Investigating GCD In Z[v/2]

Rohil Prasad

January 11, 2014

Abstract

We attempt to optimize the time needed to calculate greatest common
divisors in the Euclidean domain Z[v/2].

1 Introduction

The greatest common divisor (GCD) of two integers a and b is the largest integer
that divides both a and b. Finding the GCD of two integers is ubiquitous in many
important number-theoretical algorithms, including the AKS primality test and the
RSA encryption algorithm. We introduce some of the many fast solutions to this

problem below.

1.1 Euclidean Algorithm

The Euclidean algorithm runs in O(n?) time, where n is the maximum bitsize of the
inputs.

Given two integers a and b with a < b, each step of the Euclidean algorithm
replaces the ordered pair (a, b) with a new pair (b, a). The number ¥ is the remainder
upon division of b by a, or b — ga where ¢ = LSJ From the second equality we can
see that, since ged(a, b) divides a and b, it must also divide b'. Therefore, we reduce
the problem of finding the GCD of a and b to finding the GCD of the smaller a
and O’. We iterate the process until the numbers become so small that the problem
is trivial, i.e. the ordered pair is (u,0) for some positive integer u. Then, since
ged(u, 0) = u, the GCD is u itself.

1.2 Binary Algorithm

The binary algorithm also runs in O(n?) time.

Starting with our initial inputs a and b, we consider each modulo 2. If a is odd
and b is even or vice versa, then we divide out by a factor of 2 since ged(a,b) is
equal to ged(a, b/2) or ged(a/2,b), respectively. If both are even, we find ged(a, b) =
2gcd(a/2,b/2), so we replace (a, b) with (a/2,b/2) and store the factor of 2 elsewhere.
If both are odd, then assuming b > a, we replace (a, b) with (a,b—a). The algorithm
terminates when either of the elements of the pair is equal to 0, and the larger element
is found to be the GCD.

Despite the similar theoretical runtime to the Euclidean algorithm, the binary
algorithm is about 15 percent faster in a practical setting [2] since division by 2 can

be implemented quickly by a binary right-shift.

1.3 Subquadratic Algorithms

The first example of a subquadratic GCD algorithm was due to Schonhage [1] and
ran in O(n(logn)?loglogn) time. In general, these algorithms are prohibitively slow

for any inputs that are not tens of thousands of bits in length.

2 Extension to Euclidean Domains

The Euclidean algorithm for the integers makes use of the property that, when
dividing one integer by another, there is always a ‘quotient’ and a ‘remainder’.
Euclidean domains are integral domains that have similar properties. A Euclidean
domain is an integral domain R equipped with a function N called a norm that
maps elements of R to the natural numbers. Given nonzero elements a and b in
R, there exist elements ¢ and r such that a« = bg +r and » = 0 or N(r) < N(b).
The element ¢ is called the quotient of a and b, while the element r is called the
remainder. Note that Z is a Fuclidean domain, with its norm mapping each integer
to its absolute value.

The concept of GCD can also be easily generalized to commutative rings, of
which Euclidean domains are a subset. Given a commutative ring R and elements a
and b in R, an element g is the greatest common divisor of a and b if g divides both

a and b and any other element dividing both a and b also divides g.

It is important to note that in the general case, a pair of elements can have
more than one GCD. This is due to the existence of units, elements of R that have
multiplicative inverses. If g is a GCD of elements a and b, and u is a unit, then it
is easy to verify that gu is also a GCD of a and b. Therefore, our algorithms only

attempt to find the GCD that is unique up to multiplication by units.

3 Description of Algorithms

We test three approaches for calculating the GCD of elements in the integer ring
Z[V/2]. The ring Z[v/2] is the set of all numbers of the form z + yv/2, where z and
y are integers.

The first approach is using the Euclidean algorithm. The ring Z[v/2] is a Eu-
clidean domain with norm N(z + yv/2) = |2? — 2y?|. The algorithm is essentially
identical to the integer Euclidean algorithm.

The second approach is division by 2 + /2. This works similarly to the binary
algorithm for integers. We begin with our two elements a and b in Z[v/2]. There are
four possible cases: both are divisible by 2++/2, a is divisible by 2++/2, b is divisible
by 2+ v/2, and neither are divisible by 2 + /2. In the first case, we can divide both
by 2+ /2 since ged(a, b) = (2+/2) ged (52 b). In the second and third cases,

2427 24+/2
we can divide the respective element by 2 + V2 and the GCD remains the same. In

the final case, we replace the element with larger norm with the difference of the
two elements. The process is re-iterated until one of the elements is zero, and the
nonzero element is the GCD.

The third approach is approximate division. The slowest step of the Euclidean
algorithm is determining the quotient of the two elements, which requires division
and multiplication of large numbers. However, an approximate quotient can be ob-
tained by replacing the original elements with much smaller numbers and performing
the multiplication/divisions steps with these replacements. This is done by bitshift-
ing the elements to the right by a fixed amount. An approximate division algorithm
that reported significant improvements over other algorithms for finding the GCD of
Gaussian integers was published in 2002 by [3]. Our algorithm for Z[v/2] calculates
the approximate quotient ¢ of elements a and b by bitshifting each of the components
of a and b by about half their bitsize.

4 Results

We assessed the performance of each algorithm with the Python time library. We
took the average runtime (in seconds) of the algorithm over 100 trials with randomly
generated inputs of bitsize less than a fixed ceiling k. The results are tabulated below
for k equal to 100, 200, 300, 400, and 500.

Euclidean | Prime | Approximate
100 1.45 2.70 1.46
200 2.88 5.37 2.90
300 4.36 8.62 4.78
400 6.48 12.57 6.64
500 8.21 15.96 8.65

In their present implementations, the Euclidean algorithm is the fastest, but it

is closely followed by the approximation algorithm.

5 Acknowledgements

The author would like to thank Tanya Khovanova and Jesse Geneson for their men-
torship and guidance on the project. He would also like to thank Stefan Wehmeier

and Ben Hinkle of MathWorks for proposing the project.

References

[1] N. Moller, On Schonhage’s Algorithm and Subquadratic Integer GCD Compu-
tation, Mathematics of Computation Vol. 77, No. 261 (Jan., 2008), pp. 589-607.

[2] D. Knuth, Seminumerical Algorithms, The Art of Computer Programming 2 (3rd
ed.), Addison-Wesley, ISBN 0-201-89684-2

[3] G.E. Collins, A Fast Euclidean Algorithm for Gaussian Integers, J. Symbolic
Computation (2002) 33, 385392, doi:10.1006/jsc0.2001.0518

