Apollonian Equilateral Triangles

Christina Chen

Second Annual MIT PRIMES Conference

May 19, 2012

Figure 1: $(a+b+c+d)^2 = 2(a^2+b^2+c^2+d^2)$.

Figure 1: $(a+b+c+d)^2 = 2(a^2+b^2+c^2+d^2)$.

Figure 1: $(a+b+c+d)^2 = 2(a^2+b^2+c^2+d^2)$.

Figure 1: $(a+b+c+d)^2 = 2(a^2+b^2+c^2+d^2)$.

Figure 1: $(a+b+c+d)^2 = 2(a^2+b^2+c^2+d^2)$.

Figure 2: At each stage, a circle is incribed in each lune.

A Problem Involving an Equilateral Triangle

A Problem Involving an Equilateral Triangle

Figure 3: $(a+b+c+d)^2 = 3(a^2+b^2+c^2+d^2)$.

Definitions

Definition (Triangle Quadruple)

A **triangle quadruple** t = (a, b, c, d) is a quadruple of nonnegative integers satisfying

$$3(a^2+b^2+c^2+d^2)=(a+b+c+d)^2.$$

Definitions

Definition (Triangle Quadruple)

A **triangle quadruple** t = (a, b, c, d) is a quadruple of nonnegative integers satisfying

$$3(a^2 + b^2 + c^2 + d^2) = (a + b + c + d)^2.$$

Definition (Primitive Triangle Quadruple)

A triangle quadruple (a, b, c, d) is **primitive** if

$$gcd(a, b, c, d) = 1.$$

Operations

1) For solutions d and d' to the equation for triangle quadruples,

$$d+d'=a+b+c$$
.

Operations

1) For solutions d and d' to the equation for triangle quadruples,

$$d + d' = a + b + c.$$

2) If (a, b, c, d) is a triangle quadruple, then

$$(a, b, c, a + b + c - d)$$

is also a triangle quadruple.

$$t = (7, 4, 3, 1)$$

Figure 4: The operation is geometrically represented by reflecting two segments over a side of the equilateral triangle.

Matrix Representation of Operations

$$S_{1} = \begin{pmatrix} -1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} S_{2} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & -1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$S_{3} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 1 & -1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} S_{4} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & -1 \end{pmatrix}$$

Matrix Representation of Operations

$$S_{1} = \begin{pmatrix} -1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} S_{2} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1 & -1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

$$S_{3} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 1 & -1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} S_{4} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & -1 \end{pmatrix}$$

For $\mathbf{v} = (a, b, c, d)^T$, $S_4 \mathbf{v} = (a, b, c, a + b + c - d)^T$.

Definition (Triangle Group)

The **triangle group** T is the group generated by S_1, S_2, S_3, S_4 .

Definition (Triangle Group)

The **triangle group** T is the group generated by S_1, S_2, S_3, S_4 .

Note that the generators satisfy:

Definition (Triangle Group)

The **triangle group** T is the group generated by S_1, S_2, S_3, S_4 .

Note that the generators satisfy:

1. $S_i^2 = I$ for i = 1, 2, 3, 4.

Definition (Triangle Group)

The **triangle group** T is the group generated by S_1, S_2, S_3, S_4 .

Note that the generators satisfy:

- 1. $S_i^2 = I$ for i = 1, 2, 3, 4.
- 2. $(S_i S_i)^3 = I$ for $i \neq j$.

The Cayley Graph for the Triangle Group

Figure 5: Part of the Cayley graph for the infinite triangle group.

Definition (Root Quadruple)

A triangle quadruple t = (a, b, c, d) is a **root quadruple** if it is not possible to perform an operation that reduces the sum a + b + c + d.

Definition (Root Quadruple)

A triangle quadruple t = (a, b, c, d) is a **root quadruple** if it is not possible to perform an operation that reduces the sum a + b + c + d.

Lemma

For any triangle quadruple t = (a, b, c, d), operating on the largest element does not increase a + b + c + d.

Lemma

Any triangle quadruple (a, b, c, d) can be reduced to the root quadruple (0, x, x, x) (or permutations), where $x = \gcd(a, b, c, d)$.

Lemma

Any triangle quadruple (a, b, c, d) can be reduced to the root quadruple (0, x, x, x) (or permutations), where x = gcd(a, b, c, d).

Example

 $(3,4,7,1) \longrightarrow (3,4,1,1) \longrightarrow (3,1,1,1) \longrightarrow (0,1,1,1)$

Consequences Involving Orbits

A triangle quadruple (a, b, c, d) can generate a triangle quadruple (a', b', c', d') in a finite number of operations if gcd(a, b, c, d) = gcd(a', b', c', d').

Consequences Involving Orbits

A triangle quadruple (a, b, c, d) can generate a triangle quadruple (a', b', c', d') in a finite number of operations if gcd(a, b, c, d) = gcd(a', b', c', d').

$\mathsf{Theorem}$

All primitive triangle quadruples are contained in one orbit.

Counting the Number of Quadruples

Question

Is it possible to compute the number of triangle quadruples with height $\sqrt{a^2 + b^2 + c^2 + d^2}$ below a given value?

Counting the Number of Quadruples

Question

Is it possible to compute the number of triangle quadruples with height $\sqrt{a^2 + b^2 + c^2 + d^2}$ below a given value?

Theorem

Let F(x) be the number of triangle quadruples with $\sqrt{a^2 + b^2 + c^2 + d^2} \le x$. Then $F(x) = O(x^2)$.

Growth Rates

Growth Rates

Let W denote a word $S_{a_1}S_{a_2}\cdots$, where $S_{a_i}\neq S_{a_{i+1}}$.

Theorem

For any W of length $n \equiv i \pmod{4}$ and a root quadruple $\mathbf{t} = (a, b, c, d)$ with $a \leq b \leq c \leq d$,

$$||W\mathbf{t}||_{\infty} \leq ||T_i(S_4S_3S_2S_1)^{\frac{n-i}{4}}\mathbf{t}||_{\infty},$$

where $T_i = I$, S_1 , S_2S_1 , $S_3S_2S_1$ for i = 0, 1, 2, 3, respectively.

Lemma

The generators are reflections.

Lemma

The generators are reflections.

Proof.

The eigenvalues of S_i are 1, 1, 1, -1. It follows that the operation corresponding to S_i is the reflection over the plane spanning the vectors v_{i_1} , v_{i_2} , v_{i_3} , denoting the eigenvectors of S_i .

Lemma

For x = (a, b, c, d), S_i preserves the quadratic form $F(x) = 3(a^2 + b^2 + c^2 + d^2) - (a + b + c + d)^2 = xQx^T$, where

$$Q = \begin{pmatrix} 2 & -1 & -1 & -1 \\ -1 & 2 & -1 & -1 \\ -1 & -1 & 2 & -1 \\ -1 & -1 & -1 & 2 \end{pmatrix}.$$

That is, $F(x) = F(S_i x)$.

Theorem

The triangle group is a Coxeter group. In particular, since the determinant of its Cartan matrix is negative, it is a hyperbolic Coxeter group.

Theorem

The triangle group is a Coxeter group. In particular, since the determinant of its Cartan matrix is negative, it is a hyperbolic Coxeter group.

Proof.

Abstractly, construct a Coxeter group with Q as its Cartan matrix. By the previous two lemmas, the triangle group is that Coxeter group.

Open Questions

1. Beginning with a specific root quadruple, is it possible to calculate the average value of the maximum element in the triangle quadruple obtained after *n* operations?

Open Questions

- 1. Beginning with a specific root quadruple, is it possible to calculate the average value of the maximum element in the triangle quadruple obtained after *n* operations?
- 2. Given any integer n, is it possible to calculate the number of triangle quadruples with n as the largest element?

Open Questions

- 1. Beginning with a specific root quadruple, is it possible to calculate the average value of the maximum element in the triangle quadruple obtained after *n* operations?
- 2. Given any integer n, is it possible to calculate the number of triangle quadruples with n as the largest element?
- 3. Given any pairs of number (p, q), is it possible to determine whether there exists a triangle quadruple containing p and q, and if such a quadruple does exist, is it possible to determine how many there are?

Acknowledgments

I want to thank

- Prof. R. Stanley, for suggesting this project and for answering my questions,
- my mentor Nan Li, for always being patient and willing to discuss problems,
- Prof. G. Strang, Prof. B. Poonen, and Prof. P. Etingof, for helping with various parts of the project,
- PRIMES, for another great year of research experience,
- my parents, for always supporting me.

Bibliography

- R. Graham, J. Lagarias, C. Mallows, A. Wilks, and C. Yan, Apollonian Circle Packings: Geometry and Group Theory I. The Apollonian Group, Discrete Comput. Geom. **34**(2005), 547–585.
- R. Graham, J. Lagarias, C. Mallows, A. Wilks, and C. Yan, *Apollonian Circle Packings: Number Theory*, J. of Number Theor. **100**(2003), 1–45.
- P. Sarnak, *Integral Apollonian Packings*, Trans. Amer. Math. Mon. **118**(2011), 291–306.