## LOWER CENTRAL SERIES

One way to study interaction between commutative and non-commutative algebras is via the lower central series:

## LOWER CENTRAL SERIES

One way to study interaction between commutative and non-commutative algebras is via the lower central series:

- $A=L_{1} \supset L_{2} \supset \cdots$.


## LOWER CENTRAL SERIES

One way to study interaction between commutative and non-commutative algebras is via the lower central series:

- $A=L_{1} \supset L_{2} \supset \cdots$.
- $L_{2}$ is spanned by commutators, $[a, b]$, for $a, b \in A$.


## LOWER CENTRAL SERIES

One way to study interaction between commutative and non-commutative algebras is via the lower central series:

- $A=L_{1} \supset L_{2} \supset \cdots$.
- $L_{2}$ is spanned by commutators, $[a, b]$, for $a, b \in A$.
- $L_{3}$ is spanned by double commtuators, $[a,[b, c]]$.


## LOWER CENTRAL SERIES

One way to study interaction between commutative and non-commutative algebras is via the lower central series:

- $A=L_{1} \supset L_{2} \supset \cdots$.
- $L_{2}$ is spanned by commutators, $[a, b]$, for $a, b \in A$.
- $L_{3}$ is spanned by double commtuators, $[a,[b, c]]$.
- $L_{4}$ is spanned by triple commutators, $[a,[b,[c, d]]]$.


## LOWER CENTRAL SERIES

One way to study interaction between commutative and non-commutative algebras is via the lower central series:

- $A=L_{1} \supset L_{2} \supset \cdots$.
- $L_{2}$ is spanned by commutators, $[a, b]$, for $a, b \in A$.
- $L_{3}$ is spanned by double commtuators, $[a,[b, c]]$.
- $L_{4}$ is spanned by triple commutators, $[a,[b,[c, d]]]$.
- And so on ...


## LOWER CENTRAL SERIES

One way to study interaction between commutative and non-commutative algebras is via the lower central series:

- $A=L_{1} \supset L_{2} \supset \cdots$.
- $L_{2}$ is spanned by commutators, $[a, b]$, for $a, b \in A$.
- $L_{3}$ is spanned by double commtuators, $[a,[b, c]]$.
- $L_{4}$ is spanned by triple commutators, $[a,[b,[c, d]]]$.
- And so on...
- Each successive quotient $B_{k}:=L_{k} / L_{k+1}$ keeps track of more and more non-commutativity.

These quotients have surprising descriptions. Consider the free algebra $A_{n}$ over $\mathbb{C}$ on $x_{1}, \ldots x_{n}$.

These quotients have surprising descriptions. Consider the free algebra $A_{n}$ over $\mathbb{C}$ on $x_{1}, \ldots x_{n}$.

- $B_{1}\left(A_{n}\right)$ has a basis of cyclic words (e.g. $x_{1} x_{2} x_{3} \sim x_{3} x_{1} x_{2}$ ).

These quotients have surprising descriptions. Consider the free algebra $A_{n}$ over $\mathbb{C}$ on $x_{1}, \ldots x_{n}$.

- $B_{1}\left(A_{n}\right)$ has a basis of cyclic words (e.g. $x_{1} x_{2} x_{3} \sim x_{3} x_{1} x_{2}$ ).
- Feigin-Shoikhet: $B_{2}\left(A_{n}\right) \cong \Omega_{e x}^{e v}\left(\mathbb{C}^{n}\right)$, the space of even-degree, exact differential forms on $\mathbb{C}^{n}$.

These quotients have surprising descriptions. Consider the free algebra $A_{n}$ over $\mathbb{C}$ on $x_{1}, \ldots x_{n}$.

- $B_{1}\left(A_{n}\right)$ has a basis of cyclic words (e.g. $x_{1} x_{2} x_{3} \sim x_{3} x_{1} x_{2}$ ).
- Feigin-Shoikhet: $B_{2}\left(A_{n}\right) \cong \Omega_{e x}^{e v}\left(\mathbb{C}^{n}\right)$, the space of even-degree, exact differential forms on $\mathbb{C}^{n}$.
- Etingof and Dobrovolska showed that each $B_{k}\left(A_{n}\right)$, for $k>2$, is also described in differential geometric terms.

These quotients have surprising descriptions. Consider the free algebra $A_{n}$ over $\mathbb{C}$ on $x_{1}, \ldots x_{n}$.

- $B_{1}\left(A_{n}\right)$ has a basis of cyclic words (e.g. $x_{1} x_{2} x_{3} \sim x_{3} x_{1} x_{2}$ ).
- Feigin-Shoikhet: $B_{2}\left(A_{n}\right) \cong \Omega_{e x}^{e v}\left(\mathbb{C}^{n}\right)$, the space of even-degree, exact differential forms on $\mathbb{C}^{n}$.
- Etingof and Dobrovolska showed that each $B_{k}\left(A_{n}\right)$,for $k>2$, is also described in differential geometric terms.
- In particular, for $k \geq 2$, each $B_{k}\left(A_{n}\right)$ has polynomial growth.

These quotients have surprising descriptions. Consider the free algebra $A_{n}$ over $\mathbb{C}$ on $x_{1}, \ldots x_{n}$.

- $B_{1}\left(A_{n}\right)$ has a basis of cyclic words (e.g. $x_{1} x_{2} x_{3} \sim x_{3} x_{1} x_{2}$ ).
- Feigin-Shoikhet: $B_{2}\left(A_{n}\right) \cong \Omega_{e x}^{e v}\left(\mathbb{C}^{n}\right)$, the space of even-degree, exact differential forms on $\mathbb{C}^{n}$.
- Etingof and Dobrovolska showed that each $B_{k}\left(A_{n}\right)$, for $k>2$, is also described in differential geometric terms.
- In particular, for $k \geq 2$, each $B_{k}\left(A_{n}\right)$ has polynomial growth.
- The present focus is on extending these methods to characteristic $p$, where a geometric approach is less clear.


# Lower central series of free algebras in characteristic $p$ 

Surya Bhupatiraju, William Kuszmaul, Jason Li MIT PRIMES

May 21, 2011

## Free Algebras

- Let $A_{n}$ be a free algebra on generators $x_{1}, \ldots, x_{n}$.


## Free algebras

- Let $A_{n}$ be a free algebra on generators $x_{1}, \ldots, x_{n}$.
- $A_{n}$ is spanned by all words in letters $x_{1}, \ldots, x_{n}$,


## Free algebras

- Let $A_{n}$ be a free algebra on generators $x_{1}, \ldots, x_{n}$.
- $A_{n}$ is spanned by all words in letters $x_{1}, \ldots, x_{n}$, e.g. $A_{2}$ :


## Free algebras

- Let $A_{n}$ be a free algebra on generators $x_{1}, \ldots, x_{n}$.
- $A_{n}$ is spanned by all words in letters $x_{1}, \ldots, x_{n}$, e.g. $A_{2}$ :

1

## Free algebras

- Let $A_{n}$ be a free algebra on generators $x_{1}, \ldots, x_{n}$.
- $A_{n}$ is spanned by all words in letters $x_{1}, \ldots, x_{n}$, e.g. $A_{2}$ :

$$
\begin{gathered}
1 \\
x y
\end{gathered}
$$

## Free algebras

- Let $A_{n}$ be a free algebra on generators $x_{1}, \ldots, x_{n}$.
- $A_{n}$ is spanned by all words in letters $x_{1}, \ldots, x_{n}$, e.g. $A_{2}$ :

$$
\begin{gathered}
1 \\
x y \\
x^{2} x y y x y^{2}
\end{gathered}
$$

## Free Algebras

- Let $A_{n}$ be a free algebra on generators $x_{1}, \ldots, x_{n}$.
- $A_{n}$ is spanned by all words in letters $x_{1}, \ldots, x_{n}$, e.g. $A_{2}$ :

$$
\begin{gathered}
1 \\
x y \\
x^{2} x y y x y^{2} \\
x^{3} x^{2} y x y x y x^{2} y^{2} x y x y x y^{2} y^{3}
\end{gathered}
$$

## Free Algebras

- Let $A_{n}$ be a free algebra on generators $x_{1}, \ldots, x_{n}$.
- $A_{n}$ is spanned by all words in letters $x_{1}, \ldots, x_{n}$, e.g. $A_{2}$ :

$$
\begin{gathered}
1 \\
x y \\
x^{2} x y y x y^{2} \\
x^{3} x^{2} y x y x y x^{2} y^{2} x y x y x y^{2} y^{3}
\end{gathered}
$$

- We can take coefficients in the rational numbers $\mathbb{Q}$, integers $\mathbb{Z}$, or a finite field $\mathbb{F}_{p}$.


## COMMUTATOR

## Definition

The commutator, $[c, d]$, for $c, d \in A$, is: $[c, d]:=c d-d c$

## COMMUTATOR

## Definition

The commutator, $[c, d]$, for $c, d \in A$, is: $[c, d]:=c d-d c$
We can iterate:

## COMMUTATOR

## Definition

The commutator, $[c, d]$, for $c, d \in A$, is: $[c, d]:=c d-d c$
We can iterate:

- $[b,[c, d]]=[b, c d-d c]=b c d-b d c-c d b+d c b$


## COMMUTATOR

## Definition

The commutator, $[c, d]$, for $c, d \in A$, is: $[c, d]:=c d-d c$
We can iterate:

- $[b,[c, d]]=[b, c d-d c]=b c d-b d c-c d b+d c b$
- $[a,[b,[c, d]]]=[a, b c d-b d c-c d b+d c b]=$ $a b c d-a b d c-a c d b+a d c b-b c d a+b d c a+c d b a-d c b a$


## LOWER CENTRAL SERIES

## Definition

The lower central series filtration of an associative algebra $A$

$$
A=L_{1} \supseteq L_{2} \supseteq L_{3} \supseteq \ldots
$$

is defined recursively by $L_{1}:=A, L_{k}:=\left[A, L_{k-1}\right]$, all linear combinations of expressions $[a, b]$ for $a \in A, b \in L_{k-1}$.

## LOWER CENTRAL SERIES

## Definition

The lower central series filtration of an associative algebra $A$

$$
A=L_{1} \supseteq L_{2} \supseteq L_{3} \supseteq \ldots
$$

is defined recursively by $L_{1}:=A, L_{k}:=\left[A, L_{k-1}\right]$, all linear combinations of expressions $[a, b]$ for $a \in A, b \in L_{k-1}$.

More explicitly, $L_{k}$ is all linear combinations of all expressions $\left[a_{1},\left[a_{2},\left[a_{3},\left[\ldots\left[a_{k-1}, a_{k}\right] \ldots\right]\right]\right]\right]$ for $a_{i} \in A$.

## LOWER CENTRAL SERIES

## Definition

The lower central series filtration of an associative algebra $A$

$$
A=L_{1} \supseteq L_{2} \supseteq L_{3} \supseteq \ldots
$$

is defined recursively by $L_{1}:=A, L_{k}:=\left[A, L_{k-1}\right]$, all linear combinations of expressions $[a, b]$ for $a \in A, b \in L_{k-1}$.

More explicitly, $L_{k}$ is all linear combinations of all expressions $\left[a_{1},\left[a_{2},\left[a_{3},\left[\ldots\left[a_{k-1}, a_{k}\right] \ldots\right]\right]\right]\right]$ for $a_{i} \in A$.

## Definition

The associated graded components $B_{k}$ to the filtration are defined as

$$
B_{k}:=L_{k} / L_{k+1} .
$$

## LOWER CENTRAL SERIES

- $B_{k}$ are vector spaces when the coefficients are taken in $\mathbb{F}_{p}$ or $\mathbb{Q}$, and are only abelian groups when coefficients are in $\mathbb{Z}$.


## LOWER CENTRAL SERIES

- $B_{k}$ are vector spaces when the coefficients are taken in $\mathbb{F}_{p}$ or $\mathbb{Q}$, and are only abelian groups when coefficients are in $\mathbb{Z}$.



## Hilbert Series

Since the spaces we consider are infinite dimensional, we study them combinatorially via so-called 'Hilbert series':

## Hilbert Series

Since the spaces we consider are infinite dimensional, we study them combinatorially via so-called 'Hilbert series':

## Definition

A finite m-grading on a vector space $V$ is a direct sum decomposition:

$$
V=\bigoplus_{\mathbf{k} \in \mathbb{Z}_{+}^{m}} V_{\mathbf{k}}
$$

such that each $V_{\mathbf{k}}$ is finite dimensional.

## Hilbert Series

Since the spaces we consider are infinite dimensional, we study them combinatorially via so-called 'Hilbert series':

## Definition

A finite $\mathbf{m}$-grading on a vector space $V$ is a direct sum decomposition:

$$
V=\bigoplus_{\mathbf{k} \in \mathbb{Z}_{+}^{m}} V_{\mathbf{k}}
$$

such that each $V_{\mathbf{k}}$ is finite dimensional.

## Definition

The multivariable Hilbert series of $V$ is the sum

$$
h\left(V ; t_{1}, \ldots, t_{m}\right):=\sum_{\mathbf{k} \in \mathbb{Z}_{+}^{m}} \operatorname{dim}\left(V_{\mathbf{k}}\right) t_{1}^{k_{1}} \cdots t_{m}^{k_{m}}
$$

## Hilbert Series

## Example

The Hilbert series of $A_{2}$ is:

$$
h\left(A_{2} ; t_{1}, t_{2}\right):=\sum_{\mathbf{k} \in \mathbb{Z}_{+}^{m}}\binom{k+l}{k} t_{1}^{k} t_{2}^{l}=\frac{1}{1-\left(t_{1}+t_{2}\right)}
$$

## Hilbert Series

## Example

The Hilbert series of $A_{2}$ is:

$$
h\left(A_{2} ; t_{1}, t_{2}\right):=\sum_{\mathbf{k} \in \mathbb{Z}_{+}^{m}}\binom{k+l}{k} t_{1}^{k} t_{2}^{l}=\frac{1}{1-\left(t_{1}+t_{2}\right)}
$$

## Example

The Hilbert series of $\mathbb{C}[x, y]$ is:

$$
h\left(A_{2} ; t_{1}, t_{2}\right):=\sum_{\mathbf{k} \in \mathbb{Z}_{+}^{m}} t_{1}^{k} t_{2}^{l}=\frac{1}{\left(1-t_{1}\right)\left(1-t_{2}\right)}
$$

## The Problem

## Problem

Calculate the spaces $B_{k}\left(A_{n}\left(\mathbb{F}_{p}\right)\right)$, and compare them to $B_{k}\left(A_{n}(\mathbb{Q})\right)$.

## The Problem

## Problem

Calculate the spaces $B_{k}\left(A_{n}\left(\mathbb{F}_{p}\right)\right)$, and compare them to $B_{k}\left(A_{n}(\mathbb{Q})\right)$.

- Using the iterative definition of the $L_{k}$, and the programming language MAGMA, we computed the following Hilbert series:


## The Problem

## Problem

Calculate the spaces $B_{k}\left(A_{n}\left(\mathbb{F}_{p}\right)\right)$, and compare them to $B_{k}\left(A_{n}(\mathbb{Q})\right)$.

- Using the iterative definition of the $L_{k}$, and the programming language MAGMA, we computed the following Hilbert series:

$$
\begin{aligned}
& h\left(B_{2}\left(A_{2}(\mathbb{Q})\right) ; x, y\right) \\
& =x y+x y^{2}+x^{2} y+x^{3} y+x^{2} y^{2}+x y^{3}+\ldots=\frac{x y}{(1-x)(1-y)} .
\end{aligned}
$$

## The Problem

## Problem

Calculate the spaces $B_{k}\left(A_{n}\left(\mathbb{F}_{p}\right)\right)$, and compare them to $B_{k}\left(A_{n}(\mathbb{Q})\right)$.

- Using the iterative definition of the $L_{k}$, and the programming language MAGMA, we computed the following Hilbert series:

$$
\begin{aligned}
& h\left(B_{2}\left(A_{2}(\mathbb{Q})\right) ; x, y\right) \\
& =x y+x y^{2}+x^{2} y+x^{3} y+x^{2} y^{2}+x y^{3}+\ldots=\frac{x y}{(1-x)(1-y)} . \\
& h\left(B_{2}\left(A_{2}\left(\mathbb{F}_{2}\right)\right) ; x, y\right) \\
& =x y+x y^{2}+x^{2} y+x^{3} y+x^{2} y^{2}+x y^{3}+\ldots=\frac{x y}{(1-x)(1-y)} .
\end{aligned}
$$

## The Problem

## Problem

Calculate the spaces $B_{k}\left(A_{n}\left(\mathbb{F}_{p}\right)\right)$, and compare them to $B_{k}\left(A_{n}(\mathbb{Q})\right)$.

- Using the iterative definition of the $L_{k}$, and the programming language MAGMA, we computed the following Hilbert series:

$$
\begin{aligned}
& h\left(B_{2}\left(A_{2}(\mathbb{Q})\right) ; x, y\right) \\
& =x y+x y^{2}+x^{2} y+x^{3} y+x^{2} y^{2}+x y^{3}+\ldots=\frac{x y}{(1-x)(1-y)} \\
& h\left(B_{2}\left(A_{2}\left(\mathbb{F}_{2}\right)\right) ; x, y\right) \\
& =x y+x y^{2}+x^{2} y+x^{3} y+x^{2} y^{2}+x y^{3}+\ldots=\frac{x y}{(1-x)(1-y)} .
\end{aligned}
$$

They appear to coincide.

## Differences in Hilbert Series

The series $h\left(B_{2}\left(A_{2}\left(\mathbb{F}_{p}\right)\right)\right), h\left(B_{3}\left(A_{2}\left(\mathbb{F}_{p}\right)\right)\right), h\left(B_{4}\left(A_{2}\left(\mathbb{F}_{p}\right)\right)\right)$ are independent of $p$ in the range we computed.

## Differences in Hilbert Series

The series $h\left(B_{2}\left(A_{2}\left(\mathbb{F}_{p}\right)\right)\right), h\left(B_{3}\left(A_{2}\left(\mathbb{F}_{p}\right)\right)\right), h\left(B_{4}\left(A_{2}\left(\mathbb{F}_{p}\right)\right)\right)$ are independent of $p$ in the range we computed.

- $h\left(B_{2}\left(A_{3}(\mathbb{Q})\right)\right)=x y+x z+y z+x^{2} y+x^{2} z+x y^{2}+2 x y z+$ $x z^{2}+y^{2} z+y z^{2}+x^{2} z^{2}+y^{2} z^{2}+x^{2} y^{2}+2 x^{2} y z+2 x^{2} y^{2} z+$ $2 x^{2} y z^{2}+2 x y^{2} z+2 x y z^{2}+2 x y^{2} z^{2}+2 x^{2} y^{2} z^{2}+\cdots$


## Differences in Hilbert Series

The series $h\left(B_{2}\left(A_{2}\left(\mathbb{F}_{p}\right)\right)\right), h\left(B_{3}\left(A_{2}\left(\mathbb{F}_{p}\right)\right)\right), h\left(B_{4}\left(A_{2}\left(\mathbb{F}_{p}\right)\right)\right)$ are independent of $p$ in the range we computed.

- $h\left(B_{2}\left(A_{3}(\mathbb{Q})\right)\right)=x y+x z+y z+x^{2} y+x^{2} z+x y^{2}+2 x y z+$ $x z^{2}+y^{2} z+y z^{2}+x^{2} z^{2}+y^{2} z^{2}+x^{2} y^{2}+2 x^{2} y z+2 x^{2} y^{2} z+$ $2 x^{2} y z^{2}+2 x y^{2} z+2 x y z^{2}+2 x y^{2} z^{2}+2 x^{2} y^{2} z^{2}+\cdots$
- $h\left(B_{2}\left(A_{3}\left(\mathbb{F}_{2}\right)\right)\right)=x y+x z+y z+x^{2} y+x^{2} z+x y^{2}+2 x y z+$ $x z^{2}+y^{2} z+y z^{2}+x^{2} z^{2}+y^{2} z^{2}+x^{2} y^{2}+2 x^{2} y z+2 x^{2} y^{2} z+$ $2 x^{2} y z^{2}+2 x y^{2} z+2 x y z^{2}+2 x y^{2} z^{2}+3 x^{2} y^{2} z^{2}+\cdots$


## Differences in Hilbert Series

The series $h\left(B_{2}\left(A_{2}\left(\mathbb{F}_{p}\right)\right)\right), h\left(B_{3}\left(A_{2}\left(\mathbb{F}_{p}\right)\right)\right), h\left(B_{4}\left(A_{2}\left(\mathbb{F}_{p}\right)\right)\right)$ are independent of $p$ in the range we computed.

- $h\left(B_{2}\left(A_{3}(\mathbb{Q})\right)\right)=x y+x z+y z+x^{2} y+x^{2} z+x y^{2}+2 x y z+$ $x z^{2}+y^{2} z+y z^{2}+x^{2} z^{2}+y^{2} z^{2}+x^{2} y^{2}+2 x^{2} y z+2 x^{2} y^{2} z+$ $2 x^{2} y z^{2}+2 x y^{2} z+2 x y z^{2}+2 x y^{2} z^{2}+2 x^{2} y^{2} z^{2}+\cdots$
- $h\left(B_{2}\left(A_{3}\left(\mathbb{F}_{2}\right)\right)\right)=x y+x z+y z+x^{2} y+x^{2} z+x y^{2}+2 x y z+$ $x z^{2}+y^{2} z+y z^{2}+x^{2} z^{2}+y^{2} z^{2}+x^{2} y^{2}+2 x^{2} y z+2 x^{2} y^{2} z+$ $2 x^{2} y z^{2}+2 x y^{2} z+2 x y z^{2}+2 x y^{2} z^{2}+3 x^{2} y^{2} z^{2}+\cdots$
- Why do these changes occur?


## TORSION

To explain the varying behavior over different $\mathbb{F}_{p}$, we work instead over $\mathbb{Z}$.

## Torsion

To explain the varying behavior over different $\mathbb{F}_{p}$, we work instead over $\mathbb{Z}$.

- We have an isomorphism: $B_{2}\left(A_{n}(\mathbb{F})\right) \cong B_{2}\left(A_{n}(\mathbb{Z})\right) \otimes \mathbb{F}$.


## TORSION

To explain the varying behavior over different $\mathbb{F}_{p}$, we work instead over $\mathbb{Z}$.

- We have an isomorphism: $B_{2}\left(A_{n}(\mathbb{F})\right) \cong B_{2}\left(A_{n}(\mathbb{Z})\right) \otimes \mathbb{F}$.
- $B_{2}\left(A_{n}(\mathbb{Z})\right)$ is an abelian group, and may have torsion:


## TORSION

To explain the varying behavior over different $\mathbb{F}_{p}$, we work instead over $\mathbb{Z}$.

- We have an isomorphism: $B_{2}\left(A_{n}(\mathbb{F})\right) \cong B_{2}\left(A_{n}(\mathbb{Z})\right) \otimes \mathbb{F}$.
- $B_{2}\left(A_{n}(\mathbb{Z})\right)$ is an abelian group, and may have torsion:


## Definition

An element $g \neq 0$ is called an $m$-torsion element if $m g=0$, and $m>0$ is the minimal such.

## TORSION

To explain the varying behavior over different $\mathbb{F}_{p}$, we work instead over $\mathbb{Z}$.

- We have an isomorphism: $B_{2}\left(A_{n}(\mathbb{F})\right) \cong B_{2}\left(A_{n}(\mathbb{Z})\right) \otimes \mathbb{F}$.
- $B_{2}\left(A_{n}(\mathbb{Z})\right)$ is an abelian group, and may have torsion:


## Definition

An element $g \neq 0$ is called an $m$-torsion element if $m g=0$, and $m>0$ is the minimal such.

- An $m$-torsion element $g \in B_{2}\left(A_{n}(\mathbb{Z})\right)$ survives to $B_{2}\left(A_{n}\left(\mathbb{F}_{p}\right)\right)$ if, and only if, $p$ divides $m$.


## TORSION

To explain the varying behavior over different $\mathbb{F}_{p}$, we work instead over $\mathbb{Z}$.

- We have an isomorphism: $B_{2}\left(A_{n}(\mathbb{F})\right) \cong B_{2}\left(A_{n}(\mathbb{Z})\right) \otimes \mathbb{F}$.
- $B_{2}\left(A_{n}(\mathbb{Z})\right)$ is an abelian group, and may have torsion:


## Definition

An element $g \neq 0$ is called an $m$-torsion element if $m g=0$, and $m>0$ is the minimal such.

- An $m$-torsion element $g \in B_{2}\left(A_{n}(\mathbb{Z})\right)$ survives to $B_{2}\left(A_{n}\left(\mathbb{F}_{p}\right)\right)$ if, and only if, $p$ divides $m$.
- Torsion does not survive to $B_{2}\left(A_{n}(\mathbb{Q})\right)$.

For example,

$$
B_{2}\left(A_{3}(\mathbb{Z})\right)_{(2,2,2)} \cong \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}
$$

For example,

$$
B_{2}\left(A_{3}(\mathbb{Z})\right)_{(2,2,2)} \cong \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}
$$

- $B_{2}\left(A_{3}(\mathbb{Q})\right)_{(2,2,2)} \cong(\mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}) \otimes \mathbb{Q} \cong \mathbb{Q} \oplus \mathbb{Q}$.

For example,

$$
B_{2}\left(A_{3}(\mathbb{Z})\right)_{(2,2,2)} \cong \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}
$$

- $B_{2}\left(A_{3}(\mathbb{Q})\right)_{(2,2,2)} \cong(\mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}) \otimes \mathbb{Q} \cong \mathbb{Q} \oplus \mathbb{Q}$.
- $h\left(B_{2}\left(A_{3}(\mathbb{Q})\right)\right)=x y+x z+y z+x^{2} y+x^{2} z+x y^{2}+2 x y z+$

$$
\begin{aligned}
& x z^{2}+y^{2} z+y z^{2}+x^{2} z^{2}+y^{2} z^{2}+x^{2} y^{2}+2 x^{2} y z+2 x^{2} y^{2} z+ \\
& 2 x^{2} y z^{2}+2 x y^{2} z^{2}+2 x y^{2} z+2 x y z^{2}+2 x^{2} y^{2} z^{2}+\cdots
\end{aligned}
$$

For example,

$$
B_{2}\left(A_{3}(\mathbb{Z})\right)_{(2,2,2)} \cong \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}
$$

- $B_{2}\left(A_{3}(\mathbb{Q})\right)_{(2,2,2)} \cong(\mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}) \otimes \mathbb{Q} \cong \mathbb{Q} \oplus \mathbb{Q}$.
- $h\left(B_{2}\left(A_{3}(\mathbb{Q})\right)\right)=x y+x z+y z+x^{2} y+x^{2} z+x y^{2}+2 x y z+$ $x z^{2}+y^{2} z+y z^{2}+x^{2} z^{2}+y^{2} z^{2}+x^{2} y^{2}+2 x^{2} y z+2 x^{2} y^{2} z+$ $2 x^{2} y z^{2}+2 x y^{2} z^{2}+2 x y^{2} z+2 x y z^{2}+2 x^{2} y^{2} z^{2}+\cdots$
- $B_{2}\left(A_{3}\left(\mathbb{F}_{2}\right)\right)_{(2,2,2)} \cong(\mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}) \otimes \mathbb{F}_{2} \cong \mathbb{F}_{2} \oplus \mathbb{F}_{2} \oplus \mathbb{F}_{2}$.

For example,

$$
B_{2}\left(A_{3}(\mathbb{Z})\right)_{(2,2,2)} \cong \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}
$$

- $B_{2}\left(A_{3}(\mathbb{Q})\right)_{(2,2,2)} \cong(\mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}) \otimes \mathbb{Q} \cong \mathbb{Q} \oplus \mathbb{Q}$.
- $h\left(B_{2}\left(A_{3}(\mathbb{Q})\right)\right)=x y+x z+y z+x^{2} y+x^{2} z+x y^{2}+2 x y z+$ $x z^{2}+y^{2} z+y z^{2}+x^{2} z^{2}+y^{2} z^{2}+x^{2} y^{2}+2 x^{2} y z+2 x^{2} y^{2} z+$ $2 x^{2} y z^{2}+2 x y^{2} z^{2}+2 x y^{2} z+2 x y z^{2}+2 x^{2} y^{2} z^{2}+\cdots$
- $B_{2}\left(A_{3}\left(\mathbb{F}_{2}\right)\right)_{(2,2,2)} \cong(\mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z} / 2 \mathbb{Z}) \otimes \mathbb{F}_{2} \cong \mathbb{F}_{2} \oplus \mathbb{F}_{2} \oplus \mathbb{F}_{2}$.
- $h\left(B_{2}\left(A_{3}\left(\mathbb{F}_{2}\right)\right)\right)=x y+x z+y z+x^{2} y+x^{2} z+x y^{2}+2 x y z+$ $x z^{2}+y^{2} z+y z^{2}+x^{2} z^{2}+y^{2} z^{2}+x^{2} y^{2}+2 x^{2} y z+2 x^{2} y^{2} z+$ $2 x^{2} y z^{2}+2 x y^{2} z^{2}+2 x y^{2} z+2 x y z^{2}+3 x^{2} y^{2} z^{2}+\cdots$


## Results from Computations

Some places where we found torsion are:

## Results from Computations

Some places where we found torsion are:

- 2-torsion in $B_{2}\left(A_{3}(\mathbb{Z})\right)_{(2,2,2)}$,


## Results from Computations

Some places where we found torsion are:

- 2-torsion in $B_{2}\left(A_{3}(\mathbb{Z})\right)_{(2,2,2)}$,
- 3-torsion in $B_{2}\left(A_{3}(\mathbb{Z})\right)_{(3,3,3)}$,


## RESULTS FROM COMPUTATIONS

Some places where we found torsion are:

- 2-torsion in $B_{2}\left(A_{3}(\mathbb{Z})\right)_{(2,2,2)}$,
- 3-torsion in $B_{2}\left(A_{3}(\mathbb{Z})\right)_{(3,3,3)}$,
- 2-torsion in $B_{2}\left(A_{3}(\mathbb{Z})\right)_{(4,2,2)}$, and its permutations,


## RESULTS FROM COMPUTATIONS

Some places where we found torsion are:

- 2-torsion in $B_{2}\left(A_{3}(\mathbb{Z})\right)_{(2,2,2)}$,
- 3-torsion in $B_{2}\left(A_{3}(\mathbb{Z})\right)_{(3,3,3)}$,
- 2-torsion in $B_{2}\left(A_{3}(\mathbb{Z})\right)_{(4,2,2)}$, and its permutations,
- 2-torsion in $B_{2}\left(A_{3}(\mathbb{Z})\right)_{(4,4,2)}$, and its permutations,


## Results from Computations

Some places where we found torsion are:

- 2-torsion in $B_{2}\left(A_{3}(\mathbb{Z})\right)_{(2,2,2)}$,
- 3-torsion in $B_{2}\left(A_{3}(\mathbb{Z})\right)_{(3,3,3)}$,
- 2-torsion in $B_{2}\left(A_{3}(\mathbb{Z})\right)_{(4,2,2)}$, and its permutations,
- 2-torsion in $B_{2}\left(A_{3}(\mathbb{Z})\right)_{(4,4,2)}$, and its permutations,
- 2-torsion in $B_{2}\left(A_{4}(\mathbb{Z})\right)_{(2,2,2,2)}$ (3-dimensional).


## Results from Computations

Some places where we found torsion are:

- 2-torsion in $B_{2}\left(A_{3}(\mathbb{Z})\right)_{(2,2,2)}$,
- 3-torsion in $B_{2}\left(A_{3}(\mathbb{Z})\right)_{(3,3,3)}$,
- 2-torsion in $B_{2}\left(A_{3}(\mathbb{Z})\right)_{(4,2,2)}$, and its permutations,
- 2-torsion in $B_{2}\left(A_{3}(\mathbb{Z})\right)_{(4,4,2)}$, and its permutations,
- 2-torsion in $B_{2}\left(A_{4}(\mathbb{Z})\right)_{(2,2,2,2)}$ (3-dimensional).


## Conjecture

For all $a, b, c$, the element:

$$
v(a, b, c)=\left[z, z^{a-1} x^{b-1} y^{c-1}[x, y]\right] \in B_{2}\left(A_{3}(\mathbb{Z})\right)_{(a, b, c)}
$$

is torsion, of order equal to $\operatorname{gcd}(a, b, c)$, and generates the torsion subgroup of $B_{2}\left(A_{3}(\mathbb{Z})\right)_{(a, b, c)}$.

## TOWARDS THE CONJECTURE

It is not hard to prove that $\operatorname{gcd}(a, b, c) \cdot\left[z, z^{a-1} x^{b-1} y^{c-1}[x, y]\right]=0$ in $B_{2}\left(A_{3}(\mathbb{Z})\right)$ :

## TOWARDS THE CONJECTURE

It is not hard to prove that $\operatorname{gcd}(a, b, c) \cdot\left[z, z^{a-1} x^{b-1} y^{c-1}[x, y]\right]=0$ in $B_{2}\left(A_{3}(\mathbb{Z})\right)$ :

- Feigin-Shoikhet: $\left[A, A L_{3}\right] \subset L_{3}$.


## TOWARDS THE CONJECTURE

It is not hard to prove that $\operatorname{gcd}(a, b, c) \cdot\left[z, z^{a-1} x^{b-1} y^{c-1}[x, y]\right]=0$ in $B_{2}\left(A_{3}(\mathbb{Z})\right)$ :

- Feigin-Shoikhet: $\left[A, A L_{3}\right] \subset L_{3}$.
- $\left[z, z^{a-1}\left[x, x^{b-1} y^{c}\right]\right]=c\left[z, z^{a-1} x^{b-1} y^{c-1}[x, y]\right] \bmod L_{3}$.


## TOWARDS THE CONJECTURE

It is not hard to prove that $\operatorname{gcd}(a, b, c) \cdot\left[z, z^{a-1} x^{b-1} y^{c-1}[x, y]\right]=0$ in $B_{2}\left(A_{3}(\mathbb{Z})\right)$ :

- Feigin-Shoikhet: $\left[A, A L_{3}\right] \subset L_{3}$.
- $\left[z, z^{a-1}\left[x, x^{b-1} y^{c}\right]\right]=c\left[z, z^{a-1} x^{b-1} y^{c-1}[x, y]\right] \bmod L_{3}$.
- $\Rightarrow c v=\left[z, z^{a-1}\left[x, x^{b-1} y^{c}\right]\right]$.


## TOWARDS THE CONJECTURE

It is not hard to prove that $\operatorname{gcd}(a, b, c) \cdot\left[z, z^{a-1} x^{b-1} y^{c-1}[x, y]\right]=0$ in $B_{2}\left(A_{3}(\mathbb{Z})\right)$ :

- Feigin-Shoikhet: $\left[A, A L_{3}\right] \subset L_{3}$.
- $\left[z, z^{a-1}\left[x, x^{b-1} y^{c}\right]\right]=c\left[z, z^{a-1} x^{b-1} y^{c-1}[x, y]\right] \bmod L_{3}$.
- $\Rightarrow c v=\left[z, z^{a-1}\left[x, x^{b-1} y^{c}\right]\right]$.
- We use the identity in $A_{4}(\mathbb{Z})$ :

$$
[z, w[x, y]]=[[w, y], x z]-[z,[y, w x]]+[x,[w, z y]]+x[z, w] y+[w, z] y x .
$$

## TOWARDS THE CONJECTURE

It is not hard to prove that $\operatorname{gcd}(a, b, c) \cdot\left[z, z^{a-1} x^{b-1} y^{c-1}[x, y]\right]=0$ in $B_{2}\left(A_{3}(\mathbb{Z})\right)$ :

- Feigin-Shoikhet: $\left[A, A L_{3}\right] \subset L_{3}$.
- $\left[z, z^{a-1}\left[x, x^{b-1} y^{c}\right]\right]=c\left[z, z^{a-1} x^{b-1} y^{c-1}[x, y]\right] \bmod L_{3}$.
- $\Rightarrow c v=\left[z, z^{a-1}\left[x, x^{b-1} y^{c}\right]\right]$.
- We use the identity in $A_{4}(\mathbb{Z})$ :
$[z, w[x, y]]=[[w, y], x z]-[z,[y, w x]]+[x,[w, z y]]+x[z, w] y+[w, z] y x$.
- Set $z \mapsto z, w \mapsto z^{a-1}, x \mapsto x, y \mapsto x^{b-1} y^{c}$.


## TOWARDS THE CONJECTURE

It is not hard to prove that $\operatorname{gcd}(a, b, c) \cdot\left[z, z^{a-1} x^{b-1} y^{c-1}[x, y]\right]=0$ in $B_{2}\left(A_{3}(\mathbb{Z})\right)$ :

- Feigin-Shoikhet: $\left[A, A L_{3}\right] \subset L_{3}$.
- $\left[z, z^{a-1}\left[x, x^{b-1} y^{c}\right]\right]=c\left[z, z^{a-1} x^{b-1} y^{c-1}[x, y]\right] \bmod L_{3}$.
- $\Rightarrow c v=\left[z, z^{a-1}\left[x, x^{b-1} y^{c}\right]\right]$.
- We use the identity in $A_{4}(\mathbb{Z})$ :

$$
[z, w[x, y]]=[[w, y], x z]-[z,[y, w x]]+[x,[w, z y]]+x[z, w] y+[w, z] y x .
$$

- Set $z \mapsto z, w \mapsto z^{a-1}, x \mapsto x, y \mapsto x^{b-1} y^{c}$.
- $\Rightarrow c v \in L_{3}\left(A_{3}(\mathbb{Z})\right) \Rightarrow c v=0$ in $B_{2}\left(A_{3}(\mathbb{Z})\right)$.


## TOWARDS THE CONJECTURE

It is not hard to prove that $\operatorname{gcd}(a, b, c) \cdot\left[z, z^{a-1} x^{b-1} y^{c-1}[x, y]\right]=0$ in $B_{2}\left(A_{3}(\mathbb{Z})\right)$ :

- Feigin-Shoikhet: $\left[A, A L_{3}\right] \subset L_{3}$.
- $\left[z, z^{a-1}\left[x, x^{b-1} y^{c}\right]\right]=c\left[z, z^{a-1} x^{b-1} y^{c-1}[x, y]\right] \bmod L_{3}$.
- $\Rightarrow c v=\left[z, z^{a-1}\left[x, x^{b-1} y^{c}\right]\right]$.
- We use the identity in $A_{4}(\mathbb{Z})$ :

$$
[z, w[x, y]]=[[w, y], x z]-[z,[y, w x]]+[x,[w, z y]]+x[z, w] y+[w, z] y x .
$$

- Set $z \mapsto z, w \mapsto z^{a-1}, x \mapsto x, y \mapsto x^{b-1} y^{c}$.
- $\Rightarrow c v \in L_{3}\left(A_{3}(\mathbb{Z})\right) \Rightarrow c v=0$ in $B_{2}\left(A_{3}(\mathbb{Z})\right)$.
- The claim that $a v=b v=0$ is proved similarly.


## TOWARDS THE CONJECTURE

It is not hard to prove that $\operatorname{gcd}(a, b, c) \cdot\left[z, z^{a-1} x^{b-1} y^{c-1}[x, y]\right]=0$ in $B_{2}\left(A_{3}(\mathbb{Z})\right)$ :

- Feigin-Shoikhet: $\left[A, A L_{3}\right] \subset L_{3}$.
- $\left[z, z^{a-1}\left[x, x^{b-1} y^{c}\right]\right]=c\left[z, z^{a-1} x^{b-1} y^{c-1}[x, y]\right] \bmod L_{3}$.
- $\Rightarrow c v=\left[z, z^{a-1}\left[x, x^{b-1} y^{c}\right]\right]$.
- We use the identity in $A_{4}(\mathbb{Z})$ :

$$
[z, w[x, y]]=[[w, y], x z]-[z,[y, w x]]+[x,[w, z y]]+x[z, w] y+[w, z] y x
$$

- Set $z \mapsto z, w \mapsto z^{a-1}, x \mapsto x, y \mapsto x^{b-1} y^{c}$.
- $\Rightarrow c v \in L_{3}\left(A_{3}(\mathbb{Z})\right) \Rightarrow c v=0$ in $B_{2}\left(A_{3}(\mathbb{Z})\right)$.
- The claim that $a v=b v=0$ is proved similarly.

However, we still do not know $v$ is nonzero $($ if $\operatorname{gcd}(a, b, c)>1)$ ! Computation confirms this in small cases.

Future goals:

Future goals:

- Understand torsion in $B_{2}\left(A_{n}(\mathbb{Z})\right)$.

Future goals:

- Understand torsion in $B_{2}\left(A_{n}(\mathbb{Z})\right)$.
- Understand torsion in other $B_{k}\left(A_{n}(\mathbb{Z})\right)$.

Future goals:

- Understand torsion in $B_{2}\left(A_{n}(\mathbb{Z})\right)$.
- Understand torsion in other $B_{k}\left(A_{n}(\mathbb{Z})\right)$.
- Conjecture
$B_{k}\left(A_{n}\left(\mathbb{F}_{p}\right)\right)$ has polynomial growth for all $k$ and $p$ (more precisely the coefficients of the multivariable Hilbert series are bounded).

Future goals:

- Understand torsion in $B_{2}\left(A_{n}(\mathbb{Z})\right)$.
- Understand torsion in other $B_{k}\left(A_{n}(\mathbb{Z})\right)$.
- Conjecture
$B_{k}\left(A_{n}\left(\mathbb{F}_{p}\right)\right)$ has polynomial growth for all $k$ and $p$ (more precisely the coefficients of the multivariable Hilbert series are bounded).
- Relate to geometry in characteristic $p$.

Future goals:

- Understand torsion in $B_{2}\left(A_{n}(\mathbb{Z})\right)$.
- Understand torsion in other $B_{k}\left(A_{n}(\mathbb{Z})\right)$.
- Conjecture
$B_{k}\left(A_{n}\left(\mathbb{F}_{p}\right)\right)$ has polynomial growth for all $k$ and $p$ (more precisely the coefficients of the multivariable Hilbert series are bounded).
- Relate to geometry in characteristic $p$.
- We found no torsion in $B_{2}\left(A_{2}(\mathbb{Z})\right), B_{3}\left(A_{2}(\mathbb{Z})\right), B_{4}\left(A_{2}(\mathbb{Z})\right)$. We can conjecture there is no torsion in $B_{k}\left(A_{2}(\mathbb{Z})\right) \ldots$

Future goals:

- Understand torsion in $B_{2}\left(A_{n}(\mathbb{Z})\right)$.
- Understand torsion in other $B_{k}\left(A_{n}(\mathbb{Z})\right)$.
- Conjecture
$B_{k}\left(A_{n}\left(\mathbb{F}_{p}\right)\right)$ has polynomial growth for all $k$ and $p$ (more precisely the coefficients of the multivariable Hilbert series are bounded).
- Relate to geometry in characteristic $p$.
- We found no torsion in $B_{2}\left(A_{2}(\mathbb{Z})\right), B_{3}\left(A_{2}(\mathbb{Z})\right), B_{4}\left(A_{2}(\mathbb{Z})\right)$. We can conjecture there is no torsion in $B_{k}\left(A_{2}(\mathbb{Z})\right) \ldots$ But there exists a 2-torsion element in $B_{5}\left(A_{2}(\mathbb{Z})\right)_{(4,4)}$ !!


## AcKNOWLEDGEMENTS

- Thanks to Martina Balagovic for her thorough edits with the presentation.
- Thanks to Pavel Etingof for suggestions and help for many aspects of the project.
- Many, many thanks to our mentor David Jordan, for his countless hours of assistance and help =)
- Thank you PRIMES!

