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Good Functions

I The Oppenheim Conjecture, which concerns representations
of real numbers by real quadratic forms, was formulated in
1929 by Alexander Oppenheim and proved by Grigory
Margulis (who won the Fields Medal in 1978) in 1986 using
new methods invented by Margulis.

I Later, the Sprindžuk-Baker Conjecture was proved by
Margulis and Kleinbock, our project advisor, using a
quantitative version of Margulis’s method, and a key
ingredient was the use of (C , α)-good functions.
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Definition

I For C , α > 0, a function f : Rn → R is (C , α)-good if for
every ball B ⊂ Rn and ε > 0,

λn(B f ,ε) ≤ C

(
ε

‖f ‖B

)α
λn(B).

I ‖f ‖B := supx∈B |f (x)|.
I B f ,ε := {x ∈ B : |f (x)| < ε}.
I If ‖f ‖B = 0, we let 1

0 =∞.

I λn denotes the Lebesgue measure in Rn.
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Basic Properties

I If f is (C , α)-good, it is also (C ′, α)-good for all C ′ > C and
(C , α′)-good for all α′ < α.

I f is (C , α)-good if and only if g(x) = |f (x)| is also
(C , α)-good.

I If f is (C , α)-good, then so is g(x) = kf (x) for all k ∈ R.

I If fi , i ∈ I are all (C , α)-good, then so is g(x) = supi∈I fi (x).

I If f is (C , α)-good, then so is g(x) = f (x + a) for all a ∈ Rn.

I If f is (C , α)-good, then so is g(x) = f (kx) for all k ∈ R.



Basic Properties

I If f is (C , α)-good, it is also (C ′, α)-good for all C ′ > C and
(C , α′)-good for all α′ < α.

I f is (C , α)-good if and only if g(x) = |f (x)| is also
(C , α)-good.

I If f is (C , α)-good, then so is g(x) = kf (x) for all k ∈ R.

I If fi , i ∈ I are all (C , α)-good, then so is g(x) = supi∈I fi (x).

I If f is (C , α)-good, then so is g(x) = f (x + a) for all a ∈ Rn.

I If f is (C , α)-good, then so is g(x) = f (kx) for all k ∈ R.



Basic Properties

I If f is (C , α)-good, it is also (C ′, α)-good for all C ′ > C and
(C , α′)-good for all α′ < α.

I f is (C , α)-good if and only if g(x) = |f (x)| is also
(C , α)-good.

I If f is (C , α)-good, then so is g(x) = kf (x) for all k ∈ R.

I If fi , i ∈ I are all (C , α)-good, then so is g(x) = supi∈I fi (x).

I If f is (C , α)-good, then so is g(x) = f (x + a) for all a ∈ Rn.

I If f is (C , α)-good, then so is g(x) = f (kx) for all k ∈ R.



Basic Properties

I If f is (C , α)-good, it is also (C ′, α)-good for all C ′ > C and
(C , α′)-good for all α′ < α.

I f is (C , α)-good if and only if g(x) = |f (x)| is also
(C , α)-good.

I If f is (C , α)-good, then so is g(x) = kf (x) for all k ∈ R.

I If fi , i ∈ I are all (C , α)-good, then so is g(x) = supi∈I fi (x).

I If f is (C , α)-good, then so is g(x) = f (x + a) for all a ∈ Rn.

I If f is (C , α)-good, then so is g(x) = f (kx) for all k ∈ R.



Basic Properties

I If f is (C , α)-good, it is also (C ′, α)-good for all C ′ > C and
(C , α′)-good for all α′ < α.

I f is (C , α)-good if and only if g(x) = |f (x)| is also
(C , α)-good.

I If f is (C , α)-good, then so is g(x) = kf (x) for all k ∈ R.

I If fi , i ∈ I are all (C , α)-good, then so is g(x) = supi∈I fi (x).

I If f is (C , α)-good, then so is g(x) = f (x + a) for all a ∈ Rn.

I If f is (C , α)-good, then so is g(x) = f (kx) for all k ∈ R.



Basic Properties

I If f is (C , α)-good, it is also (C ′, α)-good for all C ′ > C and
(C , α′)-good for all α′ < α.

I f is (C , α)-good if and only if g(x) = |f (x)| is also
(C , α)-good.

I If f is (C , α)-good, then so is g(x) = kf (x) for all k ∈ R.

I If fi , i ∈ I are all (C , α)-good, then so is g(x) = supi∈I fi (x).

I If f is (C , α)-good, then so is g(x) = f (x + a) for all a ∈ Rn.

I If f is (C , α)-good, then so is g(x) = f (kx) for all k ∈ R.



Single-Variable Polynomials
Kleinbock and Margulis proved:

Theorem
All polynomial functions f : R→ R of degree k are

(2k(k + 1)
1
k , 1k )-good.

Proof.

I Choose x1, · · · , xk+1 ∈ B f ,ε such that |xi − xj | ≥ λ1(B f ,ε)
2k for

all i , j ≤ k + 1.

I By Lagrange interpolation:

f (x) =
k+1∑
i=1

f (xi )
k+1∏

j=1,j 6=i

x − xj
xi − xj

=⇒ ‖f ‖B ≤ (k + 1)ε

(
λ1(B)
λ1(B f ,ε)

2k

)k

=⇒ λ1(B f ,ε) ≤ 2k(k + 1)
1
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ε
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Project Goals

I Can we find optimal C ’s and α’s for these or other families of
functions?

I A group of Brandeis undergraduates showed that C = 2k
k√
k!

is

optimal for single-variable polynomials.

I Can we explore multivariable polynomials?
I Kleinbock and Margulis showed that n-variable functions of

degree k are (C , 1
nk )-good for some C .

Conjecture

All polynomial functions f : Rn → R of degree k are (C , 1k )-good
for some C .
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Multivariable Linear Polynomials

Theorem
All linear polynomial functions f : Rn → R are

(
4Vn−1

Vn
, 1
)

-good.1

Proof.

I Let r be the radius of B and c be the perpendicular distance
from its center to the hyperplane f (x) = 0.

I Let f (x) =
∑n

i=1 aixi and let d =
√∑n

i=1 a2i .

I Then, ‖f ‖B = d(c + r) and the distance between the
hyperplanes f (x) = ε and f (x) = −ε is 2ε

d .

I We have four cases:

1Here Vn stands for the volume of the unit ball in Rn, i.e.
V0 = 1,V1 = 2,V2 = π,V3 =

4π
3
, · · · .



Multivariable Linear Polynomials

Theorem
All linear polynomial functions f : Rn → R are

(
4Vn−1

Vn
, 1
)

-good.1

Proof.

I Let r be the radius of B and c be the perpendicular distance
from its center to the hyperplane f (x) = 0.

I Let f (x) =
∑n

i=1 aixi and let d =
√∑n

i=1 a2i .

I Then, ‖f ‖B = d(c + r) and the distance between the
hyperplanes f (x) = ε and f (x) = −ε is 2ε

d .

I We have four cases:

1Here Vn stands for the volume of the unit ball in Rn, i.e.
V0 = 1,V1 = 2,V2 = π,V3 =

4π
3
, · · · .



Multivariable Linear Polynomials

Theorem
All linear polynomial functions f : Rn → R are

(
4Vn−1

Vn
, 1
)

-good.1

Proof.

I Let r be the radius of B and c be the perpendicular distance
from its center to the hyperplane f (x) = 0.

I Let f (x) =
∑n

i=1 aixi and let d =
√∑n

i=1 a2i .

I Then, ‖f ‖B = d(c + r) and the distance between the
hyperplanes f (x) = ε and f (x) = −ε is 2ε

d .

I We have four cases:

1Here Vn stands for the volume of the unit ball in Rn, i.e.
V0 = 1,V1 = 2,V2 = π,V3 =

4π
3
, · · · .



Multivariable Linear Polynomials

Theorem
All linear polynomial functions f : Rn → R are

(
4Vn−1

Vn
, 1
)

-good.1

Proof.

I Let r be the radius of B and c be the perpendicular distance
from its center to the hyperplane f (x) = 0.

I Let f (x) =
∑n

i=1 aixi and let d =
√∑n

i=1 a2i .

I Then, ‖f ‖B = d(c + r) and the distance between the
hyperplanes f (x) = ε and f (x) = −ε is 2ε

d .

I We have four cases:

1Here Vn stands for the volume of the unit ball in Rn, i.e.
V0 = 1,V1 = 2,V2 = π,V3 =

4π
3
, · · · .



Multivariable Linear Polynomials

Theorem
All linear polynomial functions f : Rn → R are

(
4Vn−1

Vn
, 1
)

-good.1

Proof.

I Let r be the radius of B and c be the perpendicular distance
from its center to the hyperplane f (x) = 0.

I Let f (x) =
∑n

i=1 aixi and let d =
√∑n

i=1 a2i .

I Then, ‖f ‖B = d(c + r) and the distance between the
hyperplanes f (x) = ε and f (x) = −ε is 2ε

d .

I We have four cases:

1Here Vn stands for the volume of the unit ball in Rn, i.e.
V0 = 1,V1 = 2,V2 = π,V3 =

4π
3
, · · · .



Multivariable Linear Polynomials

ε
d ≥ r + c r ≥ c , εd ≤ r + c

r < c , εd < c − r r < c , c − r ≤ ε
d < c + r



Multivariable Linear Polynomials

I Case 1: B f ,ε = B =⇒ Trivial

I Case 2: B f ,ε can be bounded by hypercylinder of height 2ε
d

and base Vn−1rn−1 =⇒ λn(B f ,ε) ≤ 4Vn
Vn−1

(
ε
‖f ‖B

)α
λn(B)

I Case 3: B f ,ε = ∅ =⇒ Trivial

I Case 4: B f ,ε can be bounded by hypercylinder of height
ε+ r − c and base

Vn−1rn−1 =⇒ λn(B f ,ε) ≤ 2Vn
Vn−1

(
ε
‖f ‖B

)α
λn(B)



Multivariable Quadratic Polynomials

Theorem
f (x) =

∑n
i=1 x2

i is
(
4Vn−1

Vn
, 12

)
-good.

I This proof is similar to that of the linear polynomials, except
we intersect two balls rather than a ball and the region
between two hyperplanes.

I Interestingly, this case gives better C ’s than the optimal C for
the entire family of quadratic polynomials, i.e. where the
optimal C for single-variable quadratic polynomials is 2

√
2 the

optimal C for specifically this function (f (x) = x2) is 2.
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General Case

Theorem
All polynomial functions f : R2 → R of degree k are(

8k
k√k!

, 1k

)
-good.

Proof.

I Draw chords through the supremum of f on B, yielding

single-variable polynomials. For each chord l , λ1(l∩B f ,ε)
λ1(l∩B) is

bounded

(
by 2k

k√k!

(
ε
‖f ‖B

) 1
k

)
so we can bound λ2(B f ,ε)

λ2(B) .

I The problem reduces to how best to maximize such a region

when λ1(l∩B f ,ε)
λ1(l∩B) is a fixed p.

I Letting c be the distance from the center of the circle to the
supremum, we want to spread the points of the region as far
away from the supremum as possible.
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I Letting c be the distance from the center of the circle to the
supremum, we want to spread the points of the region as far
away from the supremum as possible.
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Future Research

I We would like to prove that the value of 1
k is the optimal

value for k degree multivariable polynomials.

I We would like to optimize our values for C . The estimations
we used to get our values of C are clearly not optimal and we
hope to lower our value of C .
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