Equivalence Classes of Permutations Created by Replacement Sets

William Kuszmaul and Ziling Zhou
MIT PRIMES

May 19, 2012

 $\{123,231\}$: A simple example

 $\{123,231\}$

 $\{123,231\}$: A simple example

 $\{123, 231\}$

 $\{123,231\}$: A simple example

 $\{123,231\}$

HOW DO WE MAKE EQUIVALENCE CLASSES?

If c adjacent letters in a permutation in S_n have the same order as a pattern in the replacement set, then they can be rearranged to have the order of any other pattern in the replacement set.

Definition

An *equivalence class* is the set of permutations reachable from some given permutation.

► Example: Consider $\{12, 21\}$. There is only one class. In S_3 , $123 \equiv 132 \equiv 312 \equiv 321 \equiv 231 \equiv 213$.

Non-trivial example for n = 4

Consider $\{123, 132, 231\}$.

1234	2134	3241	4231	3214	4213	4321	4312
2314	2143	3124	4123				
1324	2341	3142	4132				
1342	3421						
1243	2431						
3412							
1432							
2413							
1423							
		•					

MISCELLANEOUS NOTATION

- ► A *hit* in a permutation is a sub-word which has the same order as a pattern in the replacement set.
- ► An *avoider* is permutation which contains no hits.
- ► A *trivial class* is an equivalence class containing only one permutation.
- ► The *parity* of a permutation is its signum/sign/oddness.

THE THREE PROBLEMS

1. **Rotations:** replacement sets containing a permutation and its rotations;

Example: {2134, 1342, 3421, 4213}

 Single Set: replacement sets containing permutations of length 3;

Example: {123, 231, 321}

3. **Double Set:** two non-intersecting replacement sets containing permutations of length 3. Example: {123, 132} {213, 312}

THE THREE PROBLEMS

1. **Rotations:** replacement sets containing a permutation and its rotations;

Example: {2134, 1342, 3421, 4213}

2. **Single Set:** replacement sets containing permutations of length 3;

Example: {123, 231, 321}

Example: {123, 231, 321}

3. **Double Set:** two non-intersecting replacement sets containing permutations of length 3. Example: {123, 132} {213, 312}

HOW MANY CLASSES ARE THERE?

Theorem

In S_n , there are always either 1 or 2 nontrivial classes created.

Examples for odd *c*:

- ► {123, 231, 312} creates two non-trivial classes.
- ► {21345, 13452, 34521, 45213, 52134} creates two non-trivial classes.

HOW MANY CLASSES ARE THERE?

Theorem

In S_n , there are always either 1 or 2 nontrivial classes created.

Examples for even *c*:

- ► {1234, 2341, 3412, 4123} creates one non-trivial class.
- ► {145236, 452361, 523614, 236145, 361452, 614523} creates two non-trivial classes.

WHAT IF WE ROTATE THE IDENTITY?

Example: When c = 5, the replacement set is $\{12345, 23451, 34512, 45123, 51234\}$

We consider only the non-trivial classes.

Only for odd *c*, there are two classes.

- ► For even *n*, they are the same size.
- ► For odd *n*, they differ in size.

Case of odd c, even n.

Definition

The rot of a permutation $x \in S_n$ is $(234 \dots n1) \circ x$.

For example, rot(31524) = 42135.

- ► rot preserves hits;
- ► Since *n* is even, rot changes parity;
- rot creates a bijection between odd non-avoiders and even non-avoiders.

Case of odd c, odd n: A main result

- ► Two classes: even non-avoiders and odd non-avoiders;
- ► Their sizes are multiples of *n* because of rot.

Theorem

The case c > n/2: The sizes of the two classes differ by $nC_{(n-c-2)/2}$, and the odd class is always larger.

$$C_m = \frac{1}{m+1} {2m \choose m}$$
 is the *m*th Catalan number.

Case of odd c, odd n: observation

Definition

A hit-ended permutation has a hit only in the very beginning and very end.

• Example: n = 9, c = 3, 815476392 is hit-ended.

(number of odd hit-ended permutations)

(number of even hit-ended permutations)

=

(number of even non-avoiding permutations)

– (number of odd non-avoiding permutations)

Case of odd c, odd n, c > n/2: reshaping the problem

- ▶ Because c > n/2, the two hits overlap.
- ▶ This allows a bijection between hit-ended permutations starting with a given letter and lattice paths inside an $(n-c-1) \times (n-c-1)$ square that stay above or on the diagonal.

SOLVING THE LATTICE PROBLEM: LOOKING AT AREA

SOLVING THE LATTICE PROBLEM: A PARTIAL BIJECTION

SOLVING THE LATTICE PROBLEM: A PARTIAL BIJECTION

SOLVING THE LATTICE PROBLEM: A PARTIAL BIJECTION

SOLVING THE LATTICE PROBLEM: THE DECIDING PATHS

SOLVING THE LATTICE PROBLEM: WHAT'S THE ENUMERATION?

There are $C_{(n-c-2)/2}$ lattice paths, so the sizes of the two classes differ by $nC_{(n-c-2)/2}$, and the odd class is always larger.

THE THREE PROBLEMS

 Rotations: replacement sets containing a permutation and its rotations; √
 Example: {2134, 1342, 3421, 4213}

 Single Set: replacement sets containing permutations of length 3;
 Example: {123, 231, 321}

3. **Double Set:** two non-intersecting replacement sets containing permutations of length 3. Example: {123, 132} {213, 312}

PAST WORK ON SINGLE REPLACEMENT SETS

- ► {123, 132, 213}, the Chinese relation
 - Number of classes in S_n = number of involutions in S_n (shown by Linton, Propp, Roby, and West).
- ► The number of classes was solved for some other cases by Pierrot, Rossin, and West.
- ► The number of permutations in the class containing the identity is known for all cases.

SINGLE REPLACEMENT SET: RESULTS

We prove formulas for the unsolved cases where the replacement set is of size > 2.

Replacement set	number of classes in S_n
{123, 132, 321}	(n-1)!! + (n-2)!! + n-2
{123, 132, 312}	$f(n \ge 5) = f(n-1) + (n-2) \cdot f(n-2)$
{213, 231, 132}	$2^{n-2} + 2n - 4$
{123, 132, 231}	2^{n-1}
{123, 132, 213, 231}	n
{123, 132, 231, 321}	2 for $n > 3$
{213, 132, 231, 312}	3

{123, 132, 231}: Preliminary

► A V-permutation is one that starts decreasing to 1 and then increases until the end.

For example,

▶ In S_n there are 2^{n-1} V-permutations.

$\{123, 132, 231\}$: Reaching a V-permutation

- ► For $x \in S_n$ not starting with n, through repeated 132 \rightarrow 123 and 231 \rightarrow 123 we can place n as the final letter.
- ► So, *n* can always be moved to the start or end of a permutation.
- Inductively, every permutation is reachable from a V-permutation.
- ► There are at most 2^{n-1} classes.

 $\{123, 132, 231\}$: What are the invariants?

Definition

A letter is **odd-tailed** if it's a left-to-right minimum and there are an even number of letters between it and the first left-to-right minimum to its right.

Examples: 2 in 2134, 2 in 2341, 2 and 3 in 3214

Lemma

The set of odd-tailed letters in a permutation is invariant under the transformations.

{123, 132, 231}: What's the enumeration?

- ► In a V-permutation, each letter to the left of 1 is odd-tailed.
- ► No V-permutations are reachable from each other.
- ▶ There are 2^{n-1} classes.

THE THREE PROBLEMS

 Rotations: replacement sets containing a permutation and its rotations; √ Example: {2134, 1342, 3421, 4213}

 Single Set: replacement sets containing permutations of length 3; √
 Example: {123, 231, 321}

3. **Double Set:** two non-intersecting replacement sets containing permutations of length 3. Example: {123, 132} {213, 312}

PAST WORK ON DOUBLE REPLACEMENT SETS

As a restriction, each set is of size 2.

- ► Donald Knuth: {213, 231}{132, 312} (*plactic relation*).
 - Number of classes in S_n = number of involutions in S_n = $f(n \ge 3) = f(n-1) + (n-1) \cdot f(n-2)$.
- ▶ Jean-Christophe Novelli and Anne Schilling: {213,132}{231,312} (forgotten relation).
 - ▶ Number of classes in $S_n = n^2 3n + 4$.

Double Replacement sets: Results

► We prove formulas for 9 of the 15 unsolved cases.

Poplacement set	number of classes in S_n
Replacement set	
{312, 321}{123, 132}	2^{n-1}
{123, 132}{213, 231}	2^{n-1}
{123, 231}{132, 321}	2^{n-1}
{132,312}{321,213}	$(n^2+n)/2-2$
{123, 231}{213, 132}	$n^2 - 3n + 4$
{123, 132}{231, 312}	$3 \cdot 2^{n-3} + n - 2$ for $n > 5$
{123, 132}{213, 321}	number of bushy-tailed permutations
{123, 321}{213, 231}	3 for $n > 5$
{123, 132}{213, 312}	$f(n \ge 3) = f(n-1) + (n-1) \cdot f(n-2)$

$\{123, 132\}\{231, 312\}$: A slightly harder case

- Every permutation is reachable from a V-permutation;
- ► Are there 2^{n-1} classes?

$\{123, 132\}\{231, 312\}$: A slightly harder case

- ► Every permutation is reachable from a V-permutation;
- ▶ Are there 2^{n-1} classes?
- ► No! Two V-permutations *x*, *y* are reachable from each other iff the following is true:
 - 1. *x* and *y* have the same first letter.
 - 2. The letters directly preceding 1 in both *x* and *y* have value greater than 3.

$\{123, 132\}\{231, 312\}$: ADDING UP THE CLASSES

- ▶ 2^{n-2} classes with V-permutations ... 21 ...
- ▶ 2^{n-3} classes with V-permutations ... 31 ...
- ▶ n-3 classes with V-permutations . . . k1 . . . where k>3
- ▶ 1 class with V-permutation 1...

There are $3 \cdot 2^{n-3} + n - 2$ classes in S_n .

TIPS ON STUDYING REPLACEMENT SETS

- ▶ Write a C++ program;
 - ► Can calculate for *n* up to 12 in general case;
 - In case of rotations of identity, can calculate for cases up to n = 23;
 - ► Can run different calculations in just a couple of clicks.
- Examine the avoiding permutations separately.

FUTURE DIRECTIONS

- ► Solve the first problem for the remaining cases where c < n/2;
- ► Solve the second problem for sets of size 2;
- Solve the third problem for unsolved cases;
- ► Further investigate relations between third problem and Plactic relation.

ACKNOWLEDGEMENTS

- 1. We thank our mentors Darij Grinberg and Sergei Bernstein.
- 2. We thank Professor Stanley for providing the research problem.
- 3. We acknowledge the MIT PRIMES program for giving us the opportunity to conduct this research and present our findings.

REFERENCES

- 1. A. Pierrot, D. Rossin, J. West, *Adjacent transformations in permutations*.
- 2. S. Linton, J. Propp, T. Roby, J. West, Equivalence Relations of Permutations Generated by Constrained Transpositions.
- 3. S. Kitaev, Multi-avoidance of generalized patterns.
- 4. N.J.A. Sloane, The On-line Encyclopedia of Integer Sequences.
- 5. J. Cassaigne, M. Espie, D. Krob, J.-C. Novelli, F. Hivert, *The Chinese Monoid*.
- 6. D. Knuth, Permutations, Matrices and Generalized Young tableaux.
- 7. J.-C. Novelli, A. Schilling, The Forgotten Monoid.