... a_{s(N)}^{N}$$

CONJECTURE FORMULA

By making more observations and looking at the connections between the exponents and the permutation, we predict that the formula is,

$$det_{q} = \sum_{s \in S_{n}} (-q)^{l(s)} \cdot q^{e(s)} \cdot a_{s(1)}^{1} \dots a_{s(N)}^{N}$$

l(s)="Length of the permutation" which is the number of pairs out of order after *s*. (i > j, s(i) < s(j))

e(s)=excedance, the number of i such that s(i) > i.

FUTURE PLANS

We confirmed our conjecture formula through N = 11.

We are presently working on the general proof.

ACKNOWLEDGMENTS

First and foremost, I would like to thank David, who has really helped me throughout the program.

ACKNOWLEDGMENTS

First and foremost, I would like to thank David, who has really helped me throughout the program.

I would like to thank PRIMES for making this project possible.

I would also like to thank my parents who have kindly supported me.

ACKNOWLEDGMENTS

First and foremost, I would like to thank David, who has really helped me throughout the program.

I would like to thank PRIMES for making this project possible.

I would also like to thank my parents who have kindly supported me.

Thank you all for listening to my presentation.