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Introduction: Graphs

A graph is a tuple (V ,E ), where E is a collection of pairs of V .

V is called the set of vertices, and E is called the set of edges.

A drawing D of a graph G is a mapping from vertices to points on
the plane and edges to curves joining the points corresponding to
end-points of the edges.
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Example: K4

Figure: Two different drawings of K4

Notice that one drawing has an intersection (or “crossing”)
between edges, where ther other does not.
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Crossing Number

A crossing in a graph drawing is an intersection between curves
that does not occur at an end-point of edges (curves).

The crossing number of a graph G , cr(G ), is the minimum
possible number of crossings in all drawings of G .

Determining the exact crossing number of a graph is a central
problem in topological graph theory.
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Crossing Number

Graphs that can be drawn on the plane without crossings are called
planar graphs.

The crossing number of a graph measures the non-planarity of the
graph.

Figure: A non-planar graph (K5)
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Crossing Number on Surfaces

Question. What happens if we add several handles?

Figure: “Lifting” a crossing edge using a handle.

Each time we add a handle, the number of crossing decreases since
we can obtain a drawing where a crossing edge is “lifted” by the
handle.
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Crossing Number on Surfaces

The (orientable) surface of genus g is the surface obtained by
“adding g handles” to the sphere. The sphere has genus 0.

The k-th crossing number crk(G ) of graph G is the minimum
number of crossings among all drawings of G on the orientable
surface of genus k .

The crossing number of a graph G is smaller on a surface of higher
genus, and there always exists a g such that crk(G ) = 0 when
k > g .
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Crossing Number on Surfaces

The genus g of a graph G is the minimum genus of the surface on
which G can be drawn without crossings. i.e., crg (G ) = 0. The
genus of a graph always exists and is well-defined.
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Crossing Sequence

The genus g of a graph G is the minimum genus of the surface on
which G can be drawn without crossings. i.e., crg (G ) = 0. The
genus of a graph always exists and is well-defined.

The (orientable) crossing sequence of graph G is the sequence
cr0(G ), cr1(G ), ..., crg (G ), where g is the genus of G .

All graph crossing sequences are strictly decreasing.
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Attempt at Characterization of Crossing Sequences

Question: What sequences are crossing sequences of some graphs?

A sequence a = a1, a2, ..., an is convex if for all 1 6 i 6 n − 2,
ai − ai+1 > ai+1 − ai+2.

Example:

5, 3, 2, 1: convex (5− 3 > 3− 2 > 2− 1)

9, 7, 3, 1: not convex (9− 7 < 7− 3)
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Attempt at Characterization of Crossing Sequences

Theorem (S̆irán̆, 1983)

Any convex, strictly decreasing sequence of nonnegative integers is
a crossing sequence of some graph.

A graph obtained by joining multiple K3,3’s with a cut vertex was
used to prove this theorem.
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Attempt at Characterization of Crossing Sequences

Conjecture (S̆irán̆)

All crossing sequences of graphs are convex.

Rationale: “If adding the second handle saves more edges than
adding the first handle, why not add the second handle first?
(Archdeacon et al.)”
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Attempt at Characterization of Crossing Sequences

Conjecture (S̆irán̆)

All crossing sequences of graphs are convex.

Rationale: “If adding the second handle saves more edges than
adding the first handle, why not add the second handle first?”

Surprisingly, this is wrong!
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Non-convex Crossing Sequences

Theorem (Archdeacon et al., 2000)

For every m > 0, there exists a graph which has the crossing
sequence {4

(3m
2

)
, 3
(3m

2

)
+ 3

(m
2

)
, 0}.

Theorem (DeVos et al. 2010)

If a and b are integers with a > b > 0, then there exists a graph G
with (orientable) crossing sequence {a, b, 0}.

Question. Can we find a non-convex crossing sequence of arbitrary
length?
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Main Result

Theorem

For any g > 2, there exists a graph Gm,g with genus g such that
for k < 3

5g,

crk(Gm,g ) = (2g − k) ·
(

3m

2

)
+ 3k ·

(
m

2

)
and for k > 3

5g,

crk(Gm,g ) = 18m2 · {g mod k}.

This presents an example of a non-convex graph crossing sequence
of arbitrary length. Archdeacon et al.’s theorem is a special case of
this theorem (g = 2).
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Main Result

Corollary

There exists a family of graphs Gm,g , g > 2 each with genus g
such that for k < 3

5g,

crk(Gm,g ) ∼ cr0(Gm,g ) · (1− k

3g
) as m, g → +∞

and for k > 3
5g,

crk(Gm,g ) ∼ 2cr0(Gm,g ) · (1− k

g
) as m, g → +∞.

This provides the asymptotical lower bound to the “non-convexity”
of all graphs in the family of graphs Gm,g . Therfore, all graphs in
this family are highly non-convex.
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Main Result

Figure: The graph Gm,g

The “patch” in the middle can be flipped!
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Main Result

Figure: Embedding of Gm,2 (Archdeacon et al.’s example) on the plane
and on the surface of genus 2

By simple enumeration, cr0(G ) = 4
(3m

2

)
, and cr2(G ) = 0.
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Main Result

Figure: Method for toroidal embedding of Gm,2
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Further Research

Conjecture (Archdeacon et al. 2000)

Any strictly decreasing (finite) sequence of non-negative integers is
the orientable crossing sequence of some graph.

What other examples of non-convex crossing sequences can we
find?
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Further Research

How non-convex can a graph be?

Question. Does there exist, for any ε > 0, a graph G with crossing
sequence such that cr0(G )− crs(G ) < ε · (crs(G )− crs+1(G )) ?

If there exist such graph for all ε, then our ’rational’ was
completely wrong!

A different direction: determining the exact crossing number of
specific graphs (on the plane).
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