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Geometric Motivation: Apollonian Circles
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Figure 1: (a + b + c + d)2 = 2(a2 + b2 + c2 + d2).
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Figure 2: At each stage, a circle is incribed in each lune.
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A Problem Involving an Equilateral
Triangle
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Figure 3: (a + b + c + d)2 = 3(a2 + b2 + c2 + d2).
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Figure 3: (a + b + c + d)2 = 3(a2 + b2 + c2 + d2).



Definitions

Definition (Triangle Quadruple)

A triangle quadruple t = (a, b, c , d) is a quadruple of
nonnegative integers satisfying

3(a2 + b2 + c2 + d2) = (a + b + c + d)2.

Definition (Primitive Triangle Quadruple)

A triangle quadruple (a, b, c , d) is primitive if

gcd(a, b, c , d) = 1.
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Operations

1) For solutions d and d ′ to the equation for triangle
quadruples,

d + d ′ = a + b + c .

2) If (a, b, c , d) is a triangle quadruple, then

(a, b, c , a + b + c − d)

is also a triangle quadruple.
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Geometric Representation of Operations

t = (7, 4, 3, 1)

t ′ = (7, 4, 9, 1)

Figure 4: The operation is geometrically represented by reflecting
two segments over a side of the equilateral triangle.
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Matrix Representation of Operations

S1 =


−1 1 1 1
0 1 0 0
0 0 1 0
0 0 0 1

 S2 =


1 0 0 0
1 −1 1 1
0 0 1 0
0 0 0 1



S3 =


1 0 0 0
0 1 0 0
1 1 −1 1
0 0 0 1

 S4 =


1 0 0 0
0 1 0 0
0 0 1 0
1 1 1 −1



For v = (a, b, c , d)T , S4v = (a, b, c , a + b + c − d)T .
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More Definitions

Definition (Triangle Group)

The triangle group T is the group generated by
S1, S2, S3, S4.

Note that the generators satisfy:

1. S2
i = I for i = 1, 2, 3, 4.

2. (SiSj)
3 = I for i 6= j .
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The Cayley Graph for the Triangle Group
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Figure 5: Part of the Cayley graph for the infinite triangle group.



Root Quadruples

Definition (Root Quadruple)

A triangle quadruple t = (a, b, c , d) is a root quadruple
if it is not possible to perform an operation that reduces
the sum a + b + c + d .

Lemma

For any triangle quadruple t = (a, b, c , d), operating on
the largest element does not increase a + b + c + d.
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Root Quadruples

Lemma

Any triangle quadruple (a, b, c , d) can be reduced to the
root quadruple (0, x , x , x) (or permutations), where
x = gcd(a, b, c , d).

Example

(3, 4, 7, 1) −→ (3, 4, 1, 1) −→ (3, 1, 1, 1) −→ (0, 1, 1, 1)
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Consequences Involving Orbits

A triangle quadruple (a, b, c , d) can generate a triangle
quadruple (a′, b′, c ′, d ′) in a finite number of operations if
gcd(a, b, c , d) = gcd(a′, b′, c ′, d ′).

Theorem
All primitive triangle quadruples are contained in one
orbit.
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Counting the Number of Quadruples

Question

Is it possible to compute the number of triangle
quadruples with height

√
a2 + b2 + c2 + d2 below a

given value?

Theorem

Let F (x) be the number of triangle quadruples with√
a2 + b2 + c2 + d2 ≤ x. Then F (x) = O(x2).
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Growth Rates

Let W denote a word Sa1Sa2 · · · , where Sai 6= Sai+1
.

Theorem

For any W of length n ≡ i (mod 4) and a root
quadruple t = (a, b, c , d) with a ≤ b ≤ c ≤ d,

||W t||∞ ≤ ||Ti(S4S3S2S1)
n−i
4 t||∞,

where Ti = I , S1, S2S1, S3S2S1 for i = 0, 1, 2, 3,
respectively.
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Is the Triangle Group a Coxeter Group?

Lemma
The generators are reflections.

Proof.
The eigenvalues of Si are 1, 1, 1, -1. It follows that the
operation corresponding to Si is the reflection over the
plane spanning the vectors vi1, vi2, vi3, denoting the
eigenvectors of Si .
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Is the Triangle Group a Coxeter Group?

Lemma

For x = (a, b, c , d), Si preserves the quadratic form
F (x) = 3(a2 + b2 + c2 + d2)− (a + b + c + d)2 = xQxT ,
where

Q =


2 −1 −1 −1
−1 2 −1 −1
−1 −1 2 −1
−1 −1 −1 2

 .

That is, F (x) = F (Six).



Is the Triangle Group a Coxeter Group?

Theorem
The triangle group is a Coxeter group. In particular,
since the determinant of its Cartan matrix is negative, it
is a hyperbolic Coxeter group.

Proof.
Abstractly, construct a Coxeter group with Q as its
Cartan matrix. By the previous two lemmas, the triangle
group is that Coxeter group.
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Open Questions

1. Beginning with a specific root quadruple, is it possible
to calculate the average value of the maximum element in
the triangle quadruple obtained after n operations?

2. Given any integer n, is it possible to calculate the num-
ber of triangle quadruples with n as the largest element?

3. Given any pairs of number (p, q), is it possible to deter-
mine whether there exists a triangle quadruple containing
p and q, and if such a quadruple does exist, is it possible
to determine how many there are?
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