
BACKGROUND INTRODUCTION The Problem RESULTS

Suppose Ah̄ is a flat family of non-commutative algebras, such
that A0 is commutative.

Then A0 has an additional operation called a Poisson bracket,

{a, b} = lim
h̄→0

ab− ba
h̄

.

The Poisson algebra (A0, {, }) retains a great deal of information
about the non-commutative family Ah̄.
In particular, the Poisson homology HP0 of A0 gives an upper
bound on the number of irreducible representations of the
non-commutative family Ah̄:

#Irreps(Ah̄) ≤ dim HP0(A0).

Michael Zhang, Yongyi Chen MIT PRIMES Poisson homology in characteristic p



BACKGROUND INTRODUCTION The Problem RESULTS

Suppose Ah̄ is a flat family of non-commutative algebras, such
that A0 is commutative.
Then A0 has an additional operation called a Poisson bracket,

{a, b} = lim
h̄→0

ab− ba
h̄

.

The Poisson algebra (A0, {, }) retains a great deal of information
about the non-commutative family Ah̄.
In particular, the Poisson homology HP0 of A0 gives an upper
bound on the number of irreducible representations of the
non-commutative family Ah̄:

#Irreps(Ah̄) ≤ dim HP0(A0).

Michael Zhang, Yongyi Chen MIT PRIMES Poisson homology in characteristic p



BACKGROUND INTRODUCTION The Problem RESULTS

Suppose Ah̄ is a flat family of non-commutative algebras, such
that A0 is commutative.
Then A0 has an additional operation called a Poisson bracket,

{a, b} = lim
h̄→0

ab− ba
h̄

.

The Poisson algebra (A0, {, }) retains a great deal of information
about the non-commutative family Ah̄.

In particular, the Poisson homology HP0 of A0 gives an upper
bound on the number of irreducible representations of the
non-commutative family Ah̄:

#Irreps(Ah̄) ≤ dim HP0(A0).

Michael Zhang, Yongyi Chen MIT PRIMES Poisson homology in characteristic p



BACKGROUND INTRODUCTION The Problem RESULTS

Suppose Ah̄ is a flat family of non-commutative algebras, such
that A0 is commutative.
Then A0 has an additional operation called a Poisson bracket,

{a, b} = lim
h̄→0

ab− ba
h̄

.

The Poisson algebra (A0, {, }) retains a great deal of information
about the non-commutative family Ah̄.
In particular, the Poisson homology HP0 of A0 gives an upper
bound on the number of irreducible representations of the
non-commutative family Ah̄:

#Irreps(Ah̄) ≤ dim HP0(A0).

Michael Zhang, Yongyi Chen MIT PRIMES Poisson homology in characteristic p



BACKGROUND INTRODUCTION The Problem RESULTS

Poisson homology in characteristic p

Michael Zhang, Yongyi Chen
MIT PRIMES

May 21, 2011

Michael Zhang, Yongyi Chen MIT PRIMES Poisson homology in characteristic p



BACKGROUND INTRODUCTION The Problem RESULTS

POISSON ALGEBRAS

Let A be a commutative algebra over a field F.

A Poisson bracket on A is a map {, } : A×A→ A satisfying the
following properties:

Skew-symmetry: {x, y} = −{y, x}
Bilinearity: {z, ax + by} = a{z, x}+ b{z, y} for all a, b ∈ F

Jacobi Identity: {x, {y, z}}+ {z, {x, y}}+ {y, {z, x}} = 0
Leibniz Rule: {x, yz} = y{x, z}+ z{x, y}

We call (A, {, }) a Poisson algebra.
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BACKGROUND INTRODUCTION The Problem RESULTS

POISSON BRACKET

We define a Poisson bracket on F[x1, . . . , xn, y1, . . . , yn] by

{xi, xj} = {yi, yj} = 0;

{yi, xj} = δij :=

{
1, if i = j
0, otherwise.

Example

{xy, y2} = x{y, y2}+ y{x, y2}
= 0 + y(2y{x, y})
= −2y2.
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BACKGROUND INTRODUCTION The Problem RESULTS

REPRESENTATIONS

An n-dimensional representation of a finite group G is a
homomorphism ρ : G→ GL(n).

Example

Let
G = Dicn := 〈a, b | a2n = 1, b4 = 1, b−1ab = a−1〉.

Let ω be a primitive (2n)th root of unity in a field F, and let
ρ : G→ GL(2, F) be defined by:

ρ(a) =
[

ω 0
0 ω−1

]
and ρ(b) =

[
0 i
i 0

]
.

Then ρ is a representation of G.
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INVARIANT POLYNOMIAL ALGEBRAS

Let R = F[x1, . . . , xn, y1, . . . , yn] and let G be a group acting on R.

Definition

We denote by RG the invariant polynomial algebra of R with
respect to G, i.e. the set of all r ∈ R such that g · r = r for all
g ∈ G.

Example

Let S2 act on R = F[x1, x2, y1, y2] by permuting indices (e.g.
(12) · x1 = x2). Then RS2 is generated by the invariants x1 + x2,
y1 + y2, x1x2, y1y2 and x1y1 + x2y2.
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INVARIANT POLYNOMIAL ALGEBRAS

Example

Let Cn = 〈g | gn = 1〉 act on R = F[x, y] in the following way,
where ω is a primitive nth root of unity:

g · x = ωx and g · y = ω−1y.

Then RCn is generated by xn, yn, and xy.
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BACKGROUND INTRODUCTION The Problem RESULTS

PROBLEM STATEMENT AND PAST RESULTS

Definition
For any Poisson algebra A, we denote by {A, A} the linear span
of all elements {f , g} for f , g ∈ A.

Definition
The Poisson homology HP0(A) of a Poisson algebra A, is

HP0(A) := A/{A, A}.

P. Etingof and T. Schedler proved using algebraic
geometric methods (D-modules) that for F = C or Q, HP0
is finite-dimensional in many examples, including those
coming from group invariants.
We compute HP0 when F = Fp. In this case, HP0 is
infinite-dimensional.

Michael Zhang, Yongyi Chen MIT PRIMES Poisson homology in characteristic p



BACKGROUND INTRODUCTION The Problem RESULTS

PROBLEM STATEMENT AND PAST RESULTS

Definition
For any Poisson algebra A, we denote by {A, A} the linear span
of all elements {f , g} for f , g ∈ A.

Definition
The Poisson homology HP0(A) of a Poisson algebra A, is

HP0(A) := A/{A, A}.

P. Etingof and T. Schedler proved using algebraic
geometric methods (D-modules) that for F = C or Q, HP0
is finite-dimensional in many examples, including those
coming from group invariants.
We compute HP0 when F = Fp. In this case, HP0 is
infinite-dimensional.

Michael Zhang, Yongyi Chen MIT PRIMES Poisson homology in characteristic p



BACKGROUND INTRODUCTION The Problem RESULTS

PROBLEM STATEMENT AND PAST RESULTS

Definition
For any Poisson algebra A, we denote by {A, A} the linear span
of all elements {f , g} for f , g ∈ A.

Definition
The Poisson homology HP0(A) of a Poisson algebra A, is

HP0(A) := A/{A, A}.

P. Etingof and T. Schedler proved using algebraic
geometric methods (D-modules) that for F = C or Q, HP0
is finite-dimensional in many examples, including those
coming from group invariants.

We compute HP0 when F = Fp. In this case, HP0 is
infinite-dimensional.

Michael Zhang, Yongyi Chen MIT PRIMES Poisson homology in characteristic p



BACKGROUND INTRODUCTION The Problem RESULTS

PROBLEM STATEMENT AND PAST RESULTS

Definition
For any Poisson algebra A, we denote by {A, A} the linear span
of all elements {f , g} for f , g ∈ A.

Definition
The Poisson homology HP0(A) of a Poisson algebra A, is

HP0(A) := A/{A, A}.

P. Etingof and T. Schedler proved using algebraic
geometric methods (D-modules) that for F = C or Q, HP0
is finite-dimensional in many examples, including those
coming from group invariants.
We compute HP0 when F = Fp. In this case, HP0 is
infinite-dimensional.

Michael Zhang, Yongyi Chen MIT PRIMES Poisson homology in characteristic p



BACKGROUND INTRODUCTION The Problem RESULTS

COMPUTATIONS

We form a grading

A/{A, A} :=
⊕
n≥0

An

into finite-dimensional pieces An consisting of
homogeneous polynomials of degree n.

Definition
We consider the Hilbert Series h(HP0; t) := ∑ dimAntn

This is just a generating function with formal variable t
formed from the grading.
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BACKGROUND INTRODUCTION The Problem RESULTS

RESULTS FOR F[x, y]G

We have examined the 2-dimensional case F[x, y]G.

We proved:

Theorem

If G = Cycn acts by
[

ω 0
0 ω−1

]
where ω is a primitive nth root of

unity, for p > n, h(HP0(A); t) =
n−2

∑
m=0

t2m +
t2p−2(1 + tnp)

(1− t2p)(1− tnp)

For small p coprime with n, we prove a similar, but more
complicated formula.
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RESULTS FOR SUBGROUPS OF SL2(C)

Subgroups of SL2(C) have integers attached called "exponents"
mi, and a Coxeter number h.

We have the well-known:

Theorem

For subgroups G of SL2(C), and A = C[x, y]G, the Hilbert series of
HP0(A) is: h(HP0; t) = ∑ t2(mi−1)

Conjecture

For subgroups G of SL2(C), and A = Fp[x, y]G, the Hilbert series of
HP0(A) is

h(HP0(A); t) = ∑ t2(mi−1) + t2(p−1) 1 + th

(1− ta)(1− tb)
,

and a and b are degrees of the primary invariants.
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BACKGROUND INTRODUCTION The Problem RESULTS

FUTURE DIRECTIONS

We will try to prove the afore-mentioned conjecture for
subgroups of SL2(C). These are the dicylic group Dicn and
the exceptional groups E6, E7, E8.

The conjecture is a theorem already for large p. We will
prove it for all p > h.
We intend to extend our analysis of HP0 to polynomial
algebras of higher dimension, such as F[x1, x2, y1, y2]

G.
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FUTURE DIRECTIONS, CONT.

In MAGMA, we computed the Poisson homology of cones
of smooth plane curves. Based on these computations we
make the following:

Conjecture

Let A be the algebra Fp[x, y, z]/Q(x, y, z) of functions on the cone X
of a smooth plane curve of degree d (that is, Q is nonsingular, and
homogeneous of degree d). Then,

h(HP0(A); t) =
(1− td−1)3

(1− t)3 + tp+d−3f (tp) where

f (z) = (1− z)−2(2g− (2g− 1)z +
d−2

∑
j=0

zj)

where g = (d−1)(d−2)
2 is the genus of the curve.
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