Extremal Functions of Pattern Avoidance in Matrices

Jonathan Tidor under the mentorship of Jesse Geneson

Third Annual MIT PRIMES Conference

May 18, 2013

INTRODUCTION		
00000		

Definition

A 0-1 matrix is an array of zero and one entries.

$$\begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$

INTRODUCTION		
00000		

Definition

A 0-1 matrix is an array of zero and one entries.

INTRODUCTION		
00000		

Definition

A 0-1 matrix is an array of zero and one entries.

Definition

INTRODUCTION		
00000		

Definition

A 0-1 matrix is an array of zero and one entries.

Definition

INTRODUCTION		
00000		

Definition

A 0-1 matrix is an array of zero and one entries.

Definition

INTRODUCTION		
00000		

Definition

A 0-1 matrix is an array of zero and one entries.

Definition

INTRODUCTION		
0000		

MATRIX EXTREMAL FUNCTIONS

Definition

A matrix avoids another matrix if it does not contain it.

INTRODUCTION		
0000		

MATRIX EXTREMAL FUNCTIONS

Definition

A matrix avoids another matrix if it does not contain it.

Definition

The **weight** extremal function, ex(n, M), is defined as the maximum number of one entries in an $n \times n$ matrix that avoids M. The **rectangular weight** extremal function, ex(m, n, M), is defined the same for an $m \times n$ matrix.

INTRODUCTION		
00000		

MOTIVATION

- 1. Unit distances in convex polygons
- 2. Stanley-Wilf Conjecture

INTRODUCTION		
00000		

UNIT DISTANCES IN CONVEX POLYGONS

Problem

(Erdös and Moser, 1959) What is the maximum number of unit distances that can be formed between the vertices of a convex n-gon?

- They conjectured that the answer would be linear in n, which matches the current lower bound
- The current upper bound is n log₂ n + 3n, found by Aggarwal using the weight extremal functions of two matrices

$$\begin{pmatrix} \bullet & \bullet \\ \bullet & \bullet \end{pmatrix} \begin{pmatrix} \bullet & \bullet \\ \bullet & \bullet \end{pmatrix}$$

STANLEY-WILF CONJECTURE

Conjecture

(Stanley and Wilf) For any permutation π , the number of permutations length *n* that avoid π is at most exponential in *n*.

- ► For example, 24315 contains the permutation 123
- In 2004, Marcus and Tardos proved that all permutation matrices have linear extremal functions
- This proves the conjecture by a theorem of Klazar (2000) that demonstrates the equivalence of the two

STANLEY-WILF CONJECTURE

Conjecture

(Stanley and Wilf) For any permutation π , the number of permutations length *n* that avoid π is at most exponential in *n*.

- ► For example, **24**315 contains the permutation 123
- In 2004, Marcus and Tardos proved that all permutation matrices have linear extremal functions
- This proves the conjecture by a theorem of Klazar (2000) that demonstrates the equivalence of the two

AN EXAMPLE	
000	

AN EXAMPLE

Problem

What is the value of the extremal function $ex(m, n, L_1)$?

AN EXAMPLE	
000	

*L*₁: BAR-VISIBILITY GRAPHS

Definition

A **bar-visibility graph** has horizontal bars for the vertices. The edges are vertical lines that connect two bars without crossing any other.

AN EXAMPLE	
000	

*L*₁: BAR-VISIBILITY GRAPHS

Definition

A **bar-visibility graph** has horizontal bars for the vertices. The edges are vertical lines that connect two bars without crossing any other.

► It turns out that the maximum number of edges in a bar-visibility graph with *n* vertices is 3*n* − 5

	AN EXAMPLE		
00000	000	0000	000

L_1 : CHARACTERIZATION

- Draw a bar from the leftmost to the rightmost one entry in each row except the bottom one
- Mark every one entry that's not at the end of a bar nor is one of the bottom two in its column
- Draw an edge from that one entry to the next bar below it

•
$$ex(m, n, L_1) \le 2(n-2) + 2m + (3(n-1)-5) = 5n + 2m - 12$$

0000 000 000 000 000	

L_1 : CHARACTERIZATION

- Draw a bar from the leftmost to the rightmost one entry in each row except the bottom one
- Mark every one entry that's not at the end of a bar nor is one of the bottom two in its column
- Draw an edge from that one entry to the next bar below it

►
$$ex(m, n, L_1) \le 2(n-2) + 2m + (3(n-1)-5) = 5n + 2m - 12$$

	AN EXAMPLE		
00000	000	0000	000

- Draw a bar from the leftmost to the rightmost one entry in each row except the bottom one
- Mark every one entry that's not at the end of a bar nor is one of the bottom two in its column
- Draw an edge from that one entry to the next bar below it

►
$$ex(m, n, L_1) \le 2(n-2) + 2m + (3(n-1)-5) = 5n + 2m - 12$$

	AN EXAMPLE		
00000	000	0000	000

- Draw a bar from the leftmost to the rightmost one entry in each row except the bottom one
- Mark every one entry that's not at the end of a bar nor is one of the bottom two in its column
- Draw an edge from that one entry to the next bar below it

►
$$ex(m, n, L_1) \le 2(n-2) + 2m + (3(n-1)-5) = 5n + 2m - 12$$

	AN EXAMPLE		
00000	000	0000	000

- Draw a bar from the leftmost to the rightmost one entry in each row except the bottom one
- Mark every one entry that's not at the end of a bar nor is one of the bottom two in its column
- Draw an edge from that one entry to the next bar below it

►
$$ex(m, n, L_1) \le 2(n-2) + 2m + (3(n-1)-5) = 5n + 2m - 12$$

	AN EXAMPLE		
00000	000	0000	000

- Draw a bar from the leftmost to the rightmost one entry in each row except the bottom one
- Mark every one entry that's not at the end of a bar nor is one of the bottom two in its column
- Draw an edge from that one entry to the next bar below it
- ► $ex(m, n, L_1) \le 2(n-2) + 2m + (3(n-1)-5) = 5n + 2m 12$

		RESULTS	
00000	000	0000	000

RECTANGULAR WEIGHT EXTREMAL FUNCTION

- ► ex(m, n, M) is a simple generalization of the normal weight extremal function, ex(n, M)
- The two are closely related:

	Results	
	0000	

RECTANGULAR WEIGHT EXTREMAL FUNCTION

- *ex*(*m*, *n*, *M*) is a simple generalization of the normal weight extremal function, *ex*(*n*, *M*)
- The two are closely related:
 - ex(n,M) = ex(n,n,M)

	RESULTS	
	0000	

RECTANGULAR WEIGHT EXTREMAL FUNCTION

- *ex*(*m*, *n*, *M*) is a simple generalization of the normal weight extremal function, *ex*(*n*, *M*)
- The two are closely related:
 - ex(n,M) = ex(n,n,M)
 - $ex(\min(m,n),M) \le ex(m,n,M) \le ex(\max(m,n),M)$

		Results	
00000	000	0000	000

SEPARABILITY

Definition

A matrix M is called **separable** if there exist functions f and g and some constant c such that ex(m, n, M) = f(m) + g(n) + O(1) for all $m, n \ge c$.

		Results	
00000	000	0000	000

SEPARABILITY

Definition

A matrix M is called **separable** if there exist functions f and g and some constant c such that ex(m, n, M) = f(m) + g(n) + O(1) for all $m, n \ge c$.

Theorem

If a matrix M is separable, then it is linear.

		RESULTS	
00000	000	0000	000

EQUIVALENT DEFINITIONS

Definition

The **finite difference** $\Delta_1 ex(m, n, M)$ is defined to be ex(m, n, M) - ex(m - 1, n, M). The difference $\Delta_2 ex(m, n, M)$ is defined equivalently on the second coordinate.

		RESULTS	
00000	000	0000	000

EQUIVALENT DEFINITIONS

Definition

The **finite difference** $\Delta_1 ex(m, n, M)$ is defined to be ex(m, n, M) - ex(m - 1, n, M). The difference $\Delta_2 ex(m, n, M)$ is defined equivalently on the second coordinate.

Theorem

The following are equivalent:

- ▶ *M* is separable
- $\Delta_1 ex(m, n, M)$ is a function of m only
- $\Delta_2 ex(m, n, M)$ is a function of n only
- ex(m, n, M) = ex(m, c, M) + ex(c, n, M) + O(1) for $m, n \ge c$

		RESULTS	
		0000	
LOWED DOI	INIDO		

Theorem

	Results 000●	

Theorem

	RESULTS	
	0000	

Theorem

$$c(\cancel{m})\\ex(c,n,M)$$

	Results	
	0000	

Theorem

	Results	
	0000	

Theorem

	Results	
	0000	

Theorem

	Results	
	0000	

Theorem

			CONCLUSION
00000	000	0000	000

FURTHER DIRECTIONS

Question

Are there any linear non-separable matrices?

			CONCLUSION
00000	000	0000	000

FURTHER DIRECTIONS

Question

Are there any linear non-separable matrices?

Question

How small can c be in the definition of separability? Are there any matrices that are not separable for small values of m and n but become separable much later on?

			CONCLUSION
00000	000	0000	000

ACKNOWLEDGMENTS

Much thanks to everyone who made this presentation possible:

- MIT PRIMES program
- Jesse Geneson
- My parents

Introduction 00000	Results	Conclusion
References		

- 1. S. Pettie, Degrees of Nonlinearity in Forbidden 0-1 Matrix Problems, Discrete Mathematics 311: 2396-2410, 2011.
- 2. A. Marcus, G. Tardos, Excluded permutation matrices and the Stanley-Wilf conjecture, Journal of Combinatorial Theory Series A, v.107 n.1, p.153-160, July 2004.
- 3. A. Aggarwal, On Unit Distances in a Convex Polygon, arXiv:1009.2216, Sep 12, 2010.