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Abstract 

Computational analysis of SNP-disease associations from GWAS as well as functional 

annotations of the genome enables the calculation of a SNP set's enrichment for a disease.  

These statistical enrichments can be and are calculated with a variety of statistical 

techniques, but there is no standard statistical method for calculating enrichments.  

Several entirely different tests are used by different investigators in the field.  These tests 

can also be conducted with several variations in parameters which also lack a standard.  

In our investigation, we develop a computational tool for conducting various enrichment 

calculations and, using breast cancer-associated SNPs from a GWAS catalog as a 

foreground against all GWAS SNPs as a background, test the tool and analyze the 

relative performance of the various tests.  The computational tool will soon be released to 

the scientific community as a part of the Bioconductor package.  Our analysis shows that, 

for R2 threshold in LD block construction, values around 0.8-0.9 are preferable to those 

with more lax and more strict thresholds respectively.  We find that block-matching tests 

yield better results than peak-shifting tests.  Finally, we find that, in block-matching tests, 

block tallying using binary scoring, noting whether or not a block has an annotation only, 

yields the most meaningful results, while weighting LD r2 threshold has no influence. 
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1 Introduction 

 In the human genome, approximately 2% of the genetic material actually codes for 

protein [1].  The remainder of the genome lies in between genes or in the untranslated introns in 

the middle of genes.  This vast quantity of potentially functional but non-coding genetic material 

is comparatively not very well understood.  A part of the genome not coding for protein might 

have roles in transcriptional and translational regulation, but the mechanism by which the 

function is achieved is often unknown.  One of the important mechanisms to explore the function 

of non-coding regions of the genome is the genome-wide association study (GWAS).  In a 

genome-wide association study, many individuals with and without a given trait are examined.  

Common allelic variants between different study participants are examined in order to find an 

association between certain variants and a disease or trait.  Of particular relevance to the 

investigations being conducted here are those which identify an association between a single-

nucleotide polymorphism and a disease.  A single-nucleotide polymorphism (SNP) is a specific 

type of allelic variant.  At a specific point in the genetic sequence, a single nucleotide (A, C, G, 

or T) is changed to a different nucleotide (substitution), is removed (deletion), or is added 

between two formerly adjacent nucleotides (insertion).  When such a change occurs in a coding 

region of the genome, the ramifications are more clear: the protein for which that segment of the 

gene codes is altered because the different nucleotide sequence causes a different amino acid 

sequence in the polypeptide.  The effect in a non-coding segment of the genome, however, is 

often unknown.  If the variant is in between two protein-coding regions, then a transcriptional 

regulatory motif may have been disrupted, the folding properties of the DNA may have been 

changed, or the instructions for a non-coding RNA like microRNA may have been altered.  If the 
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variant is instead in the untranslated region (UTR) or an intron, each of which is a part of a gene 

but is does not code for protein, the change might have an effect on stability regulation, alter the 

binding site for miRNA, or change the manner in which splicing or translation is regulated [2].  

In each case, however, GWASs do not provide information about the mechanism.  In this 

investigation, we seek to form hypotheses about these mutations which fall in regions that 

regulate transcription. 

 At the foundation of the enrichment-finding process we use is the information from 

GWAS, which identifies disease-associated SNPs.  Rather than considering each of the published 

GWAS individually, a compiled catalog detailing all of the important results from GWAS were 

used to obtain information from GWAS in a uniform, easily parsed manner.  The GWAS catalog 

used was the PheGenI catalog [6].  While GWAS in general are adept at finding associations 

between common SNPs  and diseases, these common SNPs are co-inherited as linkage 

disequilibrium (LD) blocks.  Using an array of common SNPs rather than individual SNPs 

increases the cost-effectiveness but detracts from the resolution of the studies.  In GWAS, a 

block of SNPs linked by LD is linked with a phenotype rather than each individual SNP, so any 

of the SNPs in an LD block may be the causal variant, limiting their resolution. 

 Aside from GWAS, the other development enabling enrichment analysis is the 

increasingly extensive noncoding functional annotation of the genome.  Annotations of the 

genome range from the simple to the complex.  Some simply identify a SNP's placement relative 

to gene models, identifying whether a SNP is in a coding exon, intron, intergenic region, or 

untranslated region.  Other annotations predict the effect of a SNP on polypeptide, including 

nonsense mutations, missense mutations, and synonymous mutations.  Less straightforward are 
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annotations of the SNP's behavior within enhancer and promoter regions which promote the 

binding of proteins which in turn promote transcription of nearby genes.  Enhancers and 

promoters contian regulatory motifs, which are sequences of nucleotides which allow protein 

binding or serve some other significant function.  The action of these regulatory motifs is 

achieved by regulating other genes, rather than by acting independently.  Thus, SNPs may 

modulate enhancer or promoter activity through alteration of a regulatory motif, creating a 

difference in transcription.  Information about these annotations of SNPs is being discovered and 

published.  The combination of these two links, from annotations to SNPs and from SNPs to 

diseases or traits, allow the computational techniques used here to be implemented to draw a link 

between the annotations and traits, thus suggesting possible causal means by which these SNPs 

affect a trait or disease.  These possible causal links can then serve as the foundation for further 

biological investigation into the sources of otherwise largely enigmatic diseases. 

 Prior work in the field indicates the potential for success in conducting such 

computational analyses.  Significant associations have been found between functional 

annotations and disease using GWAS using a variety of statistical tests [2].  However, there is no 

consensus on the proper method to find these enrichments [3,4], and no standard tools available 

to the scientific community which can compare these methods.  When comparing the 

frequencies, the characteristics of the set of SNPs associated with the disease need to be taken 

into account when building the null distribution against which to test the statistic, but there are 

several characteristics which may need to be accounted for in building the null model. The 

proper process correcting for these confounding factors has yet to be determined for use at large 

in the enrichment search process.  Similarly, the ideal way to account for LD between GWAS 



6 

SNPs and potentiall causal SNPs is also unknown.  This investigation seeks to explore several of 

these issues. 

 In conclusion, the investigation seeks to apply recent developments in GWAS and 

genomic annotation to discover novel statistical associations between disease-associated SNPs 

and regulatory functions, and to evaluate different enrichment tests.  Conducting this 

investigation provides even greater potential to discover significant enrichments of functional 

annotations now more than ever.  The progress of annotation of the genome has progressed 

further, allowing access to a much richer set of annotations relative to those of previous studies.  

For example, rather than looking at single histone modifications, HMMs that deliniate chromatin 

states are increasingly available.  Regulatory maps for over 100 cell types are now available from 

the NHGRI Roadmap Epigenome Project [7].  In addition, the ENCODE project has discovered 

a large number of novel regulatory motifs [8].  As a result, the set of annotations through which 

to search for an enrichment is greatly expanded, providing greater opportunity to find strong and 

potentially biologically significant enrichments for these newly available annotations.  These can 

then be used to evaluate the process and enable further research involving statistical enrichment 

to be even more effective. 

2 Methods 

 The first step in the process of finding enrichments was the gathering of SNPs from 

GWAS which are associated with various diseases.  Tabulated separately for the various diseases 

considered, the sets of SNPs associated with each disease in the GWAS catalog available from 

the National Human Genome Research Institute (NHGRI) and the PheGenI catalog were 

extracted and grouped [3].  Each of these sets of SNPs associated with a given disease, however, 
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constitute only those which have been established directly by a particular genome-wide 

association study to have an association with the given disease.  GWAS only idientifies one 

“tag” or “index” SNP for each LD block, so LD information is necessary to find all of the 

relationships between diseases and annotations. 

 Therefore, LD information from the 1000 Genomes project was used [9].  These SNPs 

are then each used to generate the associated variant set (AVS) of the disease [3].  For each 

catalog SNP associated with a disease or trait, the cluster of SNPs in linkage disequilibrium (LD) 

with the tag SNP is reconstructed [5].  Subsequently, rather than compiling information about the 

annotations of each SNP individually, annotations are compiled collectively for each cluster of 

SNPs in linkage disequilibrium with the identifying tag SNP.  Although each SNP in a cluster is 

associated with the same disease as the head SNP, not every SNP associated with a given disease 

appears in the GWAS catalog with such an association because the GWAS catalog only contains 

tag SNPs.  Furthermore, because all of the SNPs in an LD cluster with a disease-associated head-

SNP are in some capacity associated with the disease themselves, it is unclear which SNPs are 

the causal variant, if any.  Each SNP in the LD cluster of a head SNP contributes annotations to 

the set of annotations of the LD cluster rather than individually.  If two SNPs in LD do happen to 

each appear in the GWAS catalog as associated with the disease being considered, then one is 

arbitrarily chosen as the head SNP of the shared LD block (LD pruning).  This ensures 

independence.  After generating the AVS, the annotations of each cluster in the AVS are then 

determined by intersecting the locations of the blocks of SNPs with the locations of annotations 

downloaded as .BED files containing the annotation information for the feature type tested [7-9]. 

Annotations in several categories, specifically gene model annotations from dbSNP, Dnase 
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hypersensitive regions, presence in regulatory motifs, and binding by regulatory proteins in ChIP 

experiments, were all compiled and tabulated separately. 

 After generating the clusters and determining their annotations, tallies were calculated as 

the basis for measuring the enrichment or depletion of annotations with respect to background.  

The tallies are calculated in one of three ways: as the number of clusters with a given annotation, 

to be taken as a ratio with the total number of clusters; as the number of total instances of an 

annotation among all clusters, to be taken as a ratio with the total number of annotation 

instances; and as a proportion of the the SNPs in each block exhibiting an annotation, summed 

across all blocks.  In order to determine significance of the enrichment, the proportion needs to 

be compared to a null distribution obtained by a sampling procedure.  In this investigation, two 

Figure 1: Test distributions for 
DNase hypersensitivity in the 
MCF-7 cell line in a global 
sampling procedure with 
scoring type 0 (binary, 
whether or not the LD block 
has the annotation or not) and 
without LD R2 weighting.  
The three histograms 
correspond to three LD 
thresholds 0.8, 0.9, and 1 at 
which the test was conducted.  
Each histogram shows the 
distribution of the tallies for 
the annotation in each of the 
1000 samples.  The red lines 
indicate the annotation's tally 
in the set of breast cancer-
associated SNPs. 
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measures of background frequency were used.  In the first, a global sampling procedure, 

information about the background frequency is garnered in a manner similar to the process for 

the disease-associated SNPs.  A typical commercial SNP array, Affymetrix 500K, provided a 

large list of tag SNPs from which GWAS results are often generated, and for each SNP an LD 

cluster was generated in the same manner as for the disease-associated SNPs.  Annotations of 

each type were similarly compiled and tabulated for each cluster.  This in turn gives a 

background frequency for each annotation type against which to compare the tallies for the 

disease-associated SNPs.  Null distributions were generated by taking groups of 1000 samples 

from the background LD clusters, matching each block in the foreground SNP set with an LD 

block in the background sharing similar values for controlling factors, like block length, allelic 

frequency, and distance to the nearest TSS, which could influence the annotation tallies.  The 

second measure of background frequency involved a process of local sampling often called peak 

shifting.  Rather than matching blocks in a background SNP set, the same distribution of SNPs in 

each block used in the original analysis are shifted to take on different positions within a window 

around their true positions, maintaining the same positions relative to each other, with the counts 

of the annotations intersected at the new shifted locations used to obtain tallies.  Taking tallies at 

each of several different shifts generates the distribution against which to test.  The local 

sampling process, rather than controlling for particular factors through binning as in the block 

match process, controls for the relative distribution of the SNPs directly as well as the relative 

distributions of annotations in the locale of the SNPs of interest. 

 In each case, the counts of the number of clusters with the annotation in question were 

totaled for each of the samples or shifts, and these counts were then used as the basis of the null 
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distribution.  The null distributions were observed to be approximately normal as expected by 

CLT; therefore,  a normal probability density function was fitted to the mean and standard 

deviation of the generated distribution and this normal model was then used to obtain a p-value. 

Personal Contributions 

 Because of the computationally intensive nature of the process, all of the computation 

and statistical testing is completed by computer, and even then parallelization to split the 

computation across several computers was necessary.  Consequently, much of the project was 

the creation of a tool consisting of scripts written in the R language which enabled tabulating the 

appropriate information from databases, conducting the necessary searches and manipulations, 

and performing statistical tests  Aside from basic familiarization with the computer system on 

which I was working and with a few standard techniques for improving computational efficiency 

from my mentor, I completed this independently.  I wrote all of the scripts for the tool and 

conducted all of the tests using the tool on sample data without aid. 

3 Results/Discussion 

Enrichment Search Tool 

 The first step necessary for conducting the investigation into the enrichments and 

statistical processes is actually to be able to calculate enrichments.  In order to do this, a tool was 

developed to conduct each step of the search process from from database searching to scripted 

data manipulation to statistical processes.  Taking as input an arbitrary set of SNPs, the tool 

conducts all of the necessary procedures to find enrichments for the given SNPs, including 

constructing the LD blocks around each SNP, intersecting the blocks with preloaded or custom 

sets of annotations, and conducting global or local sampling trials for tests on the SNP set using 
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these preloaded or custom annotation sets.  Additionally, the tool provides features to prune sets 

of associations from the literature on LD, narrowing the list only to those which are LD-

independent up to a certain threshold.  The tool consists of a series of functions using the 

statistical language R and will be released to the scientific community as a part of the 

Bioconductor group of open source biological computation packages for R. 

Analysis of the Process 

 The search tool created as the basis of the investigation can be used to calculate the 

enrichments of arbitrary SNP sets with respect to arbitrary annotation sets using a variety of 

configurable statistical tests.  We can therefore use the tool to address the questions involved in 

comparing the results of the various tests and configurations to determine which give more 

meaningful results.  Specifically, we explore changes in p-value as a function of several 

parameters: change in the type of test between local and global sampling; change in the r2 

threshold used in determining LD blocks; different scoring procedures counting the binary 

presence of an annotation in each block, the raw number of an annotation's occurrence in each 

block, or the proportion of each block's annotation set an annotation comprises; and change in 

the weighting of the level of LD linking a SNP and therefore its annotations to each block.  

Examining the results of tests conducted on the sets of LD blocks constructed for the various 

configurations can give insight into which configurations are preferable to use in the procedure.  

For our investigation, we use as our SNP set the set of SNPs associated with breast neoplasms, as 

compiled in the PheGenI GWAS catalog [6].  For background annotations, we use ENCODE 

DNase hypersensitivity experiments across several human cell types, conserved regulatory 
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motifs, as well as ENCODE protein ChIP-seq experiments.  These are the annotations which we 

include preloaded in the R computational tool. 

LD R2 Threshold 

 Analyzing the results of our tests across the r2 thresholds used in determining LD blocks, 

we see that the the best r2 threshold is an intermediate one.  The most strict threshold of 1 

produced poor results which failed to distinguish between the highest results.  In contrast, the 

intermediate r2 thresholds of 0.8 and 0.9 exhibit much more meaningful results, with a peak at 

0.9.  Beyond generalities, we can look in particular to the annotations for DNase hypersensitivity 

Figure 2: Plot of results of 
global sampling tests at 
varying LD thresholds.  Each 
shows all of the results for 
global sampling with the 
indicated LD threshold using 
binary scoring (noting 
whether or not each block 
contains the annotation in 
question) and no LD r2 
weighting.  It is clear from the 
plot that the most stringent 
threshold of 1 provides the 
weakest results, while the 
more moderate thresholds of 
0.8 and 0.9 give better results.



13 

in the MCF-7 cell line as an indicator of the effectiveness of the test.  The MCF-7 cell line is 

known to be associated with breast cancer because it is a breast cancer cell line, so it is expected 

that MCF-7 should give a strong enrichment using our computational analysis methods.  We see 

a similar trend for MCF-7 as for all of the top enrichments, with a poor enrichment at 1 and with 

stronger enrichments at 0.8 and 0.9, particularly 0.9, confirming that these intermediate r2 

thresholds give the most meaningful results.  This matches with what theory predicts as well, as a 

threshold which is too strict does not include enough information about an associated SNP's ld 

neighborhood and potentially leaves out causal mutations, while sufficiently lax thresholds begin 

to approach background frequency for the foreground comparison as more and more of the 

genome is included in the LD blocks. 

Test Type 

 In general, we see that the global sampling procedure provides much more meaningful 

results than the local sampling procedure.  In the local sampling procedure, very few enrichments 

are meaningfully distinguished, even at the peak r2 value of 0.9, while in the global sampling the 

distinctions are much stronger.  The MCF-7 annotation specifically exhibits the same trend, 

strenthening our conclusions. 
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Score Type for Global Sampling 

 With score type in the global sampling procedure, we see a pronounced trend of more 

meaningful results when scoring by giving each block a binary score indicating whether or not it 

contains the annotation.  The scoring using the proportion of a block which is comprised by a 

given annotation gives distinctly weaker results, followed by the scoring method taking the raw 

number of annotation occurrences in each block which is the worst by far. 

 

Figure 3: Plot of results for 
all annotations across 
different scoring methods.  
Scoring method 0 indicates 
binary scoring, with each 
block counted as 1 or 0 to the 
tally depending on whether or 
not the block contains the 
annotation.  Scoring method 
1 takes the raw number of 
instances of the annotation in 
the block.  Scoring method 2 
takes the proportion of a 
block's annotations which are 
of the given type.  Comparing 
we see that binary scoring 
gives the strongest results, 
while proportional scoring is 
weaker and raw scoring is 
worst of all. 
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LD R2 Weighting for Global Sampling 

 Finally, we consider the strength of the results when comparing between scoring using 

weighting of LD r2 values and not using weighting.  Looking at the top results for each, we see 

that there is essentially no change between using weighting and not.  As a result, we conclude 

that neither using weighting or not is preferable in conducting these tests. 

 

Figure 4: Plot of results 
with and without weighting 
of LD r2 values.  0 
indicates no r2 weighting, 
while 1 indicates the use of 
r2 weighting.  The results 
indicate little appreciable 
difference between using 
and not using r2 weighting.
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Implications 

 The findings in this investigation include enrichments for several functional annotations 

with SNPs associated with breast cancer.  The enrichments found provide potential causal 

biological mechanisms for breast cancer-associated inherited mutations.  More generally, the tool 

developed as a part of the investigation to conduct enrichment searches on arbitrary SNP sets has 

the potential to produce vast numbers of such subjects for further biological investigation as the 

scientific community uses the tool to find enrichments for various SNP sets and various diseases 

being investigated.  The results of analysis of the various configurations of the statistical tests 

used in enrichment calculations also provide indication of which parameters and scoring methods 

are preferable when searching for enrichments. 
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5 Conclusions/Future Research 

 From the material in the investigation alone, few conclusions can be drawn 

independently.  The statistical enrichments found using the tool developed to conduct the 

enrichment search process can safely be concluded, but the true value of the research conducted 

is in the application of the results garnered as indicators of potentially fruitful areas of future 

biological investigation.  As statistical tests, enrichments only establish associations, but future 

investigation into areas highlighted by statistical enrichments may be able to establish useful 

causal links between these functional annotations and diseases.  Additionally, conclusions about 

the advantages of the different configurations for the statistical tests can be used to direct future 

investigations into enrichments. 

 Moving forward, there are several directions for further progress.  As of yet, the 

application of the enrichment search process to breast cancer revealed several significant 

noncoding regulatory enrichments, notably HMEC.  This process can be applied to the remainder 

of the diseases in the GWAS catalog, identifying further annotations associated with various 

other diseases.  Identification, however, is only the first step.  For the significant enrichments 

detected through the process, further investigation can be conducted to find out more about the 

enrichments.  This provides more of a foundation for the search for causal mechanisms for these 

diseases. 
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