Extremal Functions of Pattern Avoidance in Matrices

Jonathan Tidor
under the mentorship of Jesse Geneson

Third Annual MIT PRIMES Conference
May 18, 2013

$$
(\because \cdot)
$$

Pattern Avoidance in Matrices

Definition

A 0-1 matrix is an array of zero and one entries.

$$
\left(\begin{array}{lllll}
0 & 1 & 0 & 0 & 0 \\
1 & 1 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 0
\end{array}\right)\left(\begin{array}{lll}
1 & 1 & 0 \\
1 & 0 & 1
\end{array}\right)
$$

Pattern Avoidance in Matrices

Definition

A 0-1 matrix is an array of zero and one entries.

Pattern Avoidance in Matrices

Definition

A 0-1 matrix is an array of zero and one entries.

Definition

A 0-1 matrix contains another 0-1 matrix if the pattern of one entries in the smaller matrix can be found in the larger (possibly separated by other rows and columns).

Pattern Avoidance in Matrices

Definition

A 0-1 matrix is an array of zero and one entries.

Definition

A 0-1 matrix contains another 0-1 matrix if the pattern of one entries in the smaller matrix can be found in the larger (possibly separated by other rows and columns).

Pattern Avoidance in Matrices

Definition

A 0-1 matrix is an array of zero and one entries.

Definition

A 0-1 matrix contains another 0-1 matrix if the pattern of one entries in the smaller matrix can be found in the larger (possibly separated by other rows and columns).

Pattern Avoidance in Matrices

Definition

A 0-1 matrix is an array of zero and one entries.

Definition

A 0-1 matrix contains another 0-1 matrix if the pattern of one entries in the smaller matrix can be found in the larger (possibly separated by other rows and columns).

Matrix Extremal Functions

Definition

A matrix avoids another matrix if it does not contain it.

Matrix Extremal Functions

Definition

A matrix avoids another matrix if it does not contain it.

Definition

The weight extremal function, ex (n, M), is defined as the maximum number of one entries in an $n \times n$ matrix that avoids M. The rectangular weight extremal function, ex (m, n, M), is defined the same for an $m \times n$ matrix.

Motivation

1. Unit distances in convex polygons
2. Stanley-Wilf Conjecture

Unit distances in convex polygons

Problem

(Erdös and Moser, 1959) What is the maximum number of unit distances that can be formed between the vertices of a convex n-gon?

- They conjectured that the answer would be linear in n, which matches the current lower bound
- The current upper bound is $n \log _{2} n+3 n$, found by Aggarwal using the weight extremal functions of two matrices

$$
\left(\begin{array}{lll}
\bullet & & \bullet \\
& \bullet & \bullet
\end{array}\right)\left(\begin{array}{ll}
\bullet & \bullet \\
\bullet & \\
& \bullet
\end{array}\right)
$$

Stanley-Wilf Conjecture

Conjecture

(Stanley and Wilf) For any permutation π, the number of permutations length n that avoid π is at most exponential in n.

- For example, 24315 contains the permutation 123
- In 2004, Marcus and Tardos proved that all permutation matrices have linear extremal functions
- This proves the conjecture by a theorem of Klazar (2000) that demonstrates the equivalence of the two

Stanley-Wilf Conjecture

Conjecture

(Stanley and Wilf) For any permutation π, the number of permutations length n that avoid π is at most exponential in n.

- For example, 24315 contains the permutation 123
- In 2004, Marcus and Tardos proved that all permutation matrices have linear extremal functions
- This proves the conjecture by a theorem of Klazar (2000) that demonstrates the equivalence of the two

AN EXAMPLE

Problem

What is the value of the extremal function ex $\left(m, n, L_{1}\right)$?

L_{1} : BAR-VISIBILITY GRAPHS

Definition

A bar-visibility graph has horizontal bars for the vertices. The edges are vertical lines that connect two bars without crossing any other.

- It turns out that the maximum number of edges in a bar-visibility graph with n vertices is $3 n-5$

L_{1} : BAR-VISIBILITY GRAPHS

Definition

A bar-visibility graph has horizontal bars for the vertices. The edges are vertical lines that connect two bars without crossing any other.

- It turns out that the maximum number of edges in a bar-visibility graph with n vertices is $3 n-5$

L_{1} : CHARACTERIZATION

$$
(\because \cdot)
$$

- Draw a bar from the leftmost to the rightmost one entry in each row except the bottom one
- Mark every one entry that's not at the end of a bar nor is one of the bottom two in its column
- Draw an edge from that one entry to the next bar below it
- ex $\left(m, n, L_{1}\right) \leq 2(n-2)+2 m+$ $(3(n-1)-5)=5 n+2 m-12$

L_{1} : CHARACTERIZATION

$$
\left(\begin{array}{lll}
\bullet & \bullet \\
\bullet & \bullet
\end{array}\right)
$$

- Draw a bar from the leftmost to the rightmost one entry in each row except the bottom one
- Mark every one entry that's not at the end of a bar nor is one of the bottom two in its column
- Draw an edge from that one entry to the next bar below it
- ex $\left(m, n, L_{1}\right) \leq 2(n-2)+2 m+$ $(3(n-1)-5)=5 n+2 m-12$

L_{1} : CHARACTERIZATION

$$
(\because \cdot)
$$

- Draw a bar from the leftmost to the rightmost one entry in each row except the bottom one
- Mark every one entry that's not at the end of a bar nor is one of the bottom two in its column
- Draw an edge from that one entry to the next bar below it
- ex $\left(m, n, L_{1}\right) \leq 2(n-2)+2 m+$ $(3(n-1)-5)=5 n+2 m-12$

L_{1} : CHARACTERIZATION

$$
(\because \cdot)
$$

- Draw a bar from the leftmost to the rightmost one entry in each row except the bottom one
- Mark every one entry that's not at the end of a bar nor is one of the bottom two in its column
- Draw an edge from that one entry to the next bar below it
- ex $\left(m, n, L_{1}\right) \leq 2(n-2)+2 m+$ $(3(n-1)-5)=5 n+2 m-12$

L_{1} : CHARACTERIZATION

$$
(\because \cdot)
$$

- Draw a bar from the leftmost to the rightmost one entry in each row except the bottom one
- Mark every one entry that's not at the end of a bar nor is one of the bottom two in its column
- Draw an edge from that one entry to the next bar below it
- ex $\left(m, n, L_{1}\right) \leq 2(n-2)+2 m+$ $(3(n-1)-5)=5 n+2 m-12$

L_{1} : CHARACTERIZATION

$$
(\because \cdot)
$$

- Draw a bar from the leftmost to the rightmost one entry in each row except the bottom one
- Mark every one entry that's not at the end of a bar nor is one of the bottom two in its column
- Draw an edge from that one entry to the next bar below it
- ex $\left(m, n, L_{1}\right) \leq 2(n-2)+2 m+$ $(3(n-1)-5)=5 n+2 m-12$

Rectangular Weight Extremal Function

- ex (m, n, M) is a simple generalization of the normal weight extremal function, ex (n, M)
- The two are closely related:

Rectangular Weight Extremal Function

- $\operatorname{ex}(m, n, M)$ is a simple generalization of the normal weight extremal function, ex (n, M)
- The two are closely related:
- ex $(n, M)=e x(n, n, M)$

Rectangular Weight Extremal Function

- ex (m, n, M) is a simple generalization of the normal weight extremal function, ex (n, M)
- The two are closely related:
- ex $(n, M)=e x(n, n, M)$
- ex $(\min (m, n), M) \leq e x(m, n, M) \leq e x(\max (m, n), M)$

SEPARABILITY

Definition

A matrix M is called separable if there exist functions f and g and some constant c such that ex $(m, n, M)=f(m)+g(n)+O(1)$ for all $m, n \geq c$.

SEPARABILITY

Definition

A matrix M is called separable if there exist functions f and g and some constant c such that ex $(m, n, M)=f(m)+g(n)+O(1)$ for all $m, n \geq c$.

Theorem

If a matrix M is separable, then it is linear.

EQUIVALENT DEFINITIONS

Definition

The finite difference $\Delta_{1} \operatorname{ex}(m, n, M)$ is defined to be $\operatorname{ex}(m, n, M)-e x(m-1, n, M)$. The difference $\Delta_{2} \operatorname{ex}(m, n, M)$ is defined equivalently on the second coordinate.

EQUIVALENT DEFINITIONS

Definition

The finite difference $\Delta_{1} \operatorname{ex}(m, n, M)$ is defined to be $\operatorname{ex}(m, n, M)-e x(m-1, n, M)$. The difference $\Delta_{2} \operatorname{ex}(m, n, M)$ is defined equivalently on the second coordinate.

Theorem

The following are equivalent:

- M is separable
- $\Delta_{1} \operatorname{ex}(m, n, M)$ is a function of m only
- $\Delta_{2} \operatorname{ex}(m, n, M)$ is a function of n only
- ex $(m, n, M)=e x(m, c, M)+e x(c, n, M)+O(1)$ for $m, n \geq c$

LOWER BOUNDS

Theorem

For any matrix $M, \operatorname{ex}(m, n, M) \geq e x(m, c, M)+e x(c, n, M)-2 c^{2}$.

Lower Bounds

Theorem

For any matrix $M, \operatorname{ex}(m, n, M) \geq e x(m, c, M)+e x(c, n, M)-2 c^{2}$.

LOWER BOUNDS

Theorem

For any matrix $M, e x(m, n, M) \geq e x(m, c, M)+e x(c, n, M)-2 c^{2}$.

LOWER BOUNDS

Theorem

For any matrix $M, \operatorname{ex}(m, n, M) \geq e x(m, c, M)+e x(c, n, M)-2 c^{2}$.

LOWER BOUNDS

Theorem

For any matrix $M, \operatorname{ex}(m, n, M) \geq e x(m, c, M)+e x(c, n, M)-2 c^{2}$.

LOWER BOUNDS

Theorem

For any matrix $M, e x(m, n, M) \geq e x(m, c, M)+e x(c, n, M)-2 c^{2}$.

LOWER BOUNDS

Theorem

For any matrix $M, e x(m, n, M) \geq e x(m, c, M)+e x(c, n, M)-2 c^{2}$.

Further Directions

Question

Are there any linear non-separable matrices?

Further Directions

Question

Are there any linear non-separable matrices?

Question

How small can c be in the definition of separability? Are there any matrices that are not separable for small values of m and n but become separable much later on?

AcKNOWLEDGMENTS

Much thanks to everyone who made this presentation possible:

- MIT PRIMES program
- Jesse Geneson
- My parents

REFERENCES

1. S. Pettie, Degrees of Nonlinearity in Forbidden 0-1 Matrix Problems, Discrete Mathematics 311: 2396-2410, 2011.
2. A. Marcus, G. Tardos, Excluded permutation matrices and the Stanley-Wilf conjecture, Journal of Combinatorial Theory Series A, v. 107 n.1, p.153-160, July 2004.
3. A. Aggarwal, On Unit Distances in a Convex Polygon, arXiv:1009.2216, Sep 12, 2010.
