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Definitions

A graph is a collection of vertices and the
edges connecting them.

A bipartite graph is a graph whose vertices
can be partitioned into two sets such that no
edge connects two vertices from the same
set.
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Rankings

A ranking of a graph G is an assignment to every vertex v ∈ G of
an integer rank h(v) such that if there is an edge e ∈ G
connecting vertices v1 and v2, then |h(v1)− h(v2)| = 1. Two
rankings are considered equivalent if they differ by a constant.
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� We denote the number of distinct rankings of a graph G by
R(G ).

A graph has at least one ranking (R(G ) > 0) if and only if it is a
bipartite graph.
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Examples, contd.
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Generating Functions

Theorem
For every graph G, there is a generating function

R(G ) =
∏
e∈G

 ∏
c∈CYC(G)

yc
de(c) +

∏
c∈CYC(G)

yc
−de(c)


whose constant term is equal to R(G ).

Example

For a 4-cycle, we have

R(C4) =
∏
e∈C4

(
y + y−1

)
=
(
y + y−1

)4
,

so R(C4) = 6, as we saw in the previous slide.

� The generating function is not easy to evaluate for general G .
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Colorings

For k ≥ 1, a proper k-coloring of a graph G is an assignment to
every vertex v ∈ G of a color 1 ≤ c(v) ≤ k such that no two
vertices with the same color are connected by an edge.

For any graph G , the chromatic polynomial χG (x) is a
polynomial such that for any given k , χG (k) is the number of
proper k-colorings of G .

Example

For the cycle C2n, the chromatic polynomial is
χC2n(x) = (x − 1)2n + x − 1
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Rank-Color Duality

Theorem
If G is a squarely generated graph, then there is a direct
correspondence between its rankings and colorings such that
R(G ) = 1

3χG (3).
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well-studied than rankings.
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Grid Graphs

A grid graph is a graph Lm,n whose vertices are all (i , j) for
1 ≤ i ≤ m and 1 ≤ j ≤ n with edges connecting (i , j) to (i , j + 1)
and (i + 1, j).
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I For general m and n, there is no known closed-form formula

for R(Lm,n). However, for any particular m and n, R(Lm,n)
can be calculated using the transform matrix method.
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Future Work

I Use physics ideas (e.g. Potts Model) as help in finding
formulae for squarely generated and especially grid graphs.

I Try to further understand the generating function for general
G .

I Find families of graphs for which the generating function is
easily evaluable, such as G × E , where E is a single edge.
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