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Abstract

We study rank functions (also known as graph homomorphisms onto Z), ways of imposing

graded poset structures on graphs. We first look at a variation on rank functions called

discrete Lipschitz functions. We relate the number of Lipschitz functions of a graph G to

the number of rank functions of both G and G× E . We then find generating functions that

enable us to compute the number of rank or Lipschitz functions of a given graph. We look at

a subset of graphs called squarely generated graphs, which are graphs whose cycle space has a

basis consisting only of 4-cycles. We show that the number of rank functions of such a graph

is proportional to the number of 3-colorings of the same graph, thereby connecting rank

functions to the Potts model of statistical mechanics. Lastly, we look at some asymptotics

of rank and Lipschitz functions for various types of graphs.



1 Introduction

In this paper, we look at rankings, or rank functions. These are one of the key criteria

for an adinkra, which is a graphic used in representation theory. They are interconnected

with the antiferromagnetic Potts model, a model that is commonly used in particle physics.

They are also, from a purely mathematical standpoint, related to partially ordered sets. In

this introduction, we discuss the basics of each of these three applications, then put them

together in the context of rankings.

1.1 Adinkras

An adinkra is a symbol used in West Africa to represent a concept that is not easy to

define in words. Recently, the name has been coined to denote a graphical representation

of supermultiplets in representation theory [6]. Mathematically, these adinkras are bipartite

graphs, in which one vertex set represents bosons and the other represents fermions, which

are the two types of elementary particles found in the Standard Model of physics.

Adinkras have properties beyond those of bipartite graphs. The first property is a dashing

of the edges — a function d : E(G) → {0, 1} satisfying certain parity constraints [6]. The

second property is a ranking of the vertices — a function r : V (G) → Z. A comprehensive

study of dashings has already been done [25], and this work complements that by studying

rankings.

1.2 Rankings

An acyclic orientation of a graph G is an assignment to every edge of G of a direction so

that no cycle in G has all of its edges in the same direction. For any graph G, the number of

acyclic orientations of G is equal to (−1)nχ−1(G) [19]. The number of acyclic orientations

of a graph G is also equal to the number of ways in which a partially ordered set, or poset,

structure can be imposed on G [19]. This means that for every edge ij ∈ E(G), one of the
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two vertices i and j is assigned to precede the other (notated i ≥ j). This must be done

transitively; i.e. if i ≥ j and j ≥ k then i ≥ k.

(a) (b)

Figure 1: (a) An acyclic orientation of a graph G on 7 vertices. Each edge, or arc, is assigned
a direction. There may be cycles in the graph (dashed above). However, there may not be
a directed cycle; i.e. the edges in a cycle may not all have the same direction. (b) The poset
corresponding to the orientation in (a). Note that every arrow (representing which vertex is
greater) points downward.

Less well studied is the number of ways to impose a graded poset structure on G. This

means assigning an integer rank r(v) to each vertex so that for every edge ij ∈ E(G),

|r(i)− r(j)| = 1. This is equivalent to the rankings discussed in the previous section. These

have primarily been studied for hypercubes [5] [9], and only a recursive algorithm was found

for counting the number of rankings [25], not an explicit formula.

In this paper, we find a generating function that enables us to calculate the number of

rankings of a given graph. We also look at a variation on rankings called Lipschitz functions

and relate these to rankings. We then look at a subset of graphs called squarely generated

graphs, which are graphs whose cycle space can be generated by 4-cycles. We show a link

between rankings and 3-colorings of these same graphs, thereby also connecting rankings to

the Potts model. Lastly, we look at some asymptotics for various types of graphs, which

enables us to predict approximate values for the number of rankings and Lipschitz functions

of many more graphs than we calculate explicitly.
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1.3 Potts Model

The Potts model [1] [15] is used in statistical mechanics to characterize the behavior of

systems of interacting particles. In its original incarnation [15], it is used to study collections

of molecules, arranged in a two-dimensional lattice structure, by focusing on the interactions

between pairs of neighboring molecules. The Potts model can be expanded to systems that

do not take the shape of a lattice, and it can also be used for a wide range of situations, such

as drainage of foam [10], magnetic interactions [4], entropy [11], social demographics [13] [18],

and tumor growth [20] [21].

In the Potts model, each particle has a spin that takes on a value from 0 to q− 1, where

q depends on the system being modelled. To express the total energy (kinetic and potential)

of the system, each pair of neighboring particles is assigned an interaction energy value. If

the particles have the same spin, this value is 0; if their spins are different, the value is J ,

a constant specific to the system being modelled. The total energy of a given system in

any state w is the sum of the energy values of every pair of particles and is expressed as

h(w) = J
∑

i,j 1 − δ(σi, σj) [1]. Here i and j are neighboring particles, δ is the Krönecker

delta, and σi is the spin of particle i.

There is also a partition function associated with the Potts model that allows us to

compute the probability that the system is in a given state. The partition function is a

weighted sum of the states so that those with lower energy, which are the states that are

more likely to exist, have a greater weight. The partition function is Z =
∑

w e
−βh(w) over

all possible states w for a constant β. We can interpret β−1 as a sort of temperature; for

example, when modelling social dynamics, the temperature can be thought of as measuring

tolerance of other groups [18].

If β takes on a large enough value (i.e. at temperatures close to zero), the only states that

affect the partition function’s value are those with the smallest value of h. If J > 0, these

are the states in which all particles have the same spin. This is known as a ferromagnetic

model [1]. In this case, the partition function counts the number of states of the system in
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which all particles have the same spin. Since there are q possible spins, the partition function

is proportional to q.

The cases that are relevant to this work are those with J < 0. In such cases, the states

with the smallest value of h are those in which no two neighboring particles have the same

spin. This is known as an antiferromagnetic model. In this case, the partition function

counts the number of states where no two neighboring particles have the same spin. If we

treat the system as a graph G, the number of such states is equal to the number of ways

to color G with q colors such that no two adjacent vertices are the same color [8]. Such a

coloring is called a proper q-coloring of G. If we hold G constant and let q vary, we find that

the partition function at very low temperatures is equivalent to the chromatic polynomial.

The chromatic polynomial χq(G) is a well-studied graph invariant [3] [16] [23]. For a

graph G on n vertices, it is an nth degree polynomial in q such that for any positive integer

q, χq(G) is the number of proper q-colorings of G. The chromatic polynomial is known to

be computable in 2nnO(1) time, and the number of 3-colorings is known to be computable in

O (1.62617n) time [7]. These 3-colorings provide the main link to the rank functions studied

in this paper.

2 Preliminaries

We define a ranking or rank function as an assignment to each vertex of an integer rank r(v)

so that for every edge ij ∈ E(G), |r(i) − r(j)| = 1. This is equivalent to a homomorphism

r from G onto Z. Two rankings r1 and r2 are considered equivalent if there is an integer η

such that for every vertex v, r1(v) + η = r2(v).

A (discrete) Lipschitz function of a graph G is an assignment to every vertex v ∈ V (G)

of an integer rank d(v) such that if there is an edge e ∈ E(G) connecting vertices v1 and

v2, |d(v1) − d(v2)| ≤ 1. This is similar to the above definition of ranking, except that two

neighboring vertices may have identical rank. Equivalence between Lipschitz functions is
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defined as for rankings. In this paper, we will use Lipschitz functions as a tool for calculating

rankings.
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Figure 2: (a) A ranking of the hypercube I3c . Every pair of vertices connected by an edge
has ranks that differ by exactly 1. (b) A Lipschitz function of the hypercube I3c . Every pair
of vertices connected by an edge has either the same rank or ranks that differ by exactly 1.

For any graph G, the set of all nonequivalent rankings of G is denoted R(G), and the

total number of rankings is denoted |R(G)|. Similarly, the set of all nonequivalent Lipschitz

functions of G is denoted D(G) and the total number of functions denoted |D(G)|.

The mapping + : R(G)×R(G)→ D(G) is defined by +(r1, r2) = d if r1(v)+r2(v) = 2d(v)

for all v ∈ V (G). In section 3.2, we show that this mapping is surjective for all bipartite G

and discuss the implications for rankings.

Lemma 2.0.1. For a graph G, R(G) 6= ∅ iff G is bipartite.

Proof. First, we show that every bipartite graph has at least one ranking. Split the vertices

of G into vertex sets V0 and V1 so that every edge connects V0 to V1. Define r so that r(v) = i

if v ∈ Vi. Every edge connects a vertex with rank 0 to a vertex with rank 1, so this is a valid

ranking and |R(G)| > 0.

Second, we show that if a graph G has at least one ranking, it must be bipartite. Partition

the vertices into sets V0 and V1 such that V0 (resp. V1) contains all vertices with even (resp.
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odd) rank. Since every edge connects a vertex with odd rank to a vertex with even rank,

every edge connects one set to the other. So G is bipartite.

Remark. This does not hold for Lipschitz rankings, because an edge can connect two vertices

with the same rank, so that not every edge connects a vertex with odd rank to a vertex with

even rank.

A grid graph is a graph Lm,n with mn vertices labeled (0, 0) through (m− 1, n− 1) such

that for every vertex (i, j), there is an edge connecting it to (i, j + 1) and (i+ 1, j).

They are frequently studied by mathemeticians [12] [14] because they have a lot of sym-

metry, and by physicists [4] [11] [17] because they are a good approximation of 2-dimensional

space. The Potts model, in fact, was originally used only on grid graphs. Some emphasis is

put on grid graphs in this paper, for the same reason.

A squarely generated graph is a graph G whose cycle space, viewed as a vector space,

has a basis consisting only of 4-cycles. A squarely generated graph must be bipartite, and

therefore has a positive number of rankings. All grid graphs are squarely generated, as are

all hypercubes and complete bipartite graphs. Trivially, all paths and trees are squarely

generated, because their cycle space is empty.

The rankings of squarely generated graphs have a strong connection to the chromatic

polynomial, as we show in Theorem 3.4.1.

3 Results

3.1 Calculations

This section consists of lemmas that will be usable later on. These lemmas pertain to

calculations of simple graphs, such as trees and complete graphs. These will be used primarily
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(a) (b) (c)

Figure 3: For all graphs, the two vertex sets are shown in white and black. (a) A 4× 4 grid
graph L4,4. With the exception of the vertices on the edges, every vertex has exactly four
neighbors and is a part of exactly four 4-cycles. This symmetry makes it easier to calculate
the number of rankings of L4,4. (b) A squarely generated graph G. Though there are cycles
with 6 or more vertices (dashed), these can all be generated by 4-cycles. (c) A non-squarely
generated graph G′. There is a 6-cycle (dashed) that cannot be generated by 4-cycles.

as bounds for our asymptotics (Section 3.5).

Lemma 3.1.1. For a tree (or path) Tn with n vertices, we have that

a) |R(Tn)| = 2n−1

b) |D(Tn)| = 3n−1.

Proof. a) We prove this by induction. For T1, a single vertex, there is only 20 = 1 possible

ranking. Therefore assume that the lemma holds true for Tn, i.e. |R(Tn)| = 2n−1. Adding

one vertex to Tn and one edge connecting that vertex gives Tn+1.
??The new vertex is

only attached to one vertex of Tn, so its rank can either be one greater or one smaller

than that of its attached vertex. This means that for every ranking of Tn, there are 2

rankings of Tn+1. So |R(Tn+1)| = 2|R(Tn)| = 2 · 2n−1 = 2n, as desired.

b) The proof of part b) is similar. There is again only 30 = 1 Lipschitz function for T1. Again

assume that the lemma holds true for Tn. Adding one vertex to Tn and one edge connecting

that vertex gives Tn+1. The new vertex is only attached to one vertex of Tn, so its rank can

be one greater, one smaller, or equal to that of its attached vertex. This means that for
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every ranking of Tn, there are 3 rankings of Tn+1. So |R(Tn+1)| = 3|R(Tn)| = 3·3n−1 = 3n,

as desired.

For a hypercube Icn, the number of rankings is unknown in general, but seems to grow

exponentially with respect to the number of vertices (i.e. as k2
n
). Some values for small n

are shown in the following table (see [25]):

n 0 1 2 3 4 5

|R(Icn)| 1 2 6 38 990 395094

Lemma 3.1.2. For a complete bipartite graph Km,n, we have |R(Km,n)| = 2m + 2n − 2.

Proof. Let the bipartition of V (Km,n) be Vm and Vn. Choose one vertex v ∈ Vm and fix it

at rank 0. We can split the rankings into three cases:

Case 1. h(v′) = 0 for all v′ ∈ Vm. This is the simplest case. Every vertex u ∈ Vn can have

rank either 1 or −1, independent of the others. Therefore this case contributes 2n

rankings.

Case 2. h(v′) = 2 for at least one v′ ∈ Vm. In this case, every vertex u ∈ Vn must have rank

1. Each of the remaining m− 1 vertices in Vm can have either rank 0 or rank 2, as

long as they do not all have rank 0. So this case contributes 2m−1 − 1 rankings.

Case 3. h(v′) = −2 for at least one v′ ∈ Vm. This case is essentially identical to the previous

case, so it also contributes 2m−1 − 1 rankings.

Combining these three cases gives |R(Km,n)| = 2n + 2m − 2, as desired.

Lemma 3.1.3. For a complete graph Kn, we have |D(Kn)| = 2n − 1.

Proof. The proof of this lemma is almost identical to that of the previous.

Lemma 3.1.4. Adding an edge between two existing vertices v and v′ of a graph G will

always weakly reduce the number of possible rankings.
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Lemma 3.1.5. For general G with n vertices, 2n/2+1 − 2 ≤ |R(G)| ≤ 2n−1.

Proof. A tree has minimal edges and a complete bipartite graph has maximal edges. By

Lemma 3.1.4, every graph has at most as many rankings as a tree (i.e. 2n−1) and at least as

many as a complete bipartite (i.e. 2n/2+1 − 2).

3.2 Lipschitz Functions

Here, we give results linking Lipschitz functions to rankings. We relate the number of

Lipschitz functions to the number of rankings both of the same graph and of a more complex

graph. These will enable us to bound the number of rankings for various families of graphs.

Theorem 3.2.1. For any bipartite graph G, it holds that 2|D(G)| = |R(G× E)|.

Proof. Let d be a Lipshitz ranking of G. We will construct exactly 2 rankings r1, r2 of G×E

that correspond to d. First select any vertex v ∈ V (G). Let its rank be dv. Denote the edge

in G×E that corresponds to v as v. Let the vertices along v have ranks dv and dv + 1. Note

that there are two distinct ways to do this; these will correspond to r1 and r2.

Choose any edge vv′, and as before, let the edge in G × E that corresponds to v′ be v′.

The rank of v′ will either be dv + 1, dv, or dv − 1. Call these three cases +, 0, and −. In the

first case, assign the ranks of the vertices along v′ to be dv + 1 and dv + 2. In the second

case, assign the ranks of those vertices to be dv + 1 and dv. In the third case, assign their

ranks to be dv − 1 and dv. This is shown in the below figure.

Repeat this for other edges in G until every vertex in G × E has a rank. To see that

this is a valid ranking of G × E , choose any cycle c ∈ C(G). Let c have 2n edges (since G

is bipartite), of which m are labeled +. Since c is a cycle, m edges must also be labeled −,

leaving 2n − 2m to be labeled 0. When transferring this to G × E , we focus on the sum of

the ranks along the edge. For this to be a valid ranking, the sum at the first edge must be

the same as the sum at the last edge (because they are the same edge). + increases the sum

by 2, − decreases it by 2, and 0 keeps it constant. So going around the cycle, the final sum

10



(a) (b) (c)
dv − 1

dv

dv + 1

dv + 2

Figure 4: The three cases: (a) +, (b) 0, and (c) –. Each vertex’s vertical level (labelled on
the right side of the figures) is its rank. In all three figures, the 2-vertex graph represents
one edge in G and the associated Lipschitz function. The 4-vertex graph represents the two
edges that correspond in G × E and the associated ranking. In each figure, v and v are in
black, and v′ and v′ are white. (a) v′ has higher rank than v, and both vertices of v′ have
higher rank than v. (b) v′ has the same rank as v, and the vertices of v′ have switched rank
compared to those of v. (c) v′ has lower rank than v, and both vertices of v′ have lower rank
than v.

will be the same as the initial one. We must also have that the edges keep their orientation.

Since only the 0 move flips orientation, and there must be an even number (2n−2m) of such

moves, the edge will keep its orientation. So this is a valid ranking of G× E .

Theorem 3.2.2. The mapping + : R(G)×R(G)→ D(G) is surjective for all bipartite G.

Proof. In the proof of the previous theorem, we constructed a ranking of G × E from a

Lipschitz function d on G. Split this ranking into two rankings of G. Adjust the two rankings

r1 and r2 so that they add up to 2d for at least one vertex. That is, set r1(v) + r2(v) = 2d(v)

for some v ∈ V (G). Then they will add up to 2d for all vertices.

To see this, recall that there are three cases: +, −, and 0. In the + case, the rankings

each increase by 1 and the Lipschitz function increases by 1 as well. So we have

r1(v
′) + r2(v

′) = r1(v) + 1 + r2(v) + 1 = 2d(v) + 2 = 2d(v′).

The − case is similar. For the 0 case, one of the rankings increases by 1 and one decreases
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by 1, while the Lipschitz function doesn’t change. So in this case we have

r1(v
′) + r2(v

′) = r1(v) + 1 + r2(v)− 1 = 2d(v) = 2d(v′).

This shows that the two rankings r1 and r2 add up to 2d. This means that +(r1, r2) = d.

So the + mapping is surjective.

Corollary 3.2.3. Since +(r1, r2) = +(r2, r1), this means that there can be at most
(|R(G)|

2

)
Lipschitz functions of G.

This, combined with Theorem 3.2.1, enables us to relate |R(G)| and |R(G× E)|.

3.3 Generating Functions

In this section, we develop some generating functions to enable us to calculate the number

of rankings or Lipschitz functions of any graph.

Theorem 3.3.1. For every bipartite graph G, define the generating function

R(G) =
∏

e∈E(G)

 ∏
c∈C(G)

yc
de(c) +

∏
c∈C(G)

yc
−de(c)

,

where dE(C) =


1 if C and E go the same direction

0 if C does not contain E

−1 if C and E go opposite directions

.

Then the constant term of R(G) is |R(G)|.

Proof. For all edges e ∈ E(G), define

g(e) =
∏

c∈C(G)

yde(c)c +
∏

c∈C(G)

y−de(c))c .
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The function is therefore

R(G) =
∏

e∈E(G)

g(e).

Let n = |C(G)|. There are 2n terms in the expansion for R(G), and of these, the constant

terms form a bijection with rankings of G. To see this, choose a ranking of G. Direct every

edge (arc) such that the lower ranked vertex is the head of the arc. Also assign every cycle

an arbitrary direction. Now choose any cycle c with 2m vertices, and traverse it in the

cycle’s direction. Of the cycle’s 2m edges, m must go down a rank and m must go up a

rank. Therefore m of the edges must be in the same direction as c (de(c) = 1) and m must

be the opposite direction (de(c) = −1). Therefore in the generating function, m of the edges

must contribute y1c and m must contribute y−1c (and the remaining n − 2m contribute y0c ).

So if this is a valid ranking, for all cycles c, the contribution to the generating function is

y0c , and the total contribution is y01y
0
2 · · · y0n = 1. So every valid ranking contributes 1 to the

generating function. Therefore the constant term of the generating function is exactly the

number of rankings of G.

There is a similar generating function for Lipschitz functions:

Theorem 3.3.2. For every graph G, define the generating function

D(G) =
∏

e∈E(G)

 ∏
c∈C(G)

yc
de(c) + 1 +

∏
c∈C(G)

yc
−de(c)

,

where dE(C) =


1 if C and E go the same direction

0 if C does not contain E

−1 if C and E go opposite directions

.

Then the constant term of D(G) is |D(G)|.

The only difference between the two functions is the 1 in D(G). The 1 here represents

the fact that an edge can have no effect on the cycles it belongs to (if the edge’s vertices
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have the same rank).

Though these functions are nice in theory, in practice these take time to calculate, espe-

cially for very large graphs. However, this time O (|V (G)|4) is still a significant improvement

on the O
(
2|V (G)|) required to calculate the number of rankings using brute force.

3.4 Squarely Generated Graphs

Squarely generated graphs are our main connection to physics and the Potts model. In

this section, we create that connection by relating rankings of squarely generated graphs to

colorings.

Theorem 3.4.1. For any squarely generated graph G, |R(G)| = 1
3
χ(G; 3).

Proof. Call the colors 0, 1, and 2. We demonstrate a bijection between rankings and proper

colorings with one vertex fixed at color 0. First, we show that every ranking has a coloring

that corresponds to it. To see this, assign every vertex v the color r(v) mod 3. Since every

edge connects two vertices whose ranks differ by 1, no edge will connect two vertices of the

same color.

To show the reverse direction, assign a proper coloring to G. Assign the fixed vertex v0

rank 0. Then assign rank 1 to every color 1 vertex that is connected to v0, and rank −1 to

every color 2 vertex. Continue this process outward from v0, orienting each edge such that

the vertex whose color is one greater has a rank one higher. This gives us a ranking of G,

completing the proof of the bijection.

This theorem means that the number of rankings of G is one third of the number of proper

3-colorings of V (G). By symmetry, this is also equal to the number of proper 3-colorings of

V (G), holding one vertex fixed.

Corollary 3.4.2 ( [22]). χ(G;n) = (−1)|V |+1nT (G; 1−n, 0), where T is the Tutte polynomial.

So

|R(G)| = (−1)|V |+1T (G;−2, 0).
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Figure 5: This is an example of the bijection between rankings and 3-colorings with one
fixed vertex for the cycle C4. (a) These are the six rankings of the graph C4. (b) These are
the six 3-colorings of the graph C4, with the upper-left corner fixed white. White = 0, red
= 1, and black = 2.

Remark. For a general m × n grid graph, there is no known formula fior the number of

rankings. However, for any particular grid, the number of 3-colorings (and therefore the

number of rankings) can be calculated using the transfer matrix method [2].

3.5 Asymptotics

In this section, we look at asymptotics of the number of rankings of various families of graphs

{Gn}, where Gn has n vertices.

Recall Lemma 3.1.5. This can be rephrased as an asymptotic:

For any Gn, |R(Gn)| = O (2n) and |R(Gn)| = Ω
(√

2
n
)

.

Lemma 3.5.1 ( [9], Theorem 1.4). |R(Idc )| = O
(

22d
)

, or |R(Gn)| = O (2n) if Gn is a

hypercube.

By Lemma 3.1.4, any graph that is contained by Idc and contains T2d will have more

rankings than Idc and fewer than T2d . Both of those graphs have O
(

22d
)

rankings, giving

the following corollary:
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Corollary 3.5.2. Any connected graph on 2d vertices G2d contained by Idc has O
(

22d
)

rank-

ings.

Using the generating function, we calculate that |R(Cn)| =
(
n
n/2

)
. This is equal to (n +

1)Cn/2, where Cn are the Catalan numbers. Since Cn = O
(

4n√
n3

)
, we have

Lemma 3.5.3.

|R(Cn)| = O

(
4n/2√
n

)
= O

(
2n√
n

)
.

As a cycle has only one more edge than a path, it makes intuitive sense that its rankings

would grow only slightly slower.

We also looked at asymptotics on grid graphs. [17] developed explicit formulae for χq(Lm,n)

for all m ≤ 8. These formulae (section 5) all have the form χq(Lm,n) = q(q − 1)V1M
n−1
m V T

2 ,

where V1 is a row vector in q, Mm is a matrix in q, and V2 =

(
1 0 · · · 0

)
. Since V1, Mm,

and V2 are independent of n, we have that χq(Lm,n) = O
(
λnm,q

)
, where λm,q is the largest

eigenvalue of Mm for given q. This gives |R(Lm,n)| = O
(
λnm,3

)
.

For square graphs Ln,n, the number of rankings grows exponentially in the order of n2.

Just as above, we have that χq(Ln,n) = O
(
λnq
)
, so |R(Ln,n)| = O (λn3 ). It was shown in [11]

that λ3 = 8
9

√
3 ≈ 1.5396, so we have |R(Ln,n)| = O

((
8
9

√
3
)n2)

. We conjecture that this

holds true for all rectangular grid graphs Lm,n as well:

Conjecture 3.5.4. For any grid graph Lm,n, |R(Lm,n)| = O
((

8
9

√
3
)mn)

.
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