The Effect of Inequalities on Partition Regularity of Linear Homogenous Equations

Kavish Gandhi and Noah Golowich
Mentor: Laszlo Miklos Lovasz
MIT-PRIMES

May 18, 2013

A Simple Example of Ramsey Theory: Six People

- Given 6 people, any 2 of whom are either friends or enemies
- Property: There always exists a group of 3 , all of whom are friends or enemies with each other
- Not true with 5 people, so 6 is the minimum number that satisfies the property.

Definitions

Definition

A linear homogenous equation is one of the form

$$
c_{0} x_{0}+c_{1} x_{1}+c_{2} x_{2}+\ldots+c_{n-1} x_{n-1}=0, c_{i} \in \mathbb{Z}, x_{i} \in \mathbb{N}
$$

Definitions

Definition

A linear homogenous equation is one of the form

$$
c_{0} x_{0}+c_{1} x_{1}+c_{2} x_{2}+\ldots+c_{n-1} x_{n-1}=0, c_{i} \in \mathbb{Z}, x_{i} \in \mathbb{N}
$$

Definition

A linear homogenous equation of n variables is regular over the integers if, for any finite coloring of the natural numbers, there exist natural numbers $x_{0}, x_{1}, \ldots, x_{n-1}$ that:

- satisfy the equation and
- are the same color (are monochromatic).

Example: $x_{0}+x_{1}-x_{2}=0$.
$1234567891011 \ldots$

Rado's Theorem

Given a linear homogenous equation:

$$
c_{0} x_{0}+c_{1} x_{1}+c_{2} x_{2}+\ldots+c_{n-1} x_{n-1}=0, c_{i} \in \mathbb{Z}, x_{i} \in \mathbb{N}
$$

where $c_{0}, c_{1}, \ldots, c_{n-1} \neq 0$,

Rado's theorem: states that this is regular if and only if some subset of c_{i} sum to 0 .
$3 x_{0}+4 x_{1}-5 x_{2}+2 x_{3}=0$ is regular, for example.
We extend this by considering the effect on regularity of a finite number of inequalities.

Inequalities do not affect regularity

Theorem

For $n, k, r \in \mathbb{N}$, and any r-coloring of the positive integers, there exists a monochromatic solution of the form $\left(x_{0}, \cdots, x_{n-1}\right)$ to

$$
\begin{aligned}
& \sum_{i=0}^{n-1} c_{i} x_{i}=0: c_{i} \neq 0 \\
& \sum_{i=0}^{n-1} A_{j i} x_{i} \neq 0: 1 \leq j \leq k
\end{aligned}
$$

where a nonempty set of the c_{i} sums to 0 and
$A_{j 0} x_{0}+\cdots+A_{j(n-1)} x_{n-1}$ is not a multiple of $\sum_{i=0}^{n-1} c_{i} x_{i}$ for all $1 \leq j \leq k$.

A nonempty set of the c_{i} must sum to 0 by Rado's Theorem. $A_{j 1} x_{1}+\cdots+A_{j n} x_{n}$ not a multiple of $\sum_{i=1}^{n-1} c_{i} x_{i}$: if it were a multiple, it would always be 0 .

Background Theorems for proof

- Van der Waerden's theorem: given any finite coloring of the integers, guarantees a monochromatic arithmetic progression of arbitrary length.
- Example: $1 \boxed{24} 54 \boxed{8} 9 \ldots$

Background Theorems for proof

- Van der Waerden's theorem: given any finite coloring of the integers, guarantees a monochromatic arithmetic progression of arbitrary length.
- Example: $1 \boxed{2} 3467 \boxed{5} \ldots$
- Extension of Van der Waerden Theorem: guarantees a t-dimensional monochromatic arithmetic progression of arbitrary length:

$$
a+d_{1} l_{1}+d_{2} l_{2}+\cdots+d_{t} l_{t}: 0 \leq I_{i} \leq L
$$

Background Theorems for proof

- Van der Waerden's theorem: given any finite coloring of the integers, guarantees a monochromatic arithmetic progression of arbitrary length.
- Example: $1 \boxed{2} 3467$ 8 $9 \ldots$
- Extension of Van der Waerden Theorem: guarantees a t-dimensional monochromatic arithmetic progression of arbitrary length:

$$
a+d_{1} l_{1}+d_{2} l_{2}+\cdots+d_{t} l_{t}: 0 \leq I_{i} \leq L
$$

- $a=1, t=2, d_{1}=2$ (horizontal),$d_{2}=3$ (vertical), $L=3$:

1	3	5	7
4	6	8	10
7	9	11	13
10	12	14	16

Strengthening Extended Van der Waerden's

Important lemma to prove theorem:

Lemma

For all $L \in \mathbb{N}$, a r-coloring of the natural numbers, $s_{1}, s_{2}, \ldots, s_{t} \geq 1$ and inequalities:

$$
h_{j 1} d_{1}+h_{j 2} d_{2}+\cdots+h_{j t} d_{t} \neq 0
$$

there exists a, $d_{1}, d_{2}, \ldots, d_{t}>0$ such that

$$
\left\{a+\sum_{i=1}^{t} I_{i} d_{i}: 0 \leq l_{i} \leq L\right\} \cup\left\{s_{i} d_{i}: 1 \leq i \leq t\right\}
$$

is monochromatic.

Strengthening Extended Van der Waerden's

Important lemma to prove theorem:

Lemma

For all $L \in \mathbb{N}$, a r-coloring of the natural numbers, $s_{1}, s_{2}, \ldots, s_{t} \geq 1$ and inequalities:

$$
h_{j 1} d_{1}+h_{j 2} d_{2}+\cdots+h_{j t} d_{t} \neq 0
$$

there exists $a, d_{1}, d_{2}, \ldots, d_{t}>0$ such that

$$
\left\{a+\sum_{i=1}^{t} l_{i} d_{i}: 0 \leq l_{i} \leq L\right\} \cup\left\{s_{i} d_{i}: 1 \leq i \leq t\right\}
$$

is monochromatic.
2 main ideas: Use extended Van der Waerden's Theorem, then
(1) Add in inequalities on d_{i}.
(2) Add in $\left\{s_{i} d_{i}\right\}$ that must be monochromatic.

Using lemmas

- Goal is to find monochromatic x_{i} that satisfy $\sum c_{i} x_{i}=0$ and $\sum A_{j i} x_{i} \neq 0$.
- Prove that there exist numbers of a certain form that are monochromatic.
- Prove that any numbers of this form satisfy the equation and inequalities.
The numbers of a "certain form" is the form we proved in the lemma:

$$
\begin{array}{r}
\left\{a+\sum_{i=1}^{t} \iota_{i} d_{i}: 0 \leq I_{i} \leq L\right\} \cup\left\{s_{i} d_{i}: 1 \leq i \leq t\right\} \\
\downarrow \\
\left\{x_{0}, x_{1}, x_{2}, \ldots, x_{n-t-1}\right\}
\end{array}
$$

With the parametrization shown above, it is simple to prove that numbers of this form satisfy the equation and inequalities.

Discussion

Initial problem: many of the x_{i} can be set equal in Rado's Theorem, allowing a partially degenerate solution.

Discussion

Initial problem: many of the x_{i} can be set equal in Rado's Theorem, allowing a partially degenerate solution.

- We showed that we can make a solution less degenerate but still preserve regularity

Discussion

Initial problem: many of the x_{i} can be set equal in Rado's Theorem, allowing a partially degenerate solution.

- We showed that we can make a solution less degenerate but still preserve regularity
Example: $x_{0}-x_{1}+2 x_{2}+4 x_{3}=0$ is regular by Rado's Theorem.
(1)2345678910
$x_{0}=x_{2}=x_{3}=1, x_{1}=7$ is a monochromatic solution.
Say we want $x_{2}-x_{3} \neq 0$, though.
- So, add a finite number of inequalities.

Conclusion: Regularity does not change with inequalities.

Regularity

Definition

A linear homogenous equation is r-regular over \mathbb{N} if, for every coloring of \mathbb{N} with at most r colors, there exist monochromatic $x_{0}, x_{1}, \ldots, x_{n-1}$ that satisfy the equation.

Regularity

Definition

A linear homogenous equation is r-regular over \mathbb{N} if, for every coloring of \mathbb{N} with at most r colors, there exist monochromatic $x_{0}, x_{1}, \ldots, x_{n-1}$ that satisfy the equation.

Definition

The degree of regularity ($D \circ R$) of a linear homogenous equation is the largest positive integer k such that it is k-regular.

Regularity

Definition

A linear homogenous equation is r-regular over \mathbb{N} if, for every coloring of \mathbb{N} with at most r colors, there exist monochromatic $x_{0}, x_{1}, \ldots, x_{n-1}$ that satisfy the equation.

Definition

The degree of regularity ($D \circ R$) of a linear homogenous equation is the largest positive integer k such that it is k-regular.

Example:

- $-7 x_{0}+6 x_{1}+4 x_{2}=0$ is 2 -regular, but not 3 -regular, so its $D o R=2$

Goals

- We proved that inequalities do not affect regularity.
- What about non-regular but r-regular equations, for a given r ?

Degree of Regularity

Family of equations:

$$
\sum_{i=1}^{p-1} \frac{2^{i}}{2^{i}-1} x_{i}=\left(-1+\sum_{i=1}^{p-1} \frac{2^{i}}{2^{i}-1}\right) x_{0}
$$

Known result: for each value of p, the equation is known to have a degree of regularity of $p-1$ (Alexeev \& Tsimerman, 2009), verifying a conjecture of Rado.

We begin with small values of p.

$-7 x_{0}+6 x_{1}+4 x_{2}=0$

- For $p=3$, the equation simplifies to $-7 x_{0}+6 x_{1}+4 x_{2}=0$.
- Degree of regularity of 2 .

$-7 x_{0}+6 x_{1}+4 x_{2}=0$

- For $p=3$, the equation simplifies to $-7 x_{0}+6 x_{1}+4 x_{2}=0$.
- Degree of regularity of 2 .

Theorem

Given a 2 -coloring of the integers, the equation
$-7 x_{0}+6 x_{1}+4 x_{2}=0$, and a finite number $/$ of inequalities:

$$
A_{j 0} x_{0}+A_{j 1} x_{1}+A_{j 2} x_{2} \neq 0,1 \leq j \leq 1
$$

none of which is a multiple of $-7 x_{0}+6 x_{1}+4 x_{2}=0$, we can always find a monochromatic solution $\left(x_{0}, x_{1}, x_{2}\right)$.

Use parametrizations!

- $(2 n+4 k, n+4 k, 2 n+k)$ is always a solution to $-7 x_{0}+6 x_{1}+4 x_{2}=0$.
- We prove that there exist infinitely many pairs (n, k) that make the triplet monochromatic under any 2-coloring:
- Only a bounded number do not satisfy the inequalities

Use parametrizations!

- $(2 n+4 k, n+4 k, 2 n+k)$ is always a solution to $-7 x_{0}+6 x_{1}+4 x_{2}=0$.
- We prove that there exist infinitely many pairs (n, k) that make the triplet monochromatic under any 2-coloring:
- Only a bounded number do not satisfy the inequalities

Pick monochromatic AP: $4 m, 4 m+4 d, 4 m+8 d, \ldots, 4 m+4 L d$ If there are no triplets of the desired form, these are blue:
$m+8 d, m+16 d, \ldots, m+64 d, m+72 d, \ldots m+4 L d$
$2 m+16 d, 2 m+32 d, 2 m+48 d, 2 m+64 d, \ldots, 2 m+4 L k$
But now set $m=n, k=16 d$, and we are done!

$p=4$

Theorem

Given a 3-coloring of the integers, the equation

$$
\sum_{i=1}^{3} \frac{2^{i}}{2^{i}-1} x_{i}=\left(-1+\sum_{i=1}^{3} \frac{2^{i}}{2^{i}-1}\right) x_{0}
$$

and a finite number I of inequalities: none of which is a multiple of the equation, we can always find a monochromatic solution $\left(x_{0}, x_{1}, x_{2}, x_{3}\right)$.

To prove this, we again use parametrizations.

- $(2 m+4 n+8 k, m+4 n+8 k, 2 m+n+8 k, 2 m+4 n+k)$ is always a solution to this equation.
- Proof to find a monochromatic quadruplet is somewhat similar.

Conditions on Regularity

Also explored DoR of various linear homogenous equations
Idea: generalize the methods used with the family of equations from before to general linear homogenous equations

Conditions on Regularity

Also explored DoR of various linear homogenous equations
Idea: generalize the methods used with the family of equations from before to general linear homogenous equations

- First considered $a_{0} x_{0}+a_{1} x_{1}+a_{2} x_{2}=0$ in terms of its 2-regularity
- Used a similar approach as with $6 x_{0}+4 x_{1}-7 x_{2}=0$

$b_{2}^{2} b_{3}=b_{1}^{2} b_{0}$

Idea: expand on parametrizations to find a stronger condition on 2-regularity.

$b_{2}^{2} b_{3}=b_{1}^{2} b_{0}$

Idea: expand on parametrizations to find a stronger condition on 2-regularity.

Theorem

If, for some parametrization $\left(b_{0} y_{0}+b_{1} y_{1}, b_{0} y_{0}+b_{2} y_{1}, b_{3} y_{0}+b_{2} y_{1}\right)$

- $b_{0} \neq b_{3}, b_{1} \neq b_{2}$
- $a_{0} b_{0}+a_{1} b_{0}+a_{2} b_{3}=0, a_{0} b_{1}+a_{1} b_{2}+a_{2} b_{2}=0$
- $b_{0}^{2} b_{1}=b_{3}^{2} b_{2}$ or $b_{1}^{2} b_{0}=b_{2}^{2} b_{3}$
then the equation $a_{0} x_{0}+a_{1} x_{1}+a_{2} x_{2}=0$ is 2-regular.
Furthermore, all 3 integers in the triple are not equal.

$b_{2}^{2} b_{3}=b_{1}^{2} b_{0}$

Idea: expand on parametrizations to find a stronger condition on 2-regularity.

Theorem

If, for some parametrization $\left(b_{0} y_{0}+b_{1} y_{1}, b_{0} y_{0}+b_{2} y_{1}, b_{3} y_{0}+b_{2} y_{1}\right)$

- $b_{0} \neq b_{3}, b_{1} \neq b_{2}$
- $a_{0} b_{0}+a_{1} b_{0}+a_{2} b_{3}=0, a_{0} b_{1}+a_{1} b_{2}+a_{2} b_{2}=0$
- $b_{0}^{2} b_{1}=b_{3}^{2} b_{2}$ or $b_{1}^{2} b_{0}=b_{2}^{2} b_{3}$
then the equation $a_{0} x_{0}+a_{1} x_{1}+a_{2} x_{2}=0$ is 2-regular.
Furthermore, all 3 integers in the triple are not equal.
$-7 x_{0}+6 x_{1}+4 x_{2}=0$ is a special case of this where $b_{0}=2, b_{1}=1, b_{2}=4, b_{3}=1$.

Tying this in with Inequalities

We can also link this with inequalities

We can also link this with inequalities

How can we prove this?

- Prove that there exist an arbitrarily large amount of triples that satisfy the lemma previously mentioned
- Show that a bounded number do not satisfy the inequalities

Tying this in with Inequalities

We can also link this with inequalities

How can we prove this?

- Prove that there exist an arbitrarily large amount of triples that satisfy the lemma previously mentioned
- Show that a bounded number do not satisfy the inequalities

Example: $-7 x_{0}+6 x_{1}+4 x_{2}=0$

$$
\begin{gathered}
m+8 d, \ldots, m+64 \mathrm{~d}, m+72 d, \ldots, 2 \mathrm{~m}+128 \mathrm{~d} \\
2 \mathrm{~m}+16 \mathrm{~d}, 2 \mathrm{~m}+32 \mathrm{~d}, 2 m+48 d, 2 \mathrm{~m}+64 \mathrm{~d}, \ldots, 2 \mathrm{~m}+128 \mathrm{~d}
\end{gathered}
$$

If one triplet does not satisfy the inequalities, pick the other

- Generalize the family of equations to any number of variables
- Analyze how inequalities affect the DoR of other linear homogenous equations
- What are the conditions on 3-regularity for an equation $a_{0} x_{0}+a_{1} x_{1}+\ldots+a_{n-1} x_{n-1}=0$? 4-regularity? k-regularity?
- Generalize the idea that inequalities do not affect regularity to systems of linear homogenous equations
- Is a regular equation still regular if the x_{i} must be relatively prime?

Acknowledgements

Many thanks to:

- Laszlo Miklos Lovasz, our mentor
- Jacob Fox
- Tanya Khovanova
- Our awesome parents
- MIT PRIMES

