One way to study interaction between commutative and non-commutative algebras is via the *lower central series*:

• $A = L_1 \supset L_2 \supset \cdots$.

- $A = L_1 \supset L_2 \supset \cdots$.
- L_2 is spanned by commutators, [a, b], for $a, b \in A$.

- $A = L_1 \supset L_2 \supset \cdots$.
- L_2 is spanned by commutators, [a, b], for $a, b \in A$.
- ► *L*₃ is spanned by double commtuators, [*a*, [*b*, *c*]].

- $A = L_1 \supset L_2 \supset \cdots$.
- L_2 is spanned by commutators, [a, b], for $a, b \in A$.
- ► *L*₃ is spanned by double commtuators, [*a*, [*b*, *c*]].
- ► *L*₄ is spanned by triple commutators, [*a*, [*b*, [*c*, *d*]]].

- $A = L_1 \supset L_2 \supset \cdots$.
- L_2 is spanned by commutators, [a, b], for $a, b \in A$.
- ► *L*₃ is spanned by double commtuators, [*a*, [*b*, *c*]].
- ► *L*₄ is spanned by triple commutators, [*a*, [*b*, [*c*, *d*]]].
- ► And so on ...

- $A = L_1 \supset L_2 \supset \cdots$.
- L_2 is spanned by commutators, [a, b], for $a, b \in A$.
- ► *L*₃ is spanned by double commtuators, [*a*, [*b*, *c*]].
- ► *L*₄ is spanned by triple commutators, [*a*, [*b*, [*c*, *d*]]].
- ► And so on ...
- ► Each successive quotient B_k := L_k/L_{k+1} keeps track of more and more non-commutativity.

BACKGROUND	Introduction 000000	The Problem 00000000
These quotients have surplicity algebra A_n over \mathbb{C} on x_1, \ldots	rising descriptions. Consider the x_n .	free

BACKGROUND	INTRODUCTION 000000	The Problem 00000000

• $B_1(A_n)$ has a basis of *cyclic words* (e.g. $x_1x_2x_3 \sim x_3x_1x_2$).

BACKGROUND	INTRODUCTION	THE PROBLEM

- $B_1(A_n)$ has a basis of *cyclic words* (e.g. $x_1x_2x_3 \sim x_3x_1x_2$).
- Feigin-Shoikhet: B₂(A_n) ≃ Ω^{ev}_{ex}(ℂⁿ), the space of even-degree, exact differential forms on ℂⁿ.

Background	INTRODUCTION 000000	The Problem 00000000

- $B_1(A_n)$ has a basis of *cyclic words* (e.g. $x_1x_2x_3 \sim x_3x_1x_2$).
- ► Feigin-Shoikhet: $B_2(A_n) \cong \Omega_{ex}^{ev}(\mathbb{C}^n)$, the space of even-degree, exact differential forms on \mathbb{C}^n .
- ► Etingof and Dobrovolska showed that each B_k(A_n), for k > 2, is also described in differential geometric terms.

BACKGROUND	INTRODUCTION	The Problem
	000000	00000000

- $B_1(A_n)$ has a basis of *cyclic words* (e.g. $x_1x_2x_3 \sim x_3x_1x_2$).
- ► Feigin-Shoikhet: $B_2(A_n) \cong \Omega_{ex}^{ev}(\mathbb{C}^n)$, the space of even-degree, exact differential forms on \mathbb{C}^n .
- ► Etingof and Dobrovolska showed that each B_k(A_n), for k > 2, is also described in differential geometric terms.
- In particular, for $k \ge 2$, each $B_k(A_n)$ has *polynomial growth*.

BACKGROUND	INTRODUCTION	The Problem
	000000	00000000

- $B_1(A_n)$ has a basis of *cyclic words* (e.g. $x_1x_2x_3 \sim x_3x_1x_2$).
- Feigin-Shoikhet: B₂(A_n) ≅ Ω^{ev}_{ex}(ℂⁿ), the space of even-degree, exact differential forms on ℂⁿ.
- ► Etingof and Dobrovolska showed that each B_k(A_n), for k > 2, is also described in differential geometric terms.
- In particular, for $k \ge 2$, each $B_k(A_n)$ has *polynomial growth*.
- ► The present focus is on extending these methods to characteristic *p*, where a geometric approach is less clear.

Lower central series of free algebras in characteristic *p*

Surya Bhupatiraju, William Kuszmaul, Jason Li MIT PRIMES

May 21, 2011

• Let A_n be a free algebra on generators x_1, \ldots, x_n .

- Let A_n be a free algebra on generators x_1, \ldots, x_n .
- A_n is spanned by all words in letters x_1, \ldots, x_n ,

- Let A_n be a free algebra on generators x_1, \ldots, x_n .
- *A_n* is spanned by all words in letters *x*₁,...,*x_n*, e.g. *A*₂:

- Let A_n be a free algebra on generators x_1, \ldots, x_n .
- *A_n* is spanned by all words in letters *x*₁,..., *x_n*, e.g. *A*₂:

1

- Let A_n be a free algebra on generators x_1, \ldots, x_n .
- *A_n* is spanned by all words in letters *x*₁,..., *x_n*, e.g. *A*₂:

1 *x y*

- Let A_n be a free algebra on generators x_1, \ldots, x_n .
- *A_n* is spanned by all words in letters *x*₁,..., *x_n*, e.g. *A*₂:

- Let A_n be a free algebra on generators x_1, \ldots, x_n .
- *A_n* is spanned by all words in letters *x*₁,..., *x_n*, e.g. *A*₂:

- Let A_n be a free algebra on generators x_1, \ldots, x_n .
- *A_n* is spanned by all words in letters *x*₁,..., *x_n*, e.g. *A*₂:

1 x y $x^{2} xy yx y^{2}$ $x^{3} x^{2}y xyx yx^{2} y^{2}x yxy xy^{2} y^{3}$

▶ We can take coefficients in the rational numbers Q, integers Z, or a finite field F_p.

Definition

The **commutator**, [c, d], for $c, d \in A$, is: [c, d] := cd - dc

Definition

The **commutator**, [c, d], for $c, d \in A$, is: [c, d] := cd - dc

We can iterate:

Definition

The **commutator**, [c, d], for $c, d \in A$, is: [c, d] := cd - dc

We can iterate:

►
$$[b, [c, d]] = [b, cd - dc] = bcd - bdc - cdb + dcb$$

Definition

The **commutator**, [c, d], for $c, d \in A$, is: [c, d] := cd - dc

We can iterate:

- ► [b, [c, d]] = [b, cd dc] = bcd bdc cdb + dcb
- [a, [b, [c, d]]] = [a, bcd bdc cdb + dcb] = abcd - abdc - acdb + adcb - bcda + bdca + cdba - dcba

Definition

The lower central series filtration of an associative algebra A

$$A = L_1 \supseteq L_2 \supseteq L_3 \supseteq \ldots$$

is defined recursively by $L_1 := A, L_k := [A, L_{k-1}]$, all linear combinations of expressions [a, b] for $a \in A, b \in L_{k-1}$.

Definition

The **lower central series filtration** of an associative algebra A

$$A = L_1 \supseteq L_2 \supseteq L_3 \supseteq \ldots$$

is defined recursively by $L_1 := A, L_k := [A, L_{k-1}]$, all linear combinations of expressions [a, b] for $a \in A, b \in L_{k-1}$.

More explicitly, L_k is all linear combinations of all expressions $[a_1, [a_2, [a_3, [\ldots [a_{k-1}, a_k] \ldots]]]]$ for $a_i \in A$.

Definition

The **lower central series filtration** of an associative algebra A

$$A = L_1 \supseteq L_2 \supseteq L_3 \supseteq \ldots$$

is defined recursively by $L_1 := A, L_k := [A, L_{k-1}]$, all linear combinations of expressions [a, b] for $a \in A, b \in L_{k-1}$.

More explicitly, L_k is all linear combinations of all expressions $[a_1, [a_2, [a_3, [\ldots [a_{k-1}, a_k] \ldots]]]]$ for $a_i \in A$.

Definition

The **associated graded components** B_k to the filtration are defined as

$$B_k := L_k / L_{k+1}.$$

► B_k are vector spaces when the coefficients are taken in \mathbb{F}_p or \mathbb{Q} , and are only abelian groups when coefficients are in \mathbb{Z} .

► B_k are vector spaces when the coefficients are taken in \mathbb{F}_p or \mathbb{Q} , and are only abelian groups when coefficients are in \mathbb{Z} .

Since the spaces we consider are infinite dimensional, we study them combinatorially via so-called 'Hilbert series':

Since the spaces we consider are infinite dimensional, we study them combinatorially via so-called 'Hilbert series':

Definition

A **finite m-grading** on a vector space *V* is a direct sum decomposition:

$$V = \bigoplus_{\mathbf{k} \in \mathbb{Z}_+^m} V_{\mathbf{k}},$$

such that each $V_{\mathbf{k}}$ is finite dimensional.

Since the spaces we consider are infinite dimensional, we study them combinatorially via so-called 'Hilbert series':

Definition

A **finite m-grading** on a vector space *V* is a direct sum decomposition:

$$V = \bigoplus_{\mathbf{k} \in \mathbb{Z}_+^m} V_{\mathbf{k}},$$

such that each $V_{\mathbf{k}}$ is finite dimensional.

Definition

The **multivariable Hilbert series** of *V* is the sum

$$h(V;t_1,\ldots,t_m):=\sum_{\mathbf{k}\in\mathbb{Z}_+^m}\dim(V_{\mathbf{k}})t_1^{k_1}\cdots t_m^{k_m}$$

Example

The Hilbert series of A_2 is:

$$h(A_2; t_1, t_2) := \sum_{\mathbf{k} \in \mathbb{Z}_+^m} \binom{k+l}{k} t_1^k t_2^l = \frac{1}{1 - (t_1 + t_2)}$$

Example

The Hilbert series of A_2 is:

$$h(A_2; t_1, t_2) := \sum_{\mathbf{k} \in \mathbb{Z}_+^m} \binom{k+l}{k} t_1^k t_2^l = \frac{1}{1 - (t_1 + t_2)}$$

Example

The Hilbert series of $\mathbb{C}[x, y]$ is:

$$h(A_2; t_1, t_2) := \sum_{\mathbf{k} \in \mathbb{Z}_+^m} t_1^k t_2^l = \frac{1}{(1 - t_1)(1 - t_2)}$$
Problem

Calculate the spaces $B_k(A_n(\mathbb{F}_p))$ *, and compare them to* $B_k(A_n(\mathbb{Q}))$ *.*

Problem

Calculate the spaces $B_k(A_n(\mathbb{F}_p))$ *, and compare them to* $B_k(A_n(\mathbb{Q}))$ *.*

► Using the iterative definition of the *L*_k, and the programming language MAGMA, we computed the following Hilbert series:

Problem

Calculate the spaces $B_k(A_n(\mathbb{F}_p))$ *, and compare them to* $B_k(A_n(\mathbb{Q}))$ *.*

- ► Using the iterative definition of the *L_k*, and the programming language MAGMA, we computed the following Hilbert series: *h*(*B*₂(*A*₂(ℚ)); *x*, *y*)
 - $= xy + xy^{2} + x^{2}y + x^{3}y + x^{2}y^{2} + xy^{3} + \ldots = \frac{xy}{(1-x)(1-y)}.$

Problem

Calculate the spaces $B_k(A_n(\mathbb{F}_p))$ *, and compare them to* $B_k(A_n(\mathbb{Q}))$ *.*

- ▶ Using the iterative definition of the *L_k*, and the programming language MAGMA, we computed the following Hilbert series:
 h(*B*₂(*A*₂(ℚ)); *x*, *y*)
 = *xy* + *xy*² + *x*²*y* + *x*³*y* + *x*²*y*² + *xy*³ + ... = *xy*/(1-*x*)(1-*y*).
 - $h(B_2(A_2(\mathbb{F}_2)); x, y) = xy + xy^2 + x^2y + x^3y + x^2y^2 + xy^3 + \ldots = \frac{xy}{(1-x)(1-y)}.$

Problem

Calculate the spaces $B_k(A_n(\mathbb{F}_p))$ *, and compare them to* $B_k(A_n(\mathbb{Q}))$ *.*

▶ Using the iterative definition of the *L_k*, and the programming language MAGMA, we computed the following Hilbert series:
 h(*B*₂(*A*₂(ℚ)); *x*, *y*)
 = *xy* + *xy*² + *x*²*y* + *x*³*y* + *x*²*y*² + *xy*³ + ... = *xy*/(1-*x*)(1-*y*).
 h(*B*₂(*A*₂(𝔽₂)); *x*, *y*)
 = *xy* + *xy*² + *x*²*y* + *x*³*y* + *x*²*y*² + *xy*³ + ... = *xy*/(1-*x*)(1-*y*).
 They appear to coincide.

The series $h(B_2(A_2(\mathbb{F}_p))), h(B_3(A_2(\mathbb{F}_p))), h(B_4(A_2(\mathbb{F}_p)))$ are independent of p in the range we computed.

The series $h(B_2(A_2(\mathbb{F}_p))), h(B_3(A_2(\mathbb{F}_p))), h(B_4(A_2(\mathbb{F}_p)))$ are independent of *p* in the range we computed.

► $h(B_2(A_3(\mathbb{Q}))) = xy + xz + yz + x^2y + x^2z + xy^2 + 2xyz + xz^2 + y^2z + yz^2 + x^2z^2 + y^2z^2 + x^2y^2 + 2x^2yz + 2xy^2z^2 + 2xy^2z^2 + 2xy^2z^2 + 2xy^2z^2 + 2xy^2z^2 + \cdots$

The series $h(B_2(A_2(\mathbb{F}_p))), h(B_3(A_2(\mathbb{F}_p))), h(B_4(A_2(\mathbb{F}_p)))$ are independent of *p* in the range we computed.

- ► $h(B_2(A_3(\mathbb{Q}))) = xy + xz + yz + x^2y + x^2z + xy^2 + 2xyz + xz^2 + y^2z + yz^2 + x^2z^2 + y^2z^2 + x^2y^2 + 2x^2yz + 2xy^2z^2 + 2xy^2z^2 + 2xy^2z^2 + 2xy^2z^2 + 2xy^2z^2 + \cdots$
- ► $h(B_2(A_3(\mathbb{F}_2))) = xy + xz + yz + x^2y + x^2z + xy^2 + 2xyz + xz^2 + y^2z + yz^2 + x^2z^2 + y^2z^2 + x^2y^2 + 2x^2yz + 2x^2y^2z + 2xy^2z^2 + 2xy^2z^2 + 2xy^2z^2 + 3x^2y^2z^2 + \cdots$

The series $h(B_2(A_2(\mathbb{F}_p))), h(B_3(A_2(\mathbb{F}_p))), h(B_4(A_2(\mathbb{F}_p)))$ are independent of *p* in the range we computed.

- ► $h(B_2(A_3(\mathbb{Q}))) = xy + xz + yz + x^2y + x^2z + xy^2 + 2xyz + xz^2 + y^2z + yz^2 + x^2z^2 + y^2z^2 + x^2y^2 + 2x^2y^2z + 2x^2y^2z^2 + 2xy^2z^2 + 2xy^2z^2 + 2xy^2z^2 + 2xy^2z^2 + 2xy^2z^2 + \cdots$
- ► $h(B_2(A_3(\mathbb{F}_2))) = xy + xz + yz + x^2y + x^2z + xy^2 + 2xyz + xz^2 + y^2z + yz^2 + x^2z^2 + y^2z^2 + x^2y^2 + 2x^2yz + 2xy^2z + 2xy^2z^2 + 2xy^2z^2 + 2xy^2z^2 + 3x^2y^2z^2 + \cdots$
- Why do these changes occur?

BACKGROUND	INTRODUCTION 000000	THE PROBLEM

To explain the varying behavior over different \mathbb{F}_p , we work instead over \mathbb{Z} .

To explain the varying behavior over different \mathbb{F}_p , we work instead over \mathbb{Z} .

• We have an isomorphism: $B_2(A_n(\mathbb{F})) \cong B_2(A_n(\mathbb{Z})) \otimes \mathbb{F}$.

To explain the varying behavior over different \mathbb{F}_p , we work instead over \mathbb{Z} .

- We have an isomorphism: $B_2(A_n(\mathbb{F})) \cong B_2(A_n(\mathbb{Z})) \otimes \mathbb{F}$.
- $B_2(A_n(\mathbb{Z}))$ is an abelian group, and may have *torsion*:

To explain the varying behavior over different \mathbb{F}_p , we work instead over \mathbb{Z} .

- We have an isomorphism: $B_2(A_n(\mathbb{F})) \cong B_2(A_n(\mathbb{Z})) \otimes \mathbb{F}$.
- $B_2(A_n(\mathbb{Z}))$ is an abelian group, and may have *torsion*:

Definition

An element $g \neq 0$ is called an *m*-torsion element if mg = 0, and m > 0 is the minimal such.

To explain the varying behavior over different \mathbb{F}_p , we work instead over \mathbb{Z} .

- We have an isomorphism: $B_2(A_n(\mathbb{F})) \cong B_2(A_n(\mathbb{Z})) \otimes \mathbb{F}$.
- $B_2(A_n(\mathbb{Z}))$ is an abelian group, and may have *torsion*:

Definition

An element $g \neq 0$ is called an *m*-torsion element if mg = 0, and m > 0 is the minimal such.

► An *m*-torsion element $g \in B_2(A_n(\mathbb{Z}))$ survives to $B_2(A_n(\mathbb{F}_p))$ if, and only if, *p* divides *m*.

To explain the varying behavior over different \mathbb{F}_p , we work instead over \mathbb{Z} .

- We have an isomorphism: $B_2(A_n(\mathbb{F})) \cong B_2(A_n(\mathbb{Z})) \otimes \mathbb{F}$.
- $B_2(A_n(\mathbb{Z}))$ is an abelian group, and may have *torsion*:

Definition

An element $g \neq 0$ is called an *m*-torsion element if mg = 0, and m > 0 is the minimal such.

- ► An *m*-torsion element $g \in B_2(A_n(\mathbb{Z}))$ survives to $B_2(A_n(\mathbb{F}_p))$ if, and only if, *p* divides *m*.
- Torsion does not survive to $B_2(A_n(\mathbb{Q}))$.

$B_2(A_3(\mathbb{Z}))_{(2,2,2)} \cong \mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}.$

$\bullet \ B_2(A_3(\mathbb{Q}))_{(2,2,2)} \cong (\mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}) \otimes \mathbb{Q} \cong \mathbb{Q} \oplus \mathbb{Q}.$

- $\bullet \ B_2(A_3(\mathbb{Q}))_{(2,2,2)} \cong (\mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}) \otimes \mathbb{Q} \cong \mathbb{Q} \oplus \mathbb{Q}.$
- ► $h(B_2(A_3(\mathbb{Q}))) = xy + xz + yz + x^2y + x^2z + xy^2 + 2xyz + xz^2 + y^2z + yz^2 + x^2z^2 + y^2z^2 + x^2y^2 + 2x^2yz + 2x^2y^2z + 2x^2yz^2 + 2xy^2z^2 + 2xy^2z^2 + 2xy^2z^2 + 2xyz^2 + 2xy$

- ► $B_2(A_3(\mathbb{Q}))_{(2,2,2)} \cong (\mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}) \otimes \mathbb{Q} \cong \mathbb{Q} \oplus \mathbb{Q}.$
- ► $h(B_2(A_3(\mathbb{Q}))) = xy + xz + yz + x^2y + x^2z + xy^2 + 2xyz + xz^2 + y^2z + yz^2 + x^2z^2 + y^2z^2 + x^2y^2 + 2x^2yz + 2x^2yz^2 + 2xy^2z^2 + 2xy^2z^2 + 2xy^2z^2 + 2xy^2z^2 + 2xy^2z^2 + \cdots$
- $\blacktriangleright \ B_2(A_3(\mathbb{F}_2))_{(2,2,2)} \cong (\mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}) \otimes \mathbb{F}_2 \cong \mathbb{F}_2 \oplus \mathbb{F}_2 \oplus \mathbb{F}_2.$

- $\blacktriangleright B_2(A_3(\mathbb{Q}))_{(2,2,2)} \cong (\mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}) \otimes \mathbb{Q} \cong \mathbb{Q} \oplus \mathbb{Q}.$
- ► $h(B_2(A_3(\mathbb{Q}))) = xy + xz + yz + x^2y + x^2z + xy^2 + 2xyz + xz^2 + y^2z + yz^2 + x^2z^2 + y^2z^2 + x^2y^2 + 2x^2y^2z + 2x^2y^2z^2 + 2xy^2z^2 + 2xy^2z^2 + 2xy^2z^2 + 2xy^2z^2 + 2xy^2z^2 + \cdots$
- $\blacktriangleright B_2(A_3(\mathbb{F}_2))_{(2,2,2)} \cong (\mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z} / 2\mathbb{Z}) \otimes \mathbb{F}_2 \cong \mathbb{F}_2 \oplus \mathbb{F}_2 \oplus \mathbb{F}_2.$
- ► $h(B_2(A_3(\mathbb{F}_2))) = xy + xz + yz + x^2y + x^2z + xy^2 + 2xyz + xz^2 + y^2z + yz^2 + x^2z^2 + y^2z^2 + x^2y^2 + 2x^2yz + 2xy^2z^2 + 2xy^2z^2 + 2xy^2z^2 + 2xy^2z^2 + 2xy^2z^2 + 3x^2y^2z^2 + \cdots$

Some places where we found torsion are:

• 2-torsion in $B_2(A_3(\mathbb{Z}))_{(2,2,2)}$,

- 2-torsion in $B_2(A_3(\mathbb{Z}))_{(2,2,2)}$,
- 3-torsion in $B_2(A_3(\mathbb{Z}))_{(3,3,3)}$,

- 2-torsion in $B_2(A_3(\mathbb{Z}))_{(2,2,2)}$,
- 3-torsion in $B_2(A_3(\mathbb{Z}))_{(3,3,3)}$,
- ▶ 2-torsion in $B_2(A_3(\mathbb{Z}))_{(4,2,2)}$, and its permutations,

- 2-torsion in $B_2(A_3(\mathbb{Z}))_{(2,2,2)}$,
- 3-torsion in $B_2(A_3(\mathbb{Z}))_{(3,3,3)}$,
- ▶ 2-torsion in $B_2(A_3(\mathbb{Z}))_{(4,2,2)}$, and its permutations,
- ▶ 2-torsion in $B_2(A_3(\mathbb{Z}))_{(4,4,2)}$, and its permutations,

- 2-torsion in $B_2(A_3(\mathbb{Z}))_{(2,2,2)}$,
- 3-torsion in $B_2(A_3(\mathbb{Z}))_{(3,3,3)}$,
- ▶ 2-torsion in $B_2(A_3(\mathbb{Z}))_{(4,2,2)}$, and its permutations,
- ▶ 2-torsion in $B_2(A_3(\mathbb{Z}))_{(4,4,2)}$, and its permutations,
- ► 2-torsion in $B_2(A_4(\mathbb{Z}))_{(2,2,2,2)}$ (3-dimensional).

Some places where we found torsion are:

- 2-torsion in $B_2(A_3(\mathbb{Z}))_{(2,2,2)}$,
- 3-torsion in $B_2(A_3(\mathbb{Z}))_{(3,3,3)}$,
- ▶ 2-torsion in $B_2(A_3(\mathbb{Z}))_{(4,2,2)}$, and its permutations,
- ▶ 2-torsion in $B_2(A_3(\mathbb{Z}))_{(4,4,2)}$, and its permutations,
- ► 2-torsion in $B_2(A_4(\mathbb{Z}))_{(2,2,2,2)}$ (3-dimensional).

Conjecture

For all *a*, *b*, *c*, the element:

$$v(a,b,c) = [z, z^{a-1}x^{b-1}y^{c-1}[x,y]] \in B_2(A_3(\mathbb{Z}))_{(a,b,c)},$$

is torsion, of order equal to gcd(a, b, c), and generates the torsion subgroup of $B_2(A_3(\mathbb{Z}))_{(a,b,c)}$.

It is not hard to prove that $gcd(a, b, c) \cdot [z, z^{a-1}x^{b-1}y^{c-1}[x, y]] = 0$ in $B_2(A_3(\mathbb{Z}))$:

It is not hard to prove that $gcd(a, b, c) \cdot [z, z^{a-1}x^{b-1}y^{c-1}[x, y]] = 0$ in $B_2(A_3(\mathbb{Z}))$:

• Feigin-Shoikhet: $[A, AL_3] \subset L_3$.

It is not hard to prove that $gcd(a, b, c) \cdot [z, z^{a-1}x^{b-1}y^{c-1}[x, y]] = 0$ in $B_2(A_3(\mathbb{Z}))$:

- Feigin-Shoikhet: $[A, AL_3] \subset L_3$.
- $[z, z^{a-1}[x, x^{b-1}y^c]] = c[z, z^{a-1}x^{b-1}y^{c-1}[x, y]] \mod L_3.$

It is not hard to prove that $gcd(a, b, c) \cdot [z, z^{a-1}x^{b-1}y^{c-1}[x, y]] = 0$ in $B_2(A_3(\mathbb{Z}))$:

- Feigin-Shoikhet: $[A, AL_3] \subset L_3$.
- $[z, z^{a-1}[x, x^{b-1}y^c]] = c[z, z^{a-1}x^{b-1}y^{c-1}[x, y]] \mod L_3.$

$$\blacktriangleright \Rightarrow cv = [z, z^{a-1}[x, x^{b-1}y^c]].$$

It is not hard to prove that $gcd(a, b, c) \cdot [z, z^{a-1}x^{b-1}y^{c-1}[x, y]] = 0$ in $B_2(A_3(\mathbb{Z}))$:

- ▶ Feigin-Shoikhet: $[A, AL_3] \subset L_3$.
- ► $[z, z^{a-1}[x, x^{b-1}y^c]] = c[z, z^{a-1}x^{b-1}y^{c-1}[x, y]] \mod L_3.$
- $\blacktriangleright \Rightarrow cv = [z, z^{a-1}[x, x^{b-1}y^c]].$
- We use the identity in $A_4(\mathbb{Z})$:

[z, w[x, y]] = [[w, y], xz] - [z, [y, wx]] + [x, [w, zy]] + x[z, w]y + [w, z]yx.

It is not hard to prove that $gcd(a, b, c) \cdot [z, z^{a-1}x^{b-1}y^{c-1}[x, y]] = 0$ in $B_2(A_3(\mathbb{Z}))$:

- ► Feigin-Shoikhet: $[A, AL_3] \subset L_3$.
- $[z, z^{a-1}[x, x^{b-1}y^c]] = c[z, z^{a-1}x^{b-1}y^{c-1}[x, y]] \mod L_3.$

$$\blacktriangleright \Rightarrow cv = [z, z^{a-1}[x, x^{b-1}y^c]].$$

• We use the identity in $A_4(\mathbb{Z})$:

[z, w[x, y]] = [[w, y], xz] - [z, [y, wx]] + [x, [w, zy]] + x[z, w]y + [w, z]yx.

• Set $z \mapsto z, w \mapsto z^{a-1}, x \mapsto x, y \mapsto x^{b-1}y^c$.

It is not hard to prove that $gcd(a, b, c) \cdot [z, z^{a-1}x^{b-1}y^{c-1}[x, y]] = 0$ in $B_2(A_3(\mathbb{Z}))$:

- ▶ Feigin-Shoikhet: $[A, AL_3] \subset L_3$.
- $[z, z^{a-1}[x, x^{b-1}y^c]] = c[z, z^{a-1}x^{b-1}y^{c-1}[x, y]] \mod L_3.$

$$\blacktriangleright \Rightarrow cv = [z, z^{a-1}[x, x^{b-1}y^c]].$$

• We use the identity in $A_4(\mathbb{Z})$:

[z,w[x,y]] = [[w,y],xz] - [z,[y,wx]] + [x,[w,zy]] + x[z,w]y + [w,z]yx.

- Set $z \mapsto z, w \mapsto z^{a-1}, x \mapsto x, y \mapsto x^{b-1}y^c$.
- ► $\Rightarrow cv \in L_3(A_3(\mathbb{Z})) \Rightarrow cv = 0$ in $B_2(A_3(\mathbb{Z}))$.

It is not hard to prove that $gcd(a, b, c) \cdot [z, z^{a-1}x^{b-1}y^{c-1}[x, y]] = 0$ in $B_2(A_3(\mathbb{Z}))$:

- ▶ Feigin-Shoikhet: $[A, AL_3] \subset L_3$.
- $[z, z^{a-1}[x, x^{b-1}y^c]] = c[z, z^{a-1}x^{b-1}y^{c-1}[x, y]] \mod L_3.$

$$\blacktriangleright \Rightarrow cv = [z, z^{a-1}[x, x^{b-1}y^c]].$$

• We use the identity in $A_4(\mathbb{Z})$:

[z,w[x,y]] = [[w,y],xz] - [z,[y,wx]] + [x,[w,zy]] + x[z,w]y + [w,z]yx.

- Set $z \mapsto z, w \mapsto z^{a-1}, x \mapsto x, y \mapsto x^{b-1}y^c$.
- ► $\Rightarrow cv \in L_3(A_3(\mathbb{Z})) \Rightarrow cv = 0$ in $B_2(A_3(\mathbb{Z}))$.
- The claim that av = bv = 0 is proved similarly.

It is not hard to prove that $gcd(a, b, c) \cdot [z, z^{a-1}x^{b-1}y^{c-1}[x, y]] = 0$ in $B_2(A_3(\mathbb{Z}))$:

- ► Feigin-Shoikhet: $[A, AL_3] \subset L_3$.
- ► $[z, z^{a-1}[x, x^{b-1}y^c]] = c[z, z^{a-1}x^{b-1}y^{c-1}[x, y]] \mod L_3.$

$$\blacktriangleright \Rightarrow cv = [z, z^{a-1}[x, x^{b-1}y^c]].$$

• We use the identity in $A_4(\mathbb{Z})$:

[z,w[x,y]] = [[w,y],xz] - [z,[y,wx]] + [x,[w,zy]] + x[z,w]y + [w,z]yx.

- Set $z \mapsto z, w \mapsto z^{a-1}, x \mapsto x, y \mapsto x^{b-1}y^c$.
- ► $\Rightarrow cv \in L_3(A_3(\mathbb{Z})) \Rightarrow cv = 0$ in $B_2(A_3(\mathbb{Z}))$.
- The claim that av = bv = 0 is proved similarly.

However, we still do not know v is nonzero (if gcd(a, b, c) > 1)! Computation confirms this in small cases.
• Understand torsion in $B_2(A_n(\mathbb{Z}))$.

BAG	CKGF	ROUN	D

- Understand torsion in $B_2(A_n(\mathbb{Z}))$.
- Understand torsion in other $B_k(A_n(\mathbb{Z}))$.

- Understand torsion in $B_2(A_n(\mathbb{Z}))$.
- Understand torsion in other $B_k(A_n(\mathbb{Z}))$.

Conjecture

 $B_k(A_n(\mathbb{F}_p))$ has polynomial growth for all k and p (more precisely the coefficients of the multivariable Hilbert series are bounded).

- Understand torsion in $B_2(A_n(\mathbb{Z}))$.
- Understand torsion in other $B_k(A_n(\mathbb{Z}))$.

Conjecture

 $B_k(A_n(\mathbb{F}_p))$ has polynomial growth for all k and p (more precisely the coefficients of the multivariable Hilbert series are bounded).

• Relate to geometry in characteristic *p*.

- Understand torsion in $B_2(A_n(\mathbb{Z}))$.
- Understand torsion in other $B_k(A_n(\mathbb{Z}))$.

Conjecture

 $B_k(A_n(\mathbb{F}_p))$ has polynomial growth for all k and p (more precisely the coefficients of the multivariable Hilbert series are bounded).

- Relate to geometry in characteristic *p*.
- ► We found no torsion in $B_2(A_2(\mathbb{Z})), B_3(A_2(\mathbb{Z})), B_4(A_2(\mathbb{Z}))$. We can conjecture there is no torsion in $B_k(A_2(\mathbb{Z}))$...

- Understand torsion in $B_2(A_n(\mathbb{Z}))$.
- Understand torsion in other $B_k(A_n(\mathbb{Z}))$.

Conjecture

 $B_k(A_n(\mathbb{F}_p))$ has polynomial growth for all k and p (more precisely the coefficients of the multivariable Hilbert series are bounded).

- Relate to geometry in characteristic *p*.
- ► We found no torsion in B₂(A₂(Z)), B₃(A₂(Z)), B₄(A₂(Z)). We can conjecture there is no torsion in B_k(A₂(Z))... But there exists a 2-torsion element in B₅(A₂(Z))_(4,4)!!

ACKNOWLEDGEMENTS

- ► Thanks to Martina Balagovic for her thorough edits with the presentation.
- Thanks to Pavel Etingof for suggestions and help for many aspects of the project.
- Many, many thanks to our mentor David Jordan, for his countless hours of assistance and help =)
- Thank you PRIMES!