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Background

Determinants

2× 2 matrices:

det

�
a b
c d

�
= ad− bc

3× 3 matrices:

det


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 = aei+ bfg + cdh− afh− bdi− ceg
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Algorithms

Minor Expansion

Naive calculation requires Θ(n!n) polynomial multiplications.

det





a b c d
e f g h
i j k l
m n o p



 =

afkp− aflo− agjp+ agln+ ahjo− ahkn

− bekp+ belo+ bgip− bglm− bhio+ bhkm

+ cejp− celn− cfip+ cflm+ chin− chjm

− dejo+ dekn+ dfio− dfkm− dgin+ dgjm

Minor expansion requires

n�

i=2

i

�
n

i

�
∈ Θ(2nn) polynomial multiplications.
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Algorithms

Gaussian Elimination

det





a b c d
0 f g h
0 0 k l
0 0 0 p



 = afkp

A(1) = A,

A(k+1)
i,j = A(k)

i,j −
A(k)

i,k

A(k)
k,k

A(k)
k,j

A(1) = A, A(0)
0,0 = 1,

A(k+1)
i,j =

A(k)
i,j A

(k)
k,k −A(k)

i,kA
(k)
k,j

A(k−1)
k−1,k−1

Fraction-free Gaussian elimination requires

n�

i=1

Θ(i2) ∈ Θ(n3) polynomial

multiplications and divisions.
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i=1
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multiplications and divisions.
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Algorithms

Comparison

Preservation of “simple” polynomials (e.g., those with few terms):

Minor expansion: Entries are preserved.

Gaussian elimination: Entries made more complicated each step.

Consider an n× n matrix with entries of the form
�s

i=1 aixi:

cost ratio =
cost of ME

cost of FFGE
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Algorithms

Row Permutation

Let p, q and r be polynomials with a, b and c terms, respectively, with no

variables in common.

(pq)r requires ab+ abc integer multiplications.

(pr)q requires ac+ abc integer multiplications.

(qr)p requires bc+ abc integer multiplications.

We want to defer multiplying by polynomials with many terms.

Absolute value of determinant is invariant under row swaps.
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Empirical Results

Experiment Setup

Random polynomial matrices:

9× 9.

5 variables.

For various values of p: an entry is 0 with probability p and has

between one and four terms otherwise. (Any number is equally likely.)

Each term is constant or linear in each variable.

Sort rows r in ascending order based on these scores:

Control, no sorting.

Number of nonzero entries in a row,
�n

i=1(ri �= 0).

Total number of terms in a row,
�n

i=1 nterms(ri).

Product of one more than number of terms for each entry of a row,�n
i=1(nterms(ri) + 1).
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Conclusion

Further Questions

Define “complexity” of matrix entries:

Number of terms.

Variables present.

Context of a row.

Investigate specific types of matrices:

Bézout matrices.

Do more experiments!

Vary other criteria.

Different algorithms and variations.

Crossover points between algorithms.

Machine learning.
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