The Impact of Gene Order on Evolution

Hao Shen Mentor Anton Goloborodko

MIT PRIMES Conference Sunday, May 19

What is Population Genetics?

- Study of changes in distribution of allele frequencies
- Used to explain and confirm the general theory of evolution with genetics
- Part of modern evolutionary synthesis

Definitions

- Fitness: describes the ability for an organism to survive and reproduce
- Terminal Fitness: the eventual average fitness of a

Definitions

Epistasis: the cumulative effects of combinations of alleles on fitness

Epistasis matrix: a matrix of numerical values of epistasis

Gene Number	1	2	3	4
1	0.2	0.1	0.9	-0.5
2	0.1	0.4	1.1	0.6
3	0.9	1.1	-0.2	0.7
4	-0.5	0.6	0.7	0.3

Example of an Epistasis Matrix

Definitions

Recombination: the process by which two parents swap DNA to produce a new

genotype

Morgan 1916

Recombination vs Epistasis

- Epistasis favors particular combination of genes
- Recombination breaks apart genomes

Base model: Wright-Fisher

Simulation Process

- 1. Create a population of genomes
- 2. At each generation, randomly select N genomes, with replacement, where N is the population size

Our Model [Neher & Shraiman, 2009]

• extension of Wright Fisher model

Addition of:

- gene interactions (epistasis)
- recombination

Simulation process

- 1. Generate population
- 2. Randomly pick 2 parents to mate based on fitness
- 3. Randomly recombine their genomes
- 4. Randomly pick a created genome to give to offspring
- 5. Repeat steps 2-4, N times, where N is the size of the population

Example of Time Evolution

Hypothesis

- 1. Epistasis and recombination will make populations sensitive to gene order
- 2. A gene ordering that produces an epistasis matrix with greater values closer to the diagonal will allow populations to become more fit.

42.05

50.28

Terminal Fitness

Conclusions

- Recombination and epistasis make populations sensitive to gene orders
- Changes in gene ordering can produce significantly different terminal fitnesses
- The overall rate at which populations evolve is similar for different gene orderings

Implications

- Results of this project can be used to analyze the observed gene arrangement
- Understand the history of observed evolving populations

Implications

- Example: People have observed that chromosome 21 genes are different from chromosome 1 genes. Also, chromosome 21 is a lot shorter than chromosome 1. However, both chromosomes recombine on average once per generation.
- Different recombination rates on different chromosomes could predict the relative epistasis strengths of the alleles on those chromosomes

Thanks to...

- Anton Goloborodko
- Chris McFarland
- Leonid Mirny
- Mirny Lab
- MIT PRIMES Program