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A bipartite graph is a graph whose vertices
can be partitioned into two sets such that no
edge connects two vertices from the same
set.
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Rankings

A ranking of a graph G is an assignment to every vertex v € G of
an integer rank h(v) such that if there is an edge e € G
connecting vertices v and v, then |h(v1) — h(v2)| = 1. Two
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% We denote the number of distinct rankings of a graph G by
R(G).

A graph has at least one ranking (R(G) > 0) if and only if it is a
bipartite graph.
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Generating Functions

Theorem
For every graph G, there is a generating function

R(G) = H H de(c) 4 H y —de(c)
ecG CECYC(G) ceCYC(G
whose constant term is equal to R(G).

Example
For a 4-cycle, we have

we)=[] v+y Y =0+yh,

ecCy
so R(C4) = 6, as we saw in the previous slide.

IS The generating function is not easy to evaluate for general G.
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Colorings

For k > 1, a proper k-coloring of a graph G is an assignment to
every vertex v € G of a color 1 < ¢(v) < k such that no two
vertices with the same color are connected by an edge.

For any graph G, the chromatic polynomial x¢(x) is a
polynomial such that for any given k, x (k) is the number of
proper k-colorings of G.

Example

For the cycle Ca,, the chromatic polynomial is
Xeon(x) = (x = 1)*" +x — 1
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Rank-Color Duality

Theorem

If G is a squarely generated graph, then there is a direct
correspondence between its rankings and colorings such that

R(G) = Ixa(3).
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This is useful because chromatic polynomials are much more
well-studied than rankings.
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Grid Graphs
A grid graph is a graph L, , whose vertices are all (i, ) for
1<i<mand1l<j<nwith edges connecting (i,;) to (i,j + 1)
and (i + 1,)).

L34

> R(L2p) =2- 3n-1
> R(Lan) = 17+34\/ﬁ <5+5/ﬁ) + 17754\/ﬁ <5f§/ﬁ)

=73
» For general m and n, there is no known closed-form formula
for R(Lm,n). However, for any particular m and n, R(Lm n)
can be calculated using the transform matrix method.
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