
BACKGROUND INTRODUCTION THE PROBLEM

LOWER CENTRAL SERIES

One way to study interaction between commutative and
non-commutative algebras is via the lower central series:

I A = L1 ⊃ L2 ⊃ · · · .
I L2 is spanned by commutators, [a, b], for a, b ∈ A.
I L3 is spanned by double commtuators, [a, [b, c]].
I L4 is spanned by triple commutators, [a, [b, [c, d]]].
I And so on . . .
I Each successive quotient Bk := Lk/Lk+1 keeps track of more

and more non-commutativity.



BACKGROUND INTRODUCTION THE PROBLEM

LOWER CENTRAL SERIES

One way to study interaction between commutative and
non-commutative algebras is via the lower central series:

I A = L1 ⊃ L2 ⊃ · · · .

I L2 is spanned by commutators, [a, b], for a, b ∈ A.
I L3 is spanned by double commtuators, [a, [b, c]].
I L4 is spanned by triple commutators, [a, [b, [c, d]]].
I And so on . . .
I Each successive quotient Bk := Lk/Lk+1 keeps track of more

and more non-commutativity.



BACKGROUND INTRODUCTION THE PROBLEM

LOWER CENTRAL SERIES

One way to study interaction between commutative and
non-commutative algebras is via the lower central series:

I A = L1 ⊃ L2 ⊃ · · · .
I L2 is spanned by commutators, [a, b], for a, b ∈ A.

I L3 is spanned by double commtuators, [a, [b, c]].
I L4 is spanned by triple commutators, [a, [b, [c, d]]].
I And so on . . .
I Each successive quotient Bk := Lk/Lk+1 keeps track of more

and more non-commutativity.



BACKGROUND INTRODUCTION THE PROBLEM

LOWER CENTRAL SERIES

One way to study interaction between commutative and
non-commutative algebras is via the lower central series:

I A = L1 ⊃ L2 ⊃ · · · .
I L2 is spanned by commutators, [a, b], for a, b ∈ A.
I L3 is spanned by double commtuators, [a, [b, c]].

I L4 is spanned by triple commutators, [a, [b, [c, d]]].
I And so on . . .
I Each successive quotient Bk := Lk/Lk+1 keeps track of more

and more non-commutativity.



BACKGROUND INTRODUCTION THE PROBLEM

LOWER CENTRAL SERIES

One way to study interaction between commutative and
non-commutative algebras is via the lower central series:

I A = L1 ⊃ L2 ⊃ · · · .
I L2 is spanned by commutators, [a, b], for a, b ∈ A.
I L3 is spanned by double commtuators, [a, [b, c]].
I L4 is spanned by triple commutators, [a, [b, [c, d]]].

I And so on . . .
I Each successive quotient Bk := Lk/Lk+1 keeps track of more

and more non-commutativity.



BACKGROUND INTRODUCTION THE PROBLEM

LOWER CENTRAL SERIES

One way to study interaction between commutative and
non-commutative algebras is via the lower central series:

I A = L1 ⊃ L2 ⊃ · · · .
I L2 is spanned by commutators, [a, b], for a, b ∈ A.
I L3 is spanned by double commtuators, [a, [b, c]].
I L4 is spanned by triple commutators, [a, [b, [c, d]]].
I And so on . . .

I Each successive quotient Bk := Lk/Lk+1 keeps track of more
and more non-commutativity.



BACKGROUND INTRODUCTION THE PROBLEM

LOWER CENTRAL SERIES

One way to study interaction between commutative and
non-commutative algebras is via the lower central series:

I A = L1 ⊃ L2 ⊃ · · · .
I L2 is spanned by commutators, [a, b], for a, b ∈ A.
I L3 is spanned by double commtuators, [a, [b, c]].
I L4 is spanned by triple commutators, [a, [b, [c, d]]].
I And so on . . .
I Each successive quotient Bk := Lk/Lk+1 keeps track of more

and more non-commutativity.



BACKGROUND INTRODUCTION THE PROBLEM

These quotients have surprising descriptions. Consider the free
algebra An over C on x1, . . . xn.

I B1(An) has a basis of cyclic words (e.g. x1x2x3 ∼ x3x1x2).
I Feigin-Shoikhet: B2(An) ∼= Ωev

ex(Cn), the space of
even-degree, exact differential forms on Cn.

I Etingof and Dobrovolska showed that each Bk(An), for
k > 2, is also described in differential geometric terms.

I In particular, for k ≥ 2, each Bk(An) has polynomial growth.
I The present focus is on extending these methods to

characteristic p, where a geometric approach is less clear.
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FREE ALGEBRAS

I Let An be a free algebra on generators x1, . . . , xn.

I An is spanned by all words in letters x1, . . . , xn,
e.g. A2:

1
x y

x2 xy yx y2

x3 x2y xyx yx2 y2x yxy xy2 y3

I We can take coefficients in the rational numbers Q, integers
Z, or a finite field Fp.
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The commutator, [c, d], for c, d ∈ A, is: [c, d] := cd− dc

We can iterate:
I [b, [c, d]] = [b, cd− dc] = bcd− bdc− cdb + dcb
I [a, [b, [c, d]]] = [a, bcd− bdc− cdb + dcb] =

abcd− abdc− acdb + adcb− bcda + bdca + cdba− dcba
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LOWER CENTRAL SERIES

Definition
The lower central series filtration of an associative algebra A

A = L1 ⊇ L2 ⊇ L3 ⊇ . . .

is defined recursively by L1 := A,Lk := [A,Lk−1], all linear
combinations of expressions [a, b] for a ∈ A, b ∈ Lk−1.

More explicitly, Lk is all linear combinations of all expressions
[a1, [a2, [a3, [. . . [ak−1, ak] . . .]]]] for ai ∈ A.

Definition
The associated graded components Bk to the filtration are
defined as

Bk := Lk/Lk+1.
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I Bk are vector spaces when the coefficients are taken in Fp or
Q, and are only abelian groups when coefficients are in Z.
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HILBERT SERIES
Since the spaces we consider are infinite dimensional, we study
them combinatorially via so-called ’Hilbert series’:

Definition
A finite m-grading on a vector space V is a direct sum
decomposition:

V =
⊕

k∈Zm
+

Vk,

such that each Vk is finite dimensional.

Definition
The multivariable Hilbert series of V is the sum

h(V; t1, . . . , tm) :=
∑

k∈Zm
+

dim(Vk)tk1
1 · · · t

km
m
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THE PROBLEM

Problem
Calculate the spaces Bk(An(Fp)), and compare them to Bk(An(Q)).

I Using the iterative definition of the Lk, and the
programming language MAGMA, we computed the
following Hilbert series:
h(B2(A2(Q)); x, y)
= xy + xy2 + x2y + x3y + x2y2 + xy3 + . . . =

xy
(1−x)(1−y) .

h(B2(A2(F2)); x, y)
= xy + xy2 + x2y + x3y + x2y2 + xy3 + . . . =

xy
(1−x)(1−y) .

They appear to coincide.
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DIFFERENCES IN HILBERT SERIES

The series h(B2(A2(Fp))), h(B3(A2(Fp))), h(B4(A2(Fp))) are
independent of p in the range we computed.

I h(B2(A3(Q))) = xy + xz + yz + x2y + x2z + xy2 + 2xyz +
xz2 + y2z + yz2 + x2z2 + y2z2 + x2y2 + 2x2yz + 2x2y2z +
2x2yz2 + 2xy2z + 2xyz2 + 2xy2z2 + 2x2y2z2 + · · ·

I h(B2(A3(F2))) = xy + xz + yz + x2y + x2z + xy2 + 2xyz +
xz2 + y2z + yz2 + x2z2 + y2z2 + x2y2 + 2x2yz + 2x2y2z +
2x2yz2 + 2xy2z + 2xyz2 + 2xy2z2 + 3x2y2z2 + · · ·

I Why do these changes occur?
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TORSION

To explain the varying behavior over different Fp, we work
instead over Z.

I We have an isomorphism: B2(An(F)) ∼= B2(An(Z))⊗ F.
I B2(An(Z)) is an abelian group, and may have torsion:

Definition
An element g 6= 0 is called an m-torsion element if mg = 0, and
m > 0 is the minimal such.

I An m-torsion element g ∈ B2(An(Z)) survives to
B2(An(Fp)) if, and only if, p divides m.

I Torsion does not survive to B2(An(Q)).
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RESULTS FROM COMPUTATIONS

Some places where we found torsion are:

I 2-torsion in B2(A3(Z))(2,2,2),
I 3-torsion in B2(A3(Z))(3,3,3),
I 2-torsion in B2(A3(Z))(4,2,2), and its permutations,
I 2-torsion in B2(A3(Z))(4,4,2), and its permutations,
I 2-torsion in B2(A4(Z))(2,2,2,2) (3-dimensional).

Conjecture

For all a, b, c, the element:

v(a, b, c) = [z, za−1xb−1yc−1[x, y]] ∈ B2(A3(Z))(a,b,c),

is torsion, of order equal to gcd(a, b, c), and generates the
torsion subgroup of B2(A3(Z))(a,b,c).
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BACKGROUND INTRODUCTION THE PROBLEM

TOWARDS THE CONJECTURE

It is not hard to prove that gcd(a, b, c) · [z, za−1xb−1yc−1[x, y]] = 0
in B2(A3(Z)) :

I Feigin-Shoikhet: [A,AL3] ⊂ L3.
I [z, za−1[x, xb−1yc]] = c[z, za−1xb−1yc−1[x, y]] mod L3.
I ⇒ cv = [z, za−1[x, xb−1yc]].
I We use the identity in A4(Z) :

[z,w[x, y]] = [[w, y], xz]− [z, [y,wx]]+[x, [w, zy]]+x[z,w]y+[w, z]yx.

I Set z 7→ z,w 7→ za−1, x 7→ x, y 7→ xb−1yc.
I ⇒ cv ∈ L3(A3(Z))⇒ cv = 0 in B2(A3(Z)).
I The claim that av = bv = 0 is proved similarly.

However, we still do not know v is nonzero (if gcd(a, b, c) > 1)!
Computation confirms this in small cases.
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BACKGROUND INTRODUCTION THE PROBLEM

Future goals:

I Understand torsion in B2(An(Z)).
I Understand torsion in other Bk(An(Z)).

I Conjecture

Bk(An(Fp)) has polynomial growth for all k and p (more
precisely the coefficients of the multivariable Hilbert series are
bounded).

I Relate to geometry in characteristic p.
I We found no torsion in B2(A2(Z)), B3(A2(Z)), B4(A2(Z)).

We can conjecture there is no torsion in Bk(A2(Z)). . .
But there exists a 2-torsion element in B5(A2(Z))(4,4)!!
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