(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Then A_0 has an additional operation called a Poisson bracket,

$$\{a,b\} = \lim_{\hbar \to 0} \frac{ab - ba}{\hbar}.$$

- 4 🗗 ▶

- N

Then A_0 has an additional operation called a Poisson bracket,

$$\{a,b\} = \lim_{\hbar \to 0} \frac{ab - ba}{\hbar}.$$

The *Poisson algebra* (A_0 , {, }) retains a great deal of information about the non-commutative family A_h .

Then A₀ has an additional operation called a Poisson bracket,

$$\{a,b\} = \lim_{\hbar \to 0} \frac{ab - ba}{\hbar}.$$

The *Poisson algebra* (A_0 , {, }) retains a great deal of information about the non-commutative family A_{\hbar} .

In particular, the *Poisson homology* HP_0 of A_0 gives an upper bound on the number of irreducible representations of the non-commutative family A_h :

$$#Irreps(A_{\hbar}) \leq \dim HP_0(A_0).$$

A D F A A F F A F A F

Poisson homology in characteristic *p*

Michael Zhang, Yongyi Chen MIT PRIMES

May 21, 2011

Michael Zhang, Yongyi Chen MIT PRIMES Poisson homology in characteristic p

Image: A match the second s

< 3

Let *A* be a commutative algebra over a field \mathbb{F} .

Michael Zhang, Yongyi Chen *MIT PRIMES* Poisson homology in characteristic *p*

イロト イポト イヨト イヨト

Let *A* be a commutative algebra over a field \mathbb{F} . A **Poisson bracket** on *A* is a map $\{,\}: A \times A \to A$ satisfying the following properties:

Let *A* be a commutative algebra over a field \mathbb{F} . A **Poisson bracket** on *A* is a map $\{,\}: A \times A \to A$ satisfying the following properties:

• Skew-symmetry:
$$\{x, y\} = -\{y, x\}$$

Let *A* be a commutative algebra over a field \mathbb{F} .

A **Poisson bracket** on *A* is a map $\{,\}: A \times A \rightarrow A$ satisfying the following properties:

- Skew-symmetry: $\{x, y\} = -\{y, x\}$
- Bilinearity: $\{z, ax + by\} = a\{z, x\} + b\{z, y\}$ for all $a, b \in \mathbb{F}$

Let *A* be a commutative algebra over a field \mathbb{F} .

A **Poisson bracket** on *A* is a map $\{,\}: A \times A \rightarrow A$ satisfying the following properties:

- Skew-symmetry: $\{x, y\} = -\{y, x\}$
- Bilinearity: $\{z, ax + by\} = a\{z, x\} + b\{z, y\}$ for all $a, b \in \mathbb{F}$
- Jacobi Identity: $\{x, \{y, z\}\} + \{z, \{x, y\}\} + \{y, \{z, x\}\} = 0$

Let *A* be a commutative algebra over a field \mathbb{F} .

A **Poisson bracket** on *A* is a map $\{,\}: A \times A \rightarrow A$ satisfying the following properties:

- Skew-symmetry: $\{x, y\} = -\{y, x\}$
- Bilinearity: $\{z, ax + by\} = a\{z, x\} + b\{z, y\}$ for all $a, b \in \mathbb{F}$
- Jacobi Identity: $\{x, \{y, z\}\} + \{z, \{x, y\}\} + \{y, \{z, x\}\} = 0$
- Leibniz Rule: $\{x, yz\} = y\{x, z\} + z\{x, y\}$

Let *A* be a commutative algebra over a field \mathbb{F} .

A **Poisson bracket** on *A* is a map $\{, \}$: $A \times A \rightarrow A$ satisfying the following properties:

- Skew-symmetry: $\{x, y\} = -\{y, x\}$
- Bilinearity: $\{z, ax + by\} = a\{z, x\} + b\{z, y\}$ for all $a, b \in \mathbb{F}$
- Jacobi Identity: $\{x, \{y, z\}\} + \{z, \{x, y\}\} + \{y, \{z, x\}\} = 0$
- Leibniz Rule: $\{x, yz\} = y\{x, z\} + z\{x, y\}$

We call $(A, \{,\})$ a **Poisson algebra**.

< ロ > < 同 > < 回 > < 回 > < 回 >

We define a Poisson bracket on $\mathbb{F}[x_1, \ldots, x_n, y_1, \ldots, y_n]$ by

イロト 不得 トイヨト イヨト

We define a Poisson bracket on $\mathbb{F}[x_1, \ldots, x_n, y_1, \ldots, y_n]$ by

•
$$\{x_i, x_j\} = \{y_i, y_j\} = 0;$$

イロト 不得 トイヨト イヨト

We define a Poisson bracket on $\mathbb{F}[x_1, \ldots, x_n, y_1, \ldots, y_n]$ by

•
$$\{x_i, x_j\} = \{y_i, y_j\} = 0;$$

• $\{y_i, x_j\} = \delta_{ij} := \begin{cases} 1, & \text{if } i = j \\ 0, & \text{otherwise.} \end{cases}$

イロト 不得 トイヨト イヨト

We define a Poisson bracket on $\mathbb{F}[x_1, \ldots, x_n, y_1, \ldots, y_n]$ by

•
$$\{x_i, x_j\} = \{y_i, y_j\} = 0;$$

• $\{y_i, x_j\} = \delta_{ij} := \begin{cases} 1, & \text{if } i = j \\ 0, & \text{otherwise.} \end{cases}$

Example

$$\{xy, y^2\} = x\{y, y^2\} + y\{x, y^2\}$$

= 0 + y(2y\{x, y\})
= -2y^2.

イロト イポト イヨト イヨト

An *n*-dimensional **representation** of a finite group *G* is a homomorphism $\rho : G \rightarrow GL(n)$.

Michael Zhang, Yongyi Chen MIT PRIMES Poisson homology in characteristic p

An *n*-dimensional **representation** of a finite group *G* is a homomorphism $\rho : G \rightarrow GL(n)$.

Example

Let

$$G = \text{Dic}_n := \langle a, b \mid a^{2n} = 1, b^4 = 1, b^{-1}ab = a^{-1} \rangle.$$

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

An *n*-dimensional **representation** of a finite group *G* is a homomorphism $\rho : G \rightarrow GL(n)$.

Example

Let

$$G = \text{Dic}_n := \langle a, b \mid a^{2n} = 1, b^4 = 1, b^{-1}ab = a^{-1} \rangle.$$

Let ω be a primitive (2n)th root of unity in a field \mathbb{F} , and let $\rho: G \to GL(2, \mathbb{F})$ be defined by:

< ロ > < 同 > < 回 > < 回 > < 回 >

An *n*-dimensional **representation** of a finite group *G* is a homomorphism $\rho : G \rightarrow GL(n)$.

Example

Let

$$G = \text{Dic}_n := \langle a, b \mid a^{2n} = 1, b^4 = 1, b^{-1}ab = a^{-1} \rangle.$$

Let ω be a primitive (2n)th root of unity in a field \mathbb{F} , and let $\rho: G \to GL(2, \mathbb{F})$ be defined by:

$$\rho(a) = \begin{bmatrix} \omega & 0 \\ 0 & \omega^{-1} \end{bmatrix} \quad \text{and} \quad \rho(b) = \begin{bmatrix} 0 & i \\ i & 0 \end{bmatrix}$$

An *n*-dimensional **representation** of a finite group *G* is a homomorphism $\rho : G \rightarrow GL(n)$.

Example

Let

$$G = \text{Dic}_n := \langle a, b \mid a^{2n} = 1, b^4 = 1, b^{-1}ab = a^{-1} \rangle.$$

Let ω be a primitive (2n)th root of unity in a field \mathbb{F} , and let $\rho: G \to GL(2, \mathbb{F})$ be defined by:

$$\rho(a) = \begin{bmatrix} \omega & 0 \\ 0 & \omega^{-1} \end{bmatrix} \quad \text{and} \quad \rho(b) = \begin{bmatrix} 0 & i \\ i & 0 \end{bmatrix}$$

Then ρ is a representation of *G*.

Let $R = \mathbb{F}[x_1, \ldots, x_n, y_1, \ldots, y_n]$ and let *G* be a group acting on *R*.

イロト イポト イヨト イヨト

Let $R = \mathbb{F}[x_1, \ldots, x_n, y_1, \ldots, y_n]$ and let *G* be a group acting on *R*.

Definition

We denote by R^G the **invariant polynomial algebra** of R with respect to G, i.e. the set of all $r \in R$ such that $g \cdot r = r$ for all $g \in G$.

< ロ > < 同 > < 回 > < 回 > < 回 >

Let $R = \mathbb{F}[x_1, \ldots, x_n, y_1, \ldots, y_n]$ and let *G* be a group acting on *R*.

Definition

We denote by R^G the **invariant polynomial algebra** of R with respect to G, i.e. the set of all $r \in R$ such that $g \cdot r = r$ for all $g \in G$.

Example

Let S_2 act on $R = \mathbb{F}[x_1, x_2, y_1, y_2]$ by permuting indices (e.g. $(12) \cdot x_1 = x_2$). Then R^{S_2} is generated by the invariants $x_1 + x_2$, $y_1 + y_2$, x_1x_2 , y_1y_2 and $x_1y_1 + x_2y_2$.

イロト イポト イヨト イヨト

Example

Let $C_n = \langle g | g^n = 1 \rangle$ act on $R = \mathbb{F}[x, y]$ in the following way, where ω is a primitive *n*th root of unity:

$$g \cdot x = \omega x$$
 and $g \cdot y = \omega^{-1} y$.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Example

Let $C_n = \langle g | g^n = 1 \rangle$ act on $R = \mathbb{F}[x, y]$ in the following way, where ω is a primitive *n*th root of unity:

$$g \cdot x = \omega x$$
 and $g \cdot y = \omega^{-1} y$.

Then R^{C_n} is generated by x^n , y^n , and xy.

Definition

For any Poisson algebra A, we denote by $\{A, A\}$ the linear span of all elements $\{f, g\}$ for $f, g \in A$.

Definition

For any Poisson algebra *A*, we denote by $\{A, A\}$ the linear span of all elements $\{f, g\}$ for $f, g \in A$.

Definition

The Poisson homology $HP_0(A)$ of a Poisson algebra A, is

 $HP_0(A) := A / \{A, A\}.$

Definition

For any Poisson algebra *A*, we denote by $\{A, A\}$ the linear span of all elements $\{f, g\}$ for $f, g \in A$.

Definition

The Poisson homology $HP_0(A)$ of a Poisson algebra A, is

$$HP_0(A) := A/\{A,A\}.$$

 P. Etingof and T. Schedler proved using algebraic geometric methods (D-modules) that for F = C or Q, HP₀ is finite-dimensional in many examples, including those coming from group invariants.

Definition

For any Poisson algebra *A*, we denote by $\{A, A\}$ the linear span of all elements $\{f, g\}$ for $f, g \in A$.

Definition

The Poisson homology $HP_0(A)$ of a Poisson algebra A, is

$$HP_0(A) := A/\{A,A\}.$$

- P. Etingof and T. Schedler proved using algebraic geometric methods (D-modules) that for F = C or Q, HP₀ is finite-dimensional in many examples, including those coming from group invariants.
- We compute HP_0 when $\mathbb{F} = \mathbb{F}_p$. In this case, HP_0 is infinite-dimensional.

COMPUTATIONS

• We form a grading

$$A/\{A,A\} := \bigoplus_{n \ge 0} A_n$$

into finite-dimensional pieces A_n consisting of homogeneous polynomials of degree n.

COMPUTATIONS

• We form a grading

$$A/\{A,A\} := \bigoplus_{n \ge 0} A_n$$

into finite-dimensional pieces A_n consisting of homogeneous polynomials of degree n.

Definition

We consider the **Hilbert Series** $h(HP_0; t) := \sum \dim A_n t^n$

COMPUTATIONS

• We form a grading

$$A/\{A,A\} := \bigoplus_{n \ge 0} A_n$$

into finite-dimensional pieces A_n consisting of homogeneous polynomials of degree n.

Definition

We consider the **Hilbert Series** $h(HP_0; t) := \sum \dim A_n t^n$

• This is just a generating function with formal variable *t* formed from the grading.

RESULTS FOR $\mathbb{F}[x, y]^G$

We have examined the 2-dimensional case $\mathbb{F}[x, y]^G$.

Michael Zhang, Yongyi Chen MIT PRIMES Poisson homology in characteristic p

イロト イポト イヨト イヨト

RESULTS FOR $\mathbb{F}[x, y]^G$

We have examined the 2-dimensional case $\mathbb{F}[x, y]^G$. We proved:

Michael Zhang, Yongyi Chen MIT PRIMES Poisson homology in characteristic p

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

RESULTS FOR $\mathbb{F}[x, y]^G$

We have examined the 2-dimensional case $\mathbb{F}[x, y]^G$. We proved:

Theorem If $G = Cyc_n \ acts \ by \begin{bmatrix} \omega & 0 \\ 0 & \omega^{-1} \end{bmatrix}$ where ω is a primitive nth root of unity, for p > n, $h(HP_0(A); t) = \sum_{m=0}^{n-2} t^{2m} + \frac{t^{2p-2}(1+t^{np})}{(1-t^{2p})(1-t^{np})}$

< ロ > < 同 > < 回 > < 回 > < 回 >

RESULTS FOR $\mathbb{F}[x, y]^G$

We have examined the 2-dimensional case $\mathbb{F}[x, y]^G$. We proved:

Theorem

If
$$G = Cyc_n$$
 acts by $\begin{bmatrix} \omega & 0 \\ 0 & \omega^{-1} \end{bmatrix}$ where ω is a primitive nth root of unity, for $p > n$, $h(HP_0(A); t) = \sum_{m=0}^{n-2} t^{2m} + \frac{t^{2p-2}(1+t^{np})}{(1-t^{2p})(1-t^{np})}$

For small *p* coprime with *n*, we prove a similar, but more complicated formula.

Results for subgroups of $SL_2(\mathbb{C})$

Subgroups of $SL_2(\mathbb{C})$ have integers attached called "exponents" m_i , and a Coxeter number h.

Results for subgroups of $SL_2(\mathbb{C})$

Subgroups of $SL_2(\mathbb{C})$ have integers attached called "exponents" m_i , and a Coxeter number h. We have the well-known:

Theorem

For subgroups G of $SL_2(\mathbb{C})$, and $A = \mathbb{C}[x, y]^G$, the Hilbert series of $HP_0(A)$ is: $h(HP_0; t) = \sum t^{2(m_i-1)}$

RESULTS FOR SUBGROUPS OF $SL_2(\mathbb{C})$

Subgroups of $SL_2(\mathbb{C})$ have integers attached called "exponents" m_i , and a Coxeter number h. We have the well-known:

Theorem

For subgroups G of $SL_2(\mathbb{C})$, and $A = \mathbb{C}[x, y]^G$, the Hilbert series of $HP_0(A)$ is: $h(HP_0; t) = \sum t^{2(m_i-1)}$

Conjecture

For subgroups G of $SL_2(\mathbb{C})$, and $A = \mathbb{F}_p[x, y]^G$, the Hilbert series of $HP_0(A)$ is

$$h(HP_0(A);t) = \sum t^{2(m_i-1)} + t^{2(p-1)} \frac{1+t^h}{(1-t^a)(1-t^b)},$$

and a and b are degrees of the primary invariants.

FUTURE DIRECTIONS

• We will try to prove the afore-mentioned conjecture for subgroups of $SL_2(\mathbb{C})$. These are the dicylic group Dic_n and the exceptional groups E_6, E_7, E_8 .

FUTURE DIRECTIONS

- We will try to prove the afore-mentioned conjecture for subgroups of $SL_2(\mathbb{C})$. These are the dicylic group Dic_n and the exceptional groups E_6, E_7, E_8 .
- The conjecture is a theorem already for large *p*. We will prove it for all *p* > *h*.

< ロ > < 同 > < 回 > < 回 > < 回 >

FUTURE DIRECTIONS

- We will try to prove the afore-mentioned conjecture for subgroups of $SL_2(\mathbb{C})$. These are the dicylic group Dic_n and the exceptional groups E_6, E_7, E_8 .
- The conjecture is a theorem already for large *p*. We will prove it for all *p* > *h*.
- We intend to extend our analysis of HP_0 to polynomial algebras of higher dimension, such as $\mathbb{F}[x_1, x_2, y_1, y_2]^G$.

FUTURE DIRECTIONS, CONT.

• In MAGMA, we computed the Poisson homology of cones of smooth plane curves. Based on these computations we make the following:

A (1) ► A (1) ► F

FUTURE DIRECTIONS, CONT.

• In MAGMA, we computed the Poisson homology of cones of smooth plane curves. Based on these computations we make the following:

Conjecture

Let A be the algebra $\mathbb{F}_p[x, y, z] / Q(x, y, z)$ of functions on the cone X of a smooth plane curve of degree d (that is, Q is nonsingular, and homogeneous of degree d). Then,

$$h(HP_0(A);t) = \frac{(1-t^{d-1})^3}{(1-t)^3} + t^{p+d-3}f(t^p) \text{ where}$$
$$f(z) = (1-z)^{-2}(2g - (2g - 1)z + \sum_{j=0}^{d-2} z^j)$$

where $g = \frac{(d-1)(d-2)}{2}$ is the genus of the curve.

ACKNOWLEDGEMENTS

• Thank you to the MIT PRIMES program for making this all possible.

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

ACKNOWLEDGEMENTS

- Thank you to the MIT PRIMES program for making this all possible.
- Thank you to Pavel Etingof and Travis Schedler for the proposal of the problem and their advice throughout the project.

ACKNOWLEDGEMENTS

- Thank you to the MIT PRIMES program for making this all possible.
- Thank you to Pavel Etingof and Travis Schedler for the proposal of the problem and their advice throughout the project.
- Thank you to our mentor, David Jordan, for being a great teacher, providing guidance and taking the significant time to help us out.