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Abstract

First introduced by Wolfgang Schmidt, the (α, β)-game and its modifications have been
shown to be a powerful tool in Diophantine approximation, metric number theory, and dynamical
systems. However, natural questions about the winning-losing parameters of most sets have not
been studied thoroughly even after more than 40 years. There are a few results in the literature
showing that some non-trivial points and small regions are winning or losing, but complete
pictures remain largely unknown. Our main goal in this paper is to provide as much detail as
possible about the global pictures of winning-losing parameters for some interesting families of
sets.

1 Introduction

In [S1] (1966), Wolfgang Schmidt proved that the set of badly approximable numbers has full

Hausdorff dimension and the countable intersection property, using the (α, β)-game as the main

tool. The result was then generalized to linear forms and matrices in [S2], using essentially the

same method. The (α, β)-game has been shown to be powerful method to prove the existence and

abundance of sets arising in dynamical systems, Diophantine approximations and metric number

theory (see, for instance, [Da, KW, Mc]). In this section, we will describe Schmidt’s (α, β)-game,

present some notations used throughout the paper, and summarize our results.

Let I = {(α, β) : 0 < α, β < 1} = (0, 1) × (0, 1) denote the open unit square, and B(c, r) =

[c− r, c+ r] = {x ∈ R : |x− c| ≤ r} be the closed interval (ball) of radius r centered at c. For each

pair (α, β) ∈ I, consider the following Schmidt (α, β)-game on R, played by two players, called

Alice and Bob. The game starts with Bob choosing a closed interval B0 = B(b0,
d
2) for some d > 0.

The game then proceeds inductively with Alice and Bob alternatively take turns, choosing closed

intervals An’s, Bn’s respectively, to form a nested sequence:

B0 ⊇ A1 ⊇ B1 ⊇ A2 ⊇ B2 ⊇ · · · ,
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such that the length |An| of An is equal to α|Bn−1| and the length |Bn| = β|An|. In other words,

An = B

(
an,

dα(αβ)n−1

2

)
with |an − bn−1| ≤ (1− α)

d(αβ)n−1

2
,

Bn = B

(
bn,

d(αβ)n

2

)
with |bn − an| ≤ (1− β)

dα(αβ)n−1

2
.

A subset S of R is called (α, β)-winning if Alice can play in such a way that the unique point of

intersection:

x∞ :=
∞⋂
n=1

Bn =
∞⋂
n=1

An = lim
n→∞

an = lim
n→∞

bn

lies in S, no matter how Bob plays. In other words, for any n ∈ N and for any choice of Bn made

by Bob, Alice can choose An in such a way that x∞ ∈ S. We will say that S is (α, β)-losing if it

is not (α, β)-winning. In [S1], it was shown that a winning or losing strategy for an (α, β)-game

need only be dependent on the last interval which the opponent played, as opposed to all of the

opponents’ previous intervals. Let us define B as the set of all intervals in R of positive length.

Then, we may consider a winning or losing strategy f : B → B as a function which describes what

interval Alice or Bob, respectively, would choose given their opponents previous interval, for all

intervals in R, so that they could win.

For S ⊂ R, define the Schmidt diagram D(S) of S to be the set of pairs (α, β) ∈ I such that

S is (α, β)-winning. Let

D̂ :=

{
(α, β) ∈ I : β > 2− 1

α

}
and

Ď :=

{
(α, β) ∈ I : β ≥ 1

2− α

}
.

Then D̂ and Ď are Schmidt diagrams of any co-countable set and any dense countable set respec-

tively (see [S1]). Besides I, ∅, D̂, and Ď (proposition 2.1), there are no other known examples of

sets of the form D(S) for some S. In this paper, we show large portions of other Schmidt diagrams

that are not in the preceding four forms.

In the next section, we will show some basic properties of Schmidt diagrams, and a technical

lemma which will be used in later sections. These properties include details on portions of the

Schmidt diagram that are trivial for certain sets and the technical lemma is used to show Bob or
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Alice’s ability to force his/her opponent to move into a particular interval. In section 3, we describe

in great detail the Schmidt diagram of the following family of sets:

Fb,w :=
{
x ∈ R : there are at most finitely many w ’s

in the base b expansion of x

}
,

where b = 2, 3, 4, ... be a base expansion, and w ∈ {0, 1, ..., b− 1} is any digit of base b. It is known

that these sets all have measure zero and are dense. We have two separate portions, one devoted

to winning regions and one devoted to losing regions. Our basic strategy is to consider each digit

individually to see whether Alice can avoid making that digit w. For our losing arguments, we

employ similar tactics to see how Bob can force various digits to be w. A significant difference will

arise between the two strategies, though because Bob needs to only ensure that infinitely many

digits are w, while Alice needs to ensure that from a certain point on, all digits are not w. The

winning and losing theorems for Fb,w which we found were:

Theorem 3.1. Let Wm =
{

(α, β) ∈ I : 1
b ≤ (αβ)m ≤ α

2(1−α)
β(b−1)(1−2α+αβ)−(1−2β+αβ)

1+αβ(b−1)

}
, for m ∈

N. Then
⋃∞
m=1Wm ⊂ D(Fb,w).

Theorem 3.2. If α > bβ+β−1
2bβ−bβ2−β+β2 , then Fb,w is (α, β)-losing.

Theorem 3.3. If α > (b−1)β+β−1
2(b−1)β−(b−1)β2−β+β2 , then Fb,0 is (α, β)-losing.

Here are graphs of the trivial zones (as described in the following section) and of what we

found of the Schmidt Diagram for Fb,w:

The graph on the left is the trivial zones, and the graph on the right includes our winning and losing

zones and is for F10,w. On the right graph, the greens and blues are winning, while the purples and
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reds are losing. The blue tooth-like shape is a distortion of the big green tooth to its right, due to

the fact that it was proved in [S1] that if (α, β) is winning, (α(αβ)n, β) is also winning. There is

a winning zone for Fb,w given in [S1], but it does not show up in the Schmidt diagram for b = 10

(the winning zones tend to expand as b increases, while the losing zones retract as b increases).

Finally, in section 4, we will apply the results and methods in sections 2 and 3 to provide a

big picture of winning and losing parameters of a family of sets arising from [Dr, Fr]. Namely, the

set

Cb :=
{
x ∈ R : there is at least one 0 or b− 1

in the base b expansion of x

}
.

Our losing result for Cb is an extension of Freiling’s original argument in [Fr], which only

included two points, and our winning argument uses the ideas from our work with Fb,w. In [Dr, Fr],

it was shown that Cb exhibits some very interesting properties, which our winning results will shed

some light on. The key fact behind these properties is in fact that the denominator of the quantity

logb αβ (if it is even rational at all) plays a large role in which player has the advantage. The

winning and losing theorems for Cb which we found were:

Theorem 4.1. (1) C6 is (12 ,
1
2)-winning but (12 ,

1
3)-losing.

(2) C4 is (12 ,
1
2)-losing but (α, β)-winning for max

(∣∣1
2 − α

∣∣ , ∣∣12 − β∣∣) < ε, 0 < | ln(4αβ)| ≤ ε, where

ε = 2−12.

Theorem 4.2. If αβ = 1
b and α ≥ 2

b , then Cb is (α, β)-losing. Additionally, it is (α, β(1b )
n)-losing

for all n ∈ N.

Theorem 4.3. If β > (b+1)α−2
α((2b−4)−(b−3)α) and logb αβ /∈ Q, then Cb is (α, β)-winning.

Theorem 4.4. If logb αβ = p
q , p ∈ Z, q ∈ Z, p, q relatively prime, and

1− α
(b−1)α

2 − (b−1)αβ(1−α)
1−αβ

> 1
αβ

or
1− α

(b−1)α
2 − (b−1)αβ(1−α)

1−αβ

> b
1
q , then Cb is (α, β)-winning.

Here is a graph of what we found of the Schmidt Diagram of Cb (the graph shown uses b = 6)

which shows points which are losing (the colored lines), a region in which all points are winning

(the yellow region), and a region in which points such that logb αβ /∈ Q are winning (the green

region).
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The (α, β) game is interesting to study because it is an infinite game and produces some

counterintuitive results. For instance, Chris Freiling in [Fr] answered a question posed in [S1]

and showed that decreasing α and keeping β constant can allow Bob to win. In this paper, we

made significant progress in determining another complete Schmidt Diagram, and came up with

innovative methods for proving that large regions of the Schmidt diagram are (α, β) winning and

losing.

Remark: Our definition of losing is slightly different from what is usually defined in infinite

game theory, where the definition of losing is that Bob has a winning strategy. Since the sets that

we study are Borel sets, by Martin Theorem [Ma], both concepts agree in our context.

2 Miscellaneous Results

The following cases, which were also discussed in [S1], are said to have trivial Schmidt dia-

grams:

Proposition 2.1. (1) If S is not dense, then D(S) = ∅.

(2) D(R) = I.

(3) If S is dense, then Ď ⊆ D(S). Equality happens if S is also countable.

(4) If S 6= R, then D(S) ⊆ D̂. Equality happens if S is also co-countable.

Proof. (1) If S is not dense, clearly Bob can choose B1 such that S ∩ B1 = ∅ for any (α, β), in

which case he immediately wins.

(2) Trivial.

5



(3) Let S be a dense set, then S ∩B(b0, (1− α)d2) 6= ∅. Pick a ∈ B(b0, (1− α)d2), then Alice

can choose her center a1 of A1 to be a, and A1 = B(a, dα2 ) ⊆ B0. If β ≥ 1
2−α , then 2β−1 ≥ αβ > 0.

Therefore, even if Bob moves as far to one side on a given turn as possible, his interval will be

Bn = B(an ± (1− β)dα(αβ)
n−1

2 , d(αβ)
n

2 ) ⊇ B(an, (2β − 1)dα(αβ)
n−1

2 ) ⊇ B(an,
dα(αβ)n

2 ).

In particular, Alice may fix her centers an+1 = an = ... = a1 = a. That implies no matter

how Bob chooses B1, B2, ...,

x∞ = lim
n→∞

an = lim
n→∞

a = a ∈ S.

Now if S is a countable dense set, all points outside Ď are losing, since Alice cannot center her

intervals around any specific point, allowing Bob to systematically eliminate the points in S in a

countable way from his intervals.

(4) Similarly, if S 6= R, Bob can fix the centers of his intervals at a point not in S, as long

as 1 − 2α + αβ ≤ 0 or equivalently β ≤ 2 − 1
α . And if Sc is countable, Alice can systematically

eliminate the points in Sc, making all points in D̂ winning.

Some of the simple results about (α, β)-winning are summarized in the following proposition:

Proposition 2.2. Let S, S1, S2 ⊂ R.

(1) If S1 ⊆ S2 and S1 is (α, β)-winning, then S2 is also (α, β)-winning, i.e., D(S1) ⊆ D(S2).

(2) D(S1 ∩ S2) ⊆ D(S1) ∩D(S2) and D(S1 ∪ S2) ⊇ D(S1) ∪D(S2).

(3) If S is (α, β)-winning then Sc = R \ S is (β, α)-losing. In other words, D(S) ⊆ σ(I \D(Sc))

where σ(α, β) = (β, α).

(4) If F is a locally finite set and S ∪ F 6= R, then D(S ∪ F ) = D(S) = D(S \ F ).

(5) If S′ = kS + c for some k, c ∈ R, k 6= 0, then D(S′) = D(S).

Proof. (1): If S2 is (α, β)-losing, then on the (α, β)-game on S1, Bob may employ the same strategy,

and obviously the point of convergence will not be in S1, since it is not in S2.

(2): Any point not in S1 or S2 will not be in S1∩S2, and thus any winning strategy that Bob

has for a given (α, β) for S1 or S2 will apply for S1 ∩ S2 as well. Similarly, any winning strategy

Alice has for a given (α, β) for S1 or S2 will apply for S1 ∪ S2 as well.
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(3): If S is (α, β)-winning, then Alice has a winning strategy f(B) playing on S. So playing

(β, α)-game on Sc, Bob can win using Alice’s strategy f(B). And thus, Sc is (β, α)-losing.

(4): If S is (α, β)-losing, clearly S \ F is also (α, β)-losing. If S is (α, β)-winning, then for

the (α, β)-game on S \ F , Alice may systematically exclude the finite points in F ∩ B0 from her

interval (this is possible since S was not R, but also (α, β)-winning, meaning 1 − 2α + αβ > 0

and Bob therefore cannot center his intervals around one point). After she has eliminated all of

these points, she can use the same strategy she would in the (α, β)-game on S, as if she were given

the interval she has as her first interval on the (α, β)-game on S. Since we have now shown that

D(S) = D(S \ F ), it follows quite easily that D(S ∪ F ) = D((S ∪ F ) \ (F \ S)) = D(S).

(5): If f(B) is a winning strategy for Alice for an (α, β)-game on S, then we can define a

winning strategy g(B) for her for the (α, β)-game on S′ as g(B) = kf
(
1
k (B − c)

)
+ c. Similarly,

Bob has a corresponding winning strategy on S′ for each (α, β) for which he has a winning strategy

on S.

We will end this section by proving a technical lemma on the enforcing power of each player.

This Lemma is crucial in our strongest winning and losing theorems:

Lemma 2.3. If Bk = B(bk, ρ), Bob can ensure that

Bk+n ⊆ B

(
bk, ρ− 2ρα(1− β)

1− (αβ)n

1− αβ

)
.

Similarly, if Ak = B(ak, ρ), Alice can ensure that

Ak+n ⊆ B

(
ak, ρ− 2ρβ(1− α)

1− (αβ)n

1− αβ

)
.

Proof. Clearly, it holds for n = 0. Then, given Bk+n ⊆ B
(
bk, ρ− 2ρα(1−β)(1−(αβ)n)

1−αβ

)
, should Alice

move as far in one direction as possible, her endpoint which is closer to bk, would be bounded by

bk ±
(
ρ− 2ρα(1− β)(1− (αβ)n)

1− αβ
− 2ρα(αβ)n

)
.
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And if Bob moves as far as possible back towards bk, his further endpoint would be bounded by:

bk ±
(
ρ− 2ρα(1− β)(1− (αβ)n)

1− αβ
− 2ρα(αβ)n + 2ρ(αβ)n+1

)
=

= bk ±
(
ρ− 2ρα(1− β)(1− (αβ)n+1)

1− αβ

)
.

Therefore, the lemma follows by induction.

3 Schmidt’s diagram of Fb,w

Fix a base b > 1 and a b-ary digit w, and for each k ∈ Z, let

Zk := {x ∈ R : the kth b-ary digit of x is w}.

3.1 Winning pairs

In this section, we will consider for what (α, β) pairs the set Fb,w is winning. First, notice

that x ∈ Fb,w if and only if there exists a positive integer k0 such that

x /∈
⋃
k≥k0

Zk.

So, if there is a strategy for Alice such that for some k0 > 0, Alice may disjoint her intervals from

that Zk for all k ≥ k0, then Alice will win. We utilize the geometric structure of the Zk’s, in that

each Zk is composed of half-open intervals of length b−k whose centers are each b−k+1 apart, to

help us consider how Alice may avoid each of the Zk intervals systematically. For this proof, we

first fix m, the number of turns which Alice is allowed to disjoint herself from each succesive Zk.

For each k we consider two conditions for Alice to avoid the Zk. First, the region in which Alice

can ensure her interval will fall after m turns (we utilize Lemma 2.3 for this) is small enough to

fit between two consecutive Zk intervals. Next, we consider the worst scenario which Alice could

be presented with: a Zk lies directly in the center of her interval before the m turns. Then, the

interval she was given before the m turns must be large enough that she has room to dodge this

Zk. Thus for each k we have set upper and lower bounds on the size of the interval with which

she can begin attempting to avoid the Zk. Since the size of her interval depends on nk, the turn
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which she begins attempting to avoid Zk, we must find an nk for every k that satisfies our two

conditions. To ensure the existence of such an nk, we will set the ratio of our upper and lower

bound to be greater than or equal to 1
αβ . Thus for a fixed k, varying nk should yield some integer

solution (because nk is the exponent of αβ). This ratio being greater than 1
αβ will be the first of

our two overall conditions on α and β. The second will be that (αβ)m ≥ 1
b , so that consecutive nk

are more than m apart. In this manner, we shall prove the following theorem.

Theorem 3.1. Let Wm =
{

(α, β) ∈ I : 1
b ≤ (αβ)m ≤ α

2(1−α)
β(b−1)(1−2α+αβ)−(1−2β+αβ)

1+αβ(b−1)

}
, for m ∈

N. Then
⋃∞
m=1Wm ⊂ D(Fb,w).

Proof. Let (α, β) ∈Wm \ Ď. Since

(αβ)m ≤ α

2(1− α)

β(b− 1)(1− 2α+ αβ)− (1− 2β + αβ)

1 + αβ(b− 1)
=⇒

1 +
2αβ(1− α)(1− (αβ)m−1)

1− αβ
− 2α

α− 2αβ(1−α)(1−(αβ)m−1)
1−αβ

b− 1

≥ 1

αβ
,

for some k0 ∈ N, every value of d > 0, and every value of k ∈ N, there exists some nk ∈ N such that

α− 2αβ(1−α)(1−(αβ)m−1)
1−αβ

b− 1
≤ b−k−k0

d(αβ)nk−1
≤ 1 +

2αβ(1− α)(1− (αβ)m−1)

1− αβ
− 2α.

Then, for all k ∈ N, Alice can ensure that some Ank+m−1 is disjoint from Zk+k0 since after choosing

Ank
, she may ensure that Ank+m−1 ⊂ B(c, dα(αβ)

nk−1

2 − dα(αβ)nk−1β(1−α)(1−(αβ)m−1)
1−αβ ), where c is the

center of Ank
, and this interval can always fit between two intervals of Zk+k0 , as

dα(αβ)nk−1 − 2dα(αβ)nk−1β(1− α)(1− (αβ)m−1)

1− αβ
≤ (b− 1)b−k−k0 .

Also, since the farthest from the center of Bnk−1 that c can be is d(αβ)nk−1

2 − dα(αβ)nk−1

2 , even if an

interval of Zk+k0 is directly in the center of the Bnk−1, the closer endpoint of the interval Alice can

9



ensure Ank+m−1 is in is farther than the farther endpoint of the Zk+k0 interval, since

d(αβ)nk−1

2
− dα(αβ)nk−1 +

dα(αβ)nk−1β(1− α)(1− (αβ)m−1)

1− αβ
≥ b−k−k0

2
.

(If in either of the conditions, equality holds and Alice is forced to have the right endpoint of

Ank+m−1 coincide with the left endpoint of a Zk interval, which is the closed endpoint, Alice may

simply make sure that her next move does not include this endpoint, so she is fully disjoint for Zk.)

Additionally, if c1 = 1 + 2αβ(1−α)(1−(αβ)m−1)
1−αβ − 2α, then

b−k−1−k0 ≤ b−k−k0(αβ)m ≤ c1d(αβ)nk−1(αβ)m =⇒ b−k−1−k0

d(αβ)nk+m−1
≤ c1

Since the expression b−k−1−k0

d(αβ)nk+1−1 increases as nk+1 increases, there exists some nk+1 which satisfies

the inequality mentioned previously, and nk + m is not too large to satisfy the inequality, there

must be an nk+1 ≥ nk +m that satisfies it. Thus, Alice can repeat this process for all Zk+k0 , and

thus the point of convergence will be in Fb,w.

3.2 Losing pairs

We now similarly consider losing pairs. Our strategy for Bob to win (and therefore Alice to

lose) is to show that he can ensure that the point of convergence (and thus one of his intervals) is

contained in infinitely many Zk’s. Again, in order for Bob to contain one of his intervals in a Zk, he

must satisfy two conditions: he must be able to center around a Zk interval and then use Lemma

2.3 to move inside the interval. Unlike with the winning pairs however, Bob does not need an n for

every k to satisfy the bounds, but rather just an infinite number of (n, k) pairs. Therefore, we only

need the upper bound to be greater than the lower bound. Then, if logb αβ is irrational, all values

in between those bounds will be achieved exactly once (giving an infinite number of (n, k) pairs).

If logb αβ is rational, on the other hand, certain values will be achieved infinitely many times, but

since Bob has the choice of d he may ensure that these values lie between the bounds (thus giving

an infinite number of (n, k) pairs). By this method, we show that Bob can contain the point of

convergence in an infinite number of Zk’s and thus win.

Theorem 3.2. If α > bβ+β−1
2bβ−bβ2−β+β2 , then Fb,w is (α, β)-losing.
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Proof. Let (α, β) ∈ I such that α > bβ+β−1
2bβ−bβ2−β+β2 . Then, since 1− 2α(1−β)

1−αβ < 1−β
bβ (this comes from

our initial assumption when not solved for α), there are infinitely many ordered pairs (n, k) such

that

1− 2α(1− β)

1− αβ
<

b−k

d(αβ)n
<

1− β
bβ

.

(If logb αβ is rational, proper choice of d is necessary.) Then, for each pair, Bob can ensure

that Bn+mn ⊂ Zk for some mn. This is because he can center Bn around the center of a Zk

interval, since the interval of possible centers of Bn has length dα(αβ)n−1(1− β) > b−k+1, it must

contain the center of some Zk interval which are all spaced b−k+1 apart. Also, he can ensure that

Bn+mn ⊂ B(c, d(αβ)n − 2d(αβ)nα(1−β)(1−(αβ)mn )
1−αβ ), where c is the common center of Bn and the Zk

interval. Since this interval shares a center with the Zk interval and is smaller than it, as

lim
mn→∞

d(αβ)n − 2d(αβ)nα(1− β)(1− (αβ)mn)

1− αβ
= d(αβ)n − 2d(αβ)nα(1− β)

1− αβ
< b−k,

it is a subset of Zk, meaning Bn must be as well. Therefore, Bob can ensure that the point of

convergence is in infinitely many Zk’s, so it is not in Fb,w.

Now, we consider the case of w = 0 and apply a similar argument to the preceding one, but

with Bob trying to contain his intervals in Gk =
⋃∞
j=k Zj . It can be noted that for Fb,0 since the

intervals of Zk+1 begins where the intervals of Zk end, Gk is actually comprised of intervals, the

largest of which, have length b−k + b−k−1 + b−k−2 + ... = b−k

1− 1
b

= b−k+1

b−1 and again have centers b−k+1

apart. Therefore, we apply a similar argument where Bob aims to contain his intervals in infinitely

many Gk’s rather than Zk’s.

Theorem 3.3. If α > (b−1)β+β−1
2(b−1)β−(b−1)β2−β+β2 , then Fb,0 is (α, β)-losing.

Proof. Let (α, β) ∈ I such that α > (b−1)β+β−1
2(b−1)β−(b−1)β2−β+β2 . Then, since b−1

b

(
1− 2α(1−β)

1−αβ

)
< 1−β

bβ ,

there are infinitely many ordered pairs (n, k) such that

b− 1

b

(
1− 2α(1− β)

1− αβ

)
<

b−k

d(αβ)n
≤ 1− β

bβ
.

(If logb αβ is rational, proper choice of d is necessary.) Then, for each pair, Bob can ensure that

Bn+mn ⊂ Gk for some mn. As in the previous proof, he can center Bn around the center of one of the
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largest intervals in Gk. Also, he can ensure that Bn+mn ⊂ B(c, d(αβ)n− 2d(αβ)nα(1−β)(1−(αβ)mn )
1−αβ ) ⊂

Gk (the largest intervals of which are of size b−k+1

b−1 ). Therefore, Bob can ensure that the point of

convergence is in infinitely many Gk’s and therefore not in Fb,0.

4 Freiling’s Set

In [Fr], Chris Freiling considered the set of numbers with a 0 or 5 somewhere in their base

6 decimal expansion, or in our terminology, the set C6. This set is notable because it is (12 ,
1
2)-

winning but (13 ,
1
2)-losing (which is counterintuitive), as Freiling proved. In [Dr], Vladmir Dremov

considered a similar set, C4, and found that it was (12 ,
1
2)-losing, but winning in a small region

around (12 ,
1
2). In this section, we will attempt to further examine why this family of sets exhibits

this nature by studying more of its Schmidt diagram. We will apply a similar type of strategy we

used to show Fb,0 was losing, except we apply the ideas to winning arguments for Cb. First, though

we will begin by stating the results from [Fr, Dr].

Theorem 4.1. (1) C6 is (12 ,
1
2)-winning but (12 ,

1
3)-losing.

(2) C4 is (12 ,
1
2)-losing but (α, β)-winning for max

(∣∣1
2 − α

∣∣ , ∣∣12 − β∣∣) < ε, 0 < | ln(4αβ)| ≤ ε, where

ε = 2−12.

Proof. (1) See [Fr].

(2) See [Dr].

Now we will expand on the losing arguments that Freiling and Dremov used to give more

losing points for Cb.

Theorem 4.2. If αβ = 1
b and α ≥ 2

b , then Cb is (α, β)-losing. Additionally, it is (α, β(1b )
n)-losing

for all n ∈ N.

Proof. Let (α, β) ∈ I such that αβ = 1
b and α ≥ 2

b . For the (α, β)-game, Bob first chooses the

interval [0, 1]. Since α ≥ 2
b , A1 must include at least one of the complete intervals [1b ,

2
b ], [2b ,

3
b ],

[3b ,
4
b ], · · · , [ b−2b ,

b−1
b ]. Therefore, since αβ = 1

b , Bob can then choose one of these intervals for B1

12



and not have a 0 or b− 1 in the first decimal place, and he may repeat this strategy to ensure that

every decimal place is not a 0 or b− 1.

For the (α, β(1b )
n)-game, Bob may similarly begin by choosing [0, 1], and then as Bk simply

choose one of the intervals that he may have chosen as Bk(n+1) in the original (α, β) game. By this

strategy, he can also ensure that C is also (α, β(1b )
n)-losing for all n ∈ N.

Now, we will consider winning points for Cb. Let us define

Vk := {x with 0 or b− 1 at its kth b-ary place or on}.

Then, we may again note that Vk is made up of intervals, the largest of which will be of length

2
b−1 · b

−k+1 whose centers are b−k+1 apart. For instance, V1 contains the intervals (− 1
b−1 ,

1
b−1) and

( b−2b−1 ,
b
b−1). Then, if Alice can contain one of her intervals in one Vk, then the point of convergence

will be in Cb. We will then use a similar strategy as the one used in our losing arguments for Fb,w

to show how Alice can win on Cb. One significant difference between our winning arguments for Cb

and our losing arguments for Fb,w is that here Alice cannot choose d. When logb αβ is rational, this

will make it more difficult for Alice. First, though we will just consider when logb αβ is irrational,

where it does not make a difference (since all values between the bounds will be achieved regardless

of d, meaning we only need the upper bound to be greater than the lower bound).

Theorem 4.3. If β > (b+1)α−2
α((2b−4)−(b−3)α) and logb αβ /∈ Q, then Cb is (α, β)-winning.

Proof. Let (α, β) ∈ I such that β > (b+1)α−2
α((2b−4)−(b−3)α) . Then, since 1 − α > (b−1)α

2 − (b−1)αβ(1−α)
1−αβ ,

there is some order pair (n, k) such that

(b− 1)α

2
− (b− 1)αβ(1− α)

1− αβ
<

b−k+1

d(αβ)n
< 1− α.

Then Alice can ensure An+m ⊂ Vk for some m, since she may center An around a Vk interval, as

d(αβ)n(1−α) > b−k+1 and she may ensure An+m ⊂ B
(
c, dα(αβ)n − 2d(αβ)n+1(1−α)(1−(αβ)m)

1−αβ

)
⊂ Vk

since dα(αβ)n− 2d(αβ)n+1(1−α)
1−αβ < 2

b−1 · b
−k+1. Thus Alice may ensure that the point of convergence

is in some Vk and thus in Cb.

Now we consider the case of logb αβ ∈ Q, which is more complicated. We will take two

13



approaches to this case. Firstly, we will approach it as we did with the winning argument for Fb,w,

where we will set the ratio between the upper and lower bound to be greater than 1
αβ , ensuring

there exists an (n, k) pair that satisfies the inequality for every k (even though only one is needed).

The second approach we will take is to use a theorem from [Ke], which states that the region

between two parallel lines of rational slope p
q and width greater than 1√

p2+q2
(and thus vertical

distance greater than 1
q ) must include a lattice point. Then, by taking the negative logarithm of

our inequality and interpretting it as a region between two parallel lines, we can see that the ratio

between the upper and lower bounds must be greater than b
1
q where logb αβ = p

q is the slope of

these lines. This brings us to our final theorem.

Theorem 4.4. If logb αβ = p
q , p ∈ Z, q ∈ Z, p, q relatively prime, and

1− α
(b−1)α

2 − (b−1)αβ(1−α)
1−αβ

> 1
αβ

or
1− α

(b−1)α
2 − (b−1)αβ(1−α)

1−αβ

> b
1
q , then Cb is (α, β)-winning.

Proof. Let c1 = (b−1)α
2 − (b−1)αβ(1−α)

1−αβ and c2 = 1 − α. Let (α, β) ∈ I such that c2
c1
> 1

αβ . Then,

there is some pair (n, k) such that

c1 <
b−k+1

d(αβ)n
< c2.

As in the previous theorem, then Alice can ensure An+m ⊂ Vk for some m, and thus Cb is (α, β)-

winning.

Alternatively, let (α, β) ∈ I such that c2
c1
> b

1
q . Then, the region in the coordinate plane

(with n and k as variables)

− logb c1 − logb d− n logb αβ + 1 > k > − logb c2 − logb d− n logb αβ + 1

has slope logb αβ = p
q and vertical distance greater than 1

q (and thus width greater than 1√
p2+q2

).

By [Ke], this region contains a lattice point (n, k), and thus that latttice point must satisfy

c1 <
b−k+1

d(αβ)n
< c2.

Again, then Alice can ensure An+m ⊂ Vk for some m, meaning Cb is again (α, β)-winning.

This last theorem in fact explains the phenomenon which Freiling and Dremov observed with
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this family of sets. Alice’s ability to win is not only associated with how small α is and how large

β is, but also with how large the denominator of logb αβ is (if it is even rational). Both of Freiling

and Dremov’s losing results are implied by Theorem 4.2. Freiling’s winning result is implied by

Theorem 4.3, since log6
1
4 is irrational and (12 ,

1
2) lies in the described region. Dremov’s winning

result is implied by Theorem 4.4. By observation, it can be seen that the region which Dremov

describes lies nowhere near the curves log4 αβ = −1
2 and log4 αβ = −3

2 (and Dremov excludes the

points on the line log4 αβ = −1), so any points in the region for which log4 αβ is rational, this value

must have denominator three or greater. Again, by observation, we can see that Dremov’s region

lies entirely within the region described in Theorem 4.4 for q = 3. Thus, the theorems which we

have presented in this section imply and explain the results of Freiling and Dremov regarding this

family of sets.

5 Conclusion and Future Research

In our research, we determined the winning and losing values for vast portions of the global

Schmidt diagram for the set Fb,w, as well as for Cb. We made significant progress in determining

the Schmidt Diagrams for these sets and we provided an idea of the boundary of the winning and

losing zones for our sets. Additionally, we invented new, abstract methods for proving points in I

to be winning or losing. Our ideas culminated in winning and losing strategies in which Alice or

Bob could have complex strategies taking m moves in order to achieve their goals. Our research

improved immensely the daunting prospect of finding a complete, non-trivial Schmidt Diagram.

Clearly, the most significant future research connected with our project would be to find a

complete, non-trivial Schmidt Diagram. As of now, there are only four known Schmidt Diagrams,

so any additional complete diagram would be important. More specifically, the complete Schmidt

Diagram for the set Fb,w or at least for one of these types of sets and a fixed b would be particularly

interesting. Additionally, we found that there were points that were losing only when w = 0 or

w = b − 1, and it would be interesting to investigate the claim that Fb,x = Fb,y for x, y ∈ Z and

0 ≤ x, y ≤ b− 1.
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