Suppose A_{\hbar} is a flat family of non-commutative algebras, such that A_{0} is commutative.

Suppose A_{\hbar} is a flat family of non-commutative algebras, such that A_{0} is commutative.
Then A_{0} has an additional operation called a Poisson bracket,

$$
\{a, b\}=\lim _{\hbar \rightarrow 0} \frac{a b-b a}{\hbar}
$$

Suppose A_{\hbar} is a flat family of non-commutative algebras, such that A_{0} is commutative.
Then A_{0} has an additional operation called a Poisson bracket,

$$
\{a, b\}=\lim _{\hbar \rightarrow 0} \frac{a b-b a}{\hbar}
$$

The Poisson algebra $\left(A_{0},\{\},\right)$ retains a great deal of information about the non-commutative family A_{\hbar}.

Suppose A_{\hbar} is a flat family of non-commutative algebras, such that A_{0} is commutative.
Then A_{0} has an additional operation called a Poisson bracket,

$$
\{a, b\}=\lim _{\hbar \rightarrow 0} \frac{a b-b a}{\hbar}
$$

The Poisson algebra $\left(A_{0},\{\},\right)$ retains a great deal of information about the non-commutative family A_{\hbar}.
In particular, the Poisson homology $H P_{0}$ of A_{0} gives an upper bound on the number of irreducible representations of the non-commutative family A_{\hbar} :

$$
\# \operatorname{Irreps}\left(A_{\hbar}\right) \leq \operatorname{dim} H P_{0}\left(A_{0}\right)
$$

Poisson homology in characteristic p

Michael Zhang, Yongyi Chen MIT PRIMES

May 21, 2011

POISSON ALGEBRAS

Let A be a commutative algebra over a field \mathbb{F}.

POISSON ALGEBRAS

Let A be a commutative algebra over a field \mathbb{F}.
A Poisson bracket on A is a map $\{\}:, A \times A \rightarrow A$ satisfying the following properties:

POISSON ALGEBRAS

Let A be a commutative algebra over a field \mathbb{F}.
A Poisson bracket on A is a map $\{\}:, A \times A \rightarrow A$ satisfying the following properties:

- Skew-symmetry: $\{x, y\}=-\{y, x\}$

POISSON ALGEBRAS

Let A be a commutative algebra over a field \mathbb{F}.
A Poisson bracket on A is a map $\{\}:, A \times A \rightarrow A$ satisfying the following properties:

- Skew-symmetry: $\{x, y\}=-\{y, x\}$
- Bilinearity: $\{z, a x+b y\}=a\{z, x\}+b\{z, y\}$ for all $a, b \in \mathbb{F}$

POISSON ALGEBRAS

Let A be a commutative algebra over a field \mathbb{F}.
A Poisson bracket on A is a map $\{\}:, A \times A \rightarrow A$ satisfying the following properties:

- Skew-symmetry: $\{x, y\}=-\{y, x\}$
- Bilinearity: $\{z, a x+b y\}=a\{z, x\}+b\{z, y\}$ for all $a, b \in \mathbb{F}$
- Jacobi Identity: $\{x,\{y, z\}\}+\{z,\{x, y\}\}+\{y,\{z, x\}\}=0$

POISSON ALGEBRAS

Let A be a commutative algebra over a field \mathbb{F}.
A Poisson bracket on A is a map $\{\}:, A \times A \rightarrow A$ satisfying the following properties:

- Skew-symmetry: $\{x, y\}=-\{y, x\}$
- Bilinearity: $\{z, a x+b y\}=a\{z, x\}+b\{z, y\}$ for all $a, b \in \mathbb{F}$
- Jacobi Identity: $\{x,\{y, z\}\}+\{z,\{x, y\}\}+\{y,\{z, x\}\}=0$
- Leibniz Rule: $\{x, y z\}=y\{x, z\}+z\{x, y\}$

POISSON ALGEBRAS

Let A be a commutative algebra over a field \mathbb{F}.
A Poisson bracket on A is a map $\{\}:, A \times A \rightarrow A$ satisfying the following properties:

- Skew-symmetry: $\{x, y\}=-\{y, x\}$
- Bilinearity: $\{z, a x+b y\}=a\{z, x\}+b\{z, y\}$ for all $a, b \in \mathbb{F}$
- Jacobi Identity: $\{x,\{y, z\}\}+\{z,\{x, y\}\}+\{y,\{z, x\}\}=0$
- Leibniz Rule: $\{x, y z\}=y\{x, z\}+z\{x, y\}$

We call $(A,\{\}$,$) a Poisson algebra.$

POISSON BRACKET

We define a Poisson bracket on $\mathbb{F}\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right]$ by

POISSON BRACKET

We define a Poisson bracket on $\mathbb{F}\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right]$ by

- $\left\{x_{i}, x_{j}\right\}=\left\{y_{i}, y_{j}\right\}=0$;

POISSON BRACKET

We define a Poisson bracket on $\mathbb{F}\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right]$ by

- $\left\{x_{i}, x_{j}\right\}=\left\{y_{i}, y_{j}\right\}=0$;
- $\left\{y_{i}, x_{j}\right\}=\delta_{i j}:= \begin{cases}1, & \text { if } i=j \\ 0, & \text { otherwise. }\end{cases}$

POISSON BRACKET

We define a Poisson bracket on $\mathbb{F}\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right]$ by

- $\left\{x_{i}, x_{j}\right\}=\left\{y_{i}, y_{j}\right\}=0$;
- $\left\{y_{i}, x_{j}\right\}=\delta_{i j}:= \begin{cases}1, & \text { if } i=j \\ 0, & \text { otherwise. }\end{cases}$

Example

$$
\begin{aligned}
\left\{x y, y^{2}\right\} & =x\left\{y, y^{2}\right\}+y\left\{x, y^{2}\right\} \\
& =0+y(2 y\{x, y\}) \\
& =-2 y^{2}
\end{aligned}
$$

REPRESENTATIONS

An n-dimensional representation of a finite group G is a homomorphism $\rho: G \rightarrow G L(n)$.

REPRESENTATIONS

An n-dimensional representation of a finite group G is a homomorphism $\rho: G \rightarrow G L(n)$.

Example

Let

$$
G=\operatorname{Dic}_{n}:=\left\langle a, b \mid a^{2 n}=1, b^{4}=1, b^{-1} a b=a^{-1}\right\rangle .
$$

REPRESENTATIONS

An n-dimensional representation of a finite group G is a homomorphism $\rho: G \rightarrow G L(n)$.

Example

Let

$$
G=\operatorname{Dic}_{n}:=\left\langle a, b \mid a^{2 n}=1, b^{4}=1, b^{-1} a b=a^{-1}\right\rangle .
$$

Let ω be a primitive $(2 n)$ th root of unity in a field \mathbb{F}, and let $\rho: G \rightarrow G L(2, \mathbb{F})$ be defined by:

REPRESENTATIONS

An n-dimensional representation of a finite group G is a homomorphism $\rho: G \rightarrow G L(n)$.

Example

Let

$$
G=\operatorname{Dic}_{n}:=\left\langle a, b \mid a^{2 n}=1, b^{4}=1, b^{-1} a b=a^{-1}\right\rangle .
$$

Let ω be a primitive $(2 n)$ th root of unity in a field \mathbb{F}, and let $\rho: G \rightarrow G L(2, \mathbb{F})$ be defined by:

$$
\rho(a)=\left[\begin{array}{cc}
\omega & 0 \\
0 & \omega^{-1}
\end{array}\right] \quad \text { and } \quad \rho(b)=\left[\begin{array}{cc}
0 & i \\
i & 0
\end{array}\right] .
$$

REPRESENTATIONS

An n-dimensional representation of a finite group G is a homomorphism $\rho: G \rightarrow G L(n)$.

Example

Let

$$
G=\operatorname{Dic}_{n}:=\left\langle a, b \mid a^{2 n}=1, b^{4}=1, b^{-1} a b=a^{-1}\right\rangle .
$$

Let ω be a primitive $(2 n)$ th root of unity in a field \mathbb{F}, and let $\rho: G \rightarrow G L(2, \mathbb{F})$ be defined by:

$$
\rho(a)=\left[\begin{array}{cc}
\omega & 0 \\
0 & \omega^{-1}
\end{array}\right] \quad \text { and } \quad \rho(b)=\left[\begin{array}{cc}
0 & i \\
i & 0
\end{array}\right] .
$$

Then ρ is a representation of G.

INVARIANT POLYNOMIAL ALGEBRAS

Let $R=\mathbb{F}\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right]$ and let G be a group acting on R.

INVARIANT POLYNOMIAL ALGEBRAS

Let $R=\mathbb{F}\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right]$ and let G be a group acting on R.

Definition

We denote by R^{G} the invariant polynomial algebra of R with respect to G, i.e. the set of all $r \in R$ such that $g \cdot r=r$ for all $g \in G$.

INVARIANT POLYNOMIAL ALGEBRAS

Let $R=\mathbb{F}\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right]$ and let G be a group acting on R.

Definition

We denote by R^{G} the invariant polynomial algebra of R with respect to G, i.e. the set of all $r \in R$ such that $g \cdot r=r$ for all $g \in G$.

Example

Let S_{2} act on $R=\mathbb{F}\left[x_{1}, x_{2}, y_{1}, y_{2}\right]$ by permuting indices (e.g. (12) $\cdot x_{1}=x_{2}$). Then $R^{S_{2}}$ is generated by the invariants $x_{1}+x_{2}$, $y_{1}+y_{2}, x_{1} x_{2}, y_{1} y_{2}$ and $x_{1} y_{1}+x_{2} y_{2}$.

INVARIANT POLYNOMIAL ALGEBRAS

Example

Let $C_{n}=\left\langle g \mid g^{n}=1\right\rangle$ act on $R=\mathbb{F}[x, y]$ in the following way, where ω is a primitive nth root of unity:

$$
g \cdot x=\omega x \quad \text { and } \quad g \cdot y=\omega^{-1} y
$$

INVARIANT POLYNOMIAL ALGEBRAS

Example

Let $C_{n}=\left\langle g \mid g^{n}=1\right\rangle$ act on $R=\mathbb{F}[x, y]$ in the following way, where ω is a primitive nth root of unity:

$$
g \cdot x=\omega x \quad \text { and } \quad g \cdot y=\omega^{-1} y
$$

Then $R^{C_{n}}$ is generated by x^{n}, y^{n}, and $x y$.

PROBLEM STATEMENT AND PAST RESULTS

Definition

For any Poisson algebra A, we denote by $\{A, A\}$ the linear span of all elements $\{f, g\}$ for $f, g \in A$.

PROBLEM STATEMENT AND PAST RESULTS

Definition

For any Poisson algebra A, we denote by $\{A, A\}$ the linear span of all elements $\{f, g\}$ for $f, g \in A$.

Definition

The Poisson homology $H P_{0}(A)$ of a Poisson algebra A, is

$$
H P_{0}(A):=A /\{A, A\}
$$

PROBLEM STATEMENT AND PAST RESULTS

Definition

For any Poisson algebra A, we denote by $\{A, A\}$ the linear span of all elements $\{f, g\}$ for $f, g \in A$.

Definition

The Poisson homology $H P_{0}(A)$ of a Poisson algebra A, is

$$
H P_{0}(A):=A /\{A, A\}
$$

- P. Etingof and T. Schedler proved using algebraic geometric methods (D-modules) that for $\mathbb{F}=\mathbb{C}$ or $\mathbb{Q}, H P_{0}$ is finite-dimensional in many examples, including those coming from group invariants.

PROBLEM STATEMENT AND PAST RESULTS

Definition

For any Poisson algebra A, we denote by $\{A, A\}$ the linear span of all elements $\{f, g\}$ for $f, g \in A$.

Definition

The Poisson homology $H P_{0}(A)$ of a Poisson algebra A, is

$$
H P_{0}(A):=A /\{A, A\}
$$

- P. Etingof and T. Schedler proved using algebraic geometric methods (D-modules) that for $\mathbb{F}=\mathbb{C}$ or $\mathbb{Q}, H P_{0}$ is finite-dimensional in many examples, including those coming from group invariants.
- We compute $H P_{0}$ when $\mathbb{F}=\mathbb{F}_{p}$. In this case, $H P_{0}$ is infinite-dimensional.

COMPUTATIONS

- We form a grading

$$
A /\{A, A\}:=\bigoplus_{n \geq 0} A_{n}
$$

into finite-dimensional pieces A_{n} consisting of homogeneous polynomials of degree n.

COMPUTATIONS

- We form a grading

$$
A /\{A, A\}:=\bigoplus_{0} A_{n}
$$

into finite-dimensional pieces A_{n} consisting of homogeneous polynomials of degree n.

Definition

We consider the Hilbert Series $h\left(H P_{0} ; t\right):=\sum \operatorname{dim} A_{n} t^{n}$

COMPUTATIONS

- We form a grading

$$
A /\{A, A\}:=\bigoplus_{n} A_{n}
$$

into finite-dimensional pieces A_{n} consisting of homogeneous polynomials of degree n.

Definition

We consider the Hilbert Series $h\left(H P_{0} ; t\right):=\sum \operatorname{dim} A_{n} t^{n}$

- This is just a generating function with formal variable t formed from the grading.

RESULTS FOR $\mathbb{F}[x, y]^{G}$

We have examined the 2-dimensional case $\mathbb{F}[x, y]^{G}$.

RESULTS FOR $\mathbb{F}[x, y]^{G}$

We have examined the 2-dimensional case $\mathbb{F}[x, y]^{G}$. We proved:

RESULTS FOR $\mathbb{F}[x, y]^{G}$

We have examined the 2-dimensional case $\mathbb{F}[x, y]^{G}$. We proved:

Theorem

If $G=C y c_{n}$ acts by $\left[\begin{array}{cc}\omega & 0 \\ 0 & \omega^{-1}\end{array}\right]$ where ω is a primitive nth root of unity, for $p>n, h\left(H P_{0}(A) ; t\right)=\sum_{m=0}^{n-2} 2^{2 m}+\frac{t^{2 p-2}\left(1+t^{n p}\right)}{\left(1-t^{2 p}\right)\left(1-t^{n p}\right)}$

RESULTS FOR $\mathbb{F}[x, y]^{G}$

We have examined the 2-dimensional case $\mathbb{F}[x, y]^{G}$. We proved:

Theorem

If $G=C y c_{n}$ acts by $\left[\begin{array}{cc}\omega & 0 \\ 0 & \omega^{-1}\end{array}\right]$ where ω is a primitive nth root of
unity, for $p>n, h\left(H P_{0}(A) ; t\right)=\sum_{m=0}^{n-2} 2^{2 m}+\frac{t^{2 p-2}\left(1+t^{n p}\right)}{\left(1-t^{2 p}\right)\left(1-t^{n p}\right)}$
For small p coprime with n, we prove a similar, but more complicated formula.

Results for subgroups of $S_{2}(\mathbb{C})$

Subgroups of $S L_{2}(\mathbb{C})$ have integers attached called "exponents" m_{i}, and a Coxeter number h.

Results for subgroups of $S_{2}(\mathbb{C})$

Subgroups of $S L_{2}(\mathbb{C})$ have integers attached called "exponents" m_{i}, and a Coxeter number h.
We have the well-known:

Theorem

For subgroups G of $S L_{2}(\mathbb{C})$, and $A=\mathbb{C}[x, y]^{G}$, the Hilbert series of $H P_{0}(A)$ is: $h\left(H P_{0} ; t\right)=\sum t^{2\left(m_{i}-1\right)}$

Results for subgroups of $S L_{2}(\mathbb{C})$

Subgroups of $S L_{2}(\mathbb{C})$ have integers attached called "exponents" m_{i}, and a Coxeter number h.
We have the well-known:

Theorem

For subgroups G of $S L_{2}(\mathbb{C})$, and $A=\mathbb{C}[x, y]^{G}$, the Hilbert series of $H P_{0}(A)$ is: $h\left(H P_{0} ; t\right)=\sum t^{2\left(m_{i}-1\right)}$

Conjecture

For subgroups G of $S L_{2}(\mathbb{C})$, and $A=\mathbb{F}_{p}[x, y]^{G}$, the Hilbert series of $H P_{0}(A)$ is

$$
h\left(H P_{0}(A) ; t\right)=\sum t^{2\left(m_{i}-1\right)}+t^{2(p-1)} \frac{1+t^{h}}{\left(1-t^{a}\right)\left(1-t^{b}\right)},
$$

and a and b are degrees of the primary invariants.

Future Directions

- We will try to prove the afore-mentioned conjecture for subgroups of $S L_{2}(\mathbb{C})$. These are the dicylic group $D i c_{n}$ and the exceptional groups E_{6}, E_{7}, E_{8}.

Future Directions

- We will try to prove the afore-mentioned conjecture for subgroups of $S L_{2}(\mathbb{C})$. These are the dicylic group Dic n_{n} and the exceptional groups E_{6}, E_{7}, E_{8}.
- The conjecture is a theorem already for large p. We will prove it for all $p>h$.

Future Directions

- We will try to prove the afore-mentioned conjecture for subgroups of $S L_{2}(\mathbb{C})$. These are the dicylic group $D i c_{n}$ and the exceptional groups E_{6}, E_{7}, E_{8}.
- The conjecture is a theorem already for large p. We will prove it for all $p>h$.
- We intend to extend our analysis of $H P_{0}$ to polynomial algebras of higher dimension, such as $\mathbb{F}\left[x_{1}, x_{2}, y_{1}, y_{2}\right]^{G}$.

Future Directions, cont.

- In MAGMA, we computed the Poisson homology of cones of smooth plane curves. Based on these computations we make the following:

Future Directions, cont.

- In MAGMA, we computed the Poisson homology of cones of smooth plane curves. Based on these computations we make the following:

Conjecture

Let A be the algebra $\mathbb{F}_{p}[x, y, z] / Q(x, y, z)$ of functions on the cone X of a smooth plane curve of degree d (that is, Q is nonsingular, and homogeneous of degree d). Then,

$$
\begin{aligned}
h\left(H P_{0}(A) ; t\right) & =\frac{\left(1-t^{d-1}\right)^{3}}{(1-t)^{3}}+t^{p+d-3} f\left(t^{p}\right) \text { where } \\
f(z) & =(1-z)^{-2}\left(2 g-(2 g-1) z+\sum_{j=0}^{d-2} z^{j}\right)
\end{aligned}
$$

where $g=\frac{(d-1)(d-2)}{2}$ is the genus of the curve.

AcKNOWLEDGEMENTS

- Thank you to the MIT PRIMES program for making this all possible.

ACKNOWLEDGEMENTS

- Thank you to the MIT PRIMES program for making this all possible.
- Thank you to Pavel Etingof and Travis Schedler for the proposal of the problem and their advice throughout the project.

AckNOWLEDGEMENTS

- Thank you to the MIT PRIMES program for making this all possible.
- Thank you to Pavel Etingof and Travis Schedler for the proposal of the problem and their advice throughout the project.
- Thank you to our mentor, David Jordan, for being a great teacher, providing guidance and taking the significant time to help us out.

