Good Functions and Multivariable Polynomials

Saarik Kalia and Michael Zanger-Tishler

Third Annual MIT PRIMES Conference
May 18, 2013

Good Functions

- The Oppenheim Conjecture, which concerns representations of real numbers by real quadratic forms, was formulated in 1929 by Alexander Oppenheim and proved by Grigory Margulis (who won the Fields Medal in 1978) in 1986 using new methods invented by Margulis.

Good Functions

- The Oppenheim Conjecture, which concerns representations of real numbers by real quadratic forms, was formulated in 1929 by Alexander Oppenheim and proved by Grigory Margulis (who won the Fields Medal in 1978) in 1986 using new methods invented by Margulis.
- Later, the Sprindžuk-Baker Conjecture was proved by Margulis and Kleinbock, our project advisor, using a quantitative version of Margulis's method, and a key ingredient was the use of (C, α)-good functions.

Definition

- For $C, \alpha>0$, a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is (C, α)-good if for every ball $B \subset \mathbb{R}^{n}$ and $\epsilon>0$,

$$
\lambda_{n}\left(B^{f, \epsilon}\right) \leq C\left(\frac{\epsilon}{\|f\|_{B}}\right)^{\alpha} \lambda_{n}(B)
$$

Definition

- For $C, \alpha>0$, a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is (C, α)-good if for every ball $B \subset \mathbb{R}^{n}$ and $\epsilon>0$,

$$
\lambda_{n}\left(B^{f, \epsilon}\right) \leq C\left(\frac{\epsilon}{\|f\|_{B}}\right)^{\alpha} \lambda_{n}(B)
$$

- $\|f\|_{B}:=\sup _{x \in B}|f(x)|$.
- $B^{f, \epsilon}:=\{x \in B:|f(x)|<\epsilon\}$.
- If $\|f\|_{B}=0$, we let $\frac{1}{0}=\infty$.
- λ_{n} denotes the Lebesgue measure in \mathbb{R}^{n}.

Example

$$
\begin{gathered}
\lambda_{n}\left(B^{f, \epsilon}\right) \leq C\left(\frac{\epsilon}{\|f\|_{B}}\right)^{\alpha} \lambda_{n}(B) \\
f(x)=x^{2}, C=2 \sqrt{2}, \alpha=\frac{1}{2}
\end{gathered}
$$

Example

$$
\begin{gathered}
\lambda_{n}\left(B^{f, \epsilon}\right) \leq C\left(\frac{\epsilon}{\|f\|_{B}}\right)^{\alpha} \lambda_{n}(B) \\
f(x)=x^{2}, C=2 \sqrt{2}, \alpha=\frac{1}{2} \\
B=[-1,1] \Longrightarrow \lambda_{1}(B)=2,\|f\|_{B}=1
\end{gathered}
$$

Example

Example

$$
\begin{aligned}
& \lambda_{n}\left(B^{f, \epsilon}\right) \leq C\left(\frac{\epsilon}{\|f\|_{B}}\right)^{\alpha} \lambda_{n}(B) \\
& f(x)=x^{2}, C=2 \sqrt{2}, \alpha=\frac{1}{2} \\
& B=[-1,1] \Longrightarrow \lambda_{1}(B)=2,\|f\|_{B}=1 \\
& \epsilon=0.5 \\
& \lambda_{1}\left(B^{f, \epsilon}\right)=\sqrt{2} \\
& \epsilon=0.3 \\
& \lambda_{1}\left(B^{f, \epsilon}\right)=\sqrt{\frac{6}{5}} \\
& \lambda_{1}\left(B^{f, \epsilon}\right)=\sqrt{\frac{2}{5}}
\end{aligned}
$$

Example

$$
\begin{gathered}
\lambda_{n}\left(B^{f, \epsilon}\right) \leq C\left(\frac{\epsilon}{\|f\|_{B}}\right)^{\alpha} \lambda_{n}(B) \\
f(x)=x^{2}, C=2 \sqrt{2}, \alpha=\frac{1}{2} \\
B=[-1,1] \Longrightarrow \lambda_{1}(B)=2,\|f\|_{B}=1 \\
\begin{array}{ll}
1
\end{array} \\
\sqrt{2} \leq 2 \sqrt{2}\left(\frac{0.5}{1}\right)^{\frac{1}{2}} \cdot 2 \quad \sqrt{\frac{6}{5}} \leq 2 \sqrt{2}\left(\frac{0.3}{1}\right)^{\frac{1}{2}} \cdot 2 \quad \sqrt{\frac{2}{5}} \leq 2 \sqrt{2}\left(\frac{0.1}{1}\right)^{\frac{1}{2}} \cdot 2
\end{gathered}
$$

Basic Properties

- If f is (C, α)-good, it is also $\left(C^{\prime}, \alpha\right)$-good for all $C^{\prime}>C$ and (C, α^{\prime})-good for all $\alpha^{\prime}<\alpha$.

Basic Properties

- If f is (C, α)-good, it is also $\left(C^{\prime}, \alpha\right)$-good for all $C^{\prime}>C$ and (C, α^{\prime})-good for all $\alpha^{\prime}<\alpha$.
- f is (C, α)-good if and only if $g(\mathbf{x})=|f(\mathbf{x})|$ is also (C, α)-good.

Basic Properties

- If f is (C, α)-good, it is also $\left(C^{\prime}, \alpha\right)$-good for all $C^{\prime}>C$ and (C, α^{\prime})-good for all $\alpha^{\prime}<\alpha$.
- f is (C, α)-good if and only if $g(\mathbf{x})=|f(\mathbf{x})|$ is also (C, α)-good.
- If f is (C, α)-good, then so is $g(\mathbf{x})=k f(\mathbf{x})$ for all $k \in \mathbb{R}$.

Basic Properties

- If f is (C, α)-good, it is also $\left(C^{\prime}, \alpha\right)$-good for all $C^{\prime}>C$ and (C, α^{\prime})-good for all $\alpha^{\prime}<\alpha$.
- f is (C, α)-good if and only if $g(\mathbf{x})=|f(\mathbf{x})|$ is also (C, α)-good.
- If f is (C, α)-good, then so is $g(\mathbf{x})=k f(\mathbf{x})$ for all $k \in \mathbb{R}$.
- If $f_{i}, i \in I$ are all (C, α)-good, then so is $g(\mathbf{x})=\sup _{i \in I} f_{i}(\mathbf{x})$.

Basic Properties

- If f is (C, α)-good, it is also $\left(C^{\prime}, \alpha\right)$-good for all $C^{\prime}>C$ and (C, α^{\prime})-good for all $\alpha^{\prime}<\alpha$.
- f is (C, α)-good if and only if $g(\mathbf{x})=|f(\mathbf{x})|$ is also (C, α)-good.
- If f is (C, α)-good, then so is $g(\mathbf{x})=k f(\mathbf{x})$ for all $k \in \mathbb{R}$.
- If $f_{i}, i \in I$ are all (C, α)-good, then so is $g(\mathbf{x})=\sup _{i \in I} f_{i}(\mathbf{x})$.
- If f is (C, α)-good, then so is $g(\mathbf{x})=f(\mathbf{x}+\mathbf{a})$ for all $\mathbf{a} \in \mathbb{R}^{n}$.

Basic Properties

- If f is (C, α)-good, it is also $\left(C^{\prime}, \alpha\right)$-good for all $C^{\prime}>C$ and (C, α^{\prime})-good for all $\alpha^{\prime}<\alpha$.
- f is (C, α)-good if and only if $g(\mathbf{x})=|f(\mathbf{x})|$ is also (C, α)-good.
- If f is (C, α)-good, then so is $g(\mathbf{x})=k f(\mathbf{x})$ for all $k \in \mathbb{R}$.
- If $f_{i}, i \in I$ are all (C, α)-good, then so is $g(\mathbf{x})=\sup _{i \in I} f_{i}(\mathbf{x})$.
- If f is (C, α)-good, then so is $g(\mathbf{x})=f(\mathbf{x}+\mathbf{a})$ for all $\mathbf{a} \in \mathbb{R}^{n}$.
- If f is (C, α)-good, then so is $g(\mathbf{x})=f(k \mathbf{x})$ for all $k \in \mathbb{R}$.

Single-Variable Polynomials

Kleinbock and Margulis proved:
Theorem
All polynomial functions $f: \mathbb{R} \rightarrow \mathbb{R}$ of degree k are $\left(2 k(k+1)^{\frac{1}{k}}, \frac{1}{k}\right)$-good.

Single-Variable Polynomials

Kleinbock and Margulis proved:
Theorem
All polynomial functions $f: \mathbb{R} \rightarrow \mathbb{R}$ of degree k are $\left(2 k(k+1)^{\frac{1}{k}}, \frac{1}{k}\right)$-good.
Proof.

- Choose $x_{1}, \cdots, x_{k+1} \in B^{f, \epsilon}$ such that $\left|x_{i}-x_{j}\right| \geq \frac{\lambda_{1}\left(B^{f, \epsilon}\right)}{2 k}$ for all $i, j \leq k+1$.

Single-Variable Polynomials

Kleinbock and Margulis proved:
Theorem
All polynomial functions $f: \mathbb{R} \rightarrow \mathbb{R}$ of degree k are $\left(2 k(k+1)^{\frac{1}{k}}, \frac{1}{k}\right)$-good.
Proof.

- Choose $x_{1}, \cdots, x_{k+1} \in B^{f, \epsilon}$ such that $\left|x_{i}-x_{j}\right| \geq \frac{\lambda_{1}\left(B^{f, \epsilon}\right)}{2 k}$ for all $i, j \leq k+1$.
- By Lagrange interpolation:

$$
f(x)=\sum_{i=1}^{k+1} f\left(x_{i}\right) \prod_{j=1, j \neq i}^{k+1} \frac{x-x_{j}}{x_{i}-x_{j}}
$$

Single-Variable Polynomials

Kleinbock and Margulis proved:
Theorem
All polynomial functions $f: \mathbb{R} \rightarrow \mathbb{R}$ of degree k are $\left(2 k(k+1)^{\frac{1}{k}}, \frac{1}{k}\right)$-good.
Proof.

- Choose $x_{1}, \cdots, x_{k+1} \in B^{f, \epsilon}$ such that $\left|x_{i}-x_{j}\right| \geq \frac{\lambda_{1}\left(B^{f, \epsilon}\right)}{2 k}$ for all $i, j \leq k+1$.
- By Lagrange interpolation:

$$
\begin{aligned}
& f(x)=\sum_{i=1}^{k+1} f\left(x_{i}\right) \prod_{j=1, j \neq i}^{k+1} \frac{x-x_{j}}{x_{i}-x_{j}} \\
& \Longrightarrow\|f\|_{B} \leq(k+1) \epsilon\left(\frac{\lambda_{1}(B)}{\frac{\lambda_{1}\left(B^{f, \epsilon}\right)}{2 k}}\right)^{k}
\end{aligned}
$$

Single-Variable Polynomials

Kleinbock and Margulis proved:
Theorem
All polynomial functions $f: \mathbb{R} \rightarrow \mathbb{R}$ of degree k are $\left(2 k(k+1)^{\frac{1}{k}}, \frac{1}{k}\right)$-good.
Proof.

- Choose $x_{1}, \cdots, x_{k+1} \in B^{f, \epsilon}$ such that $\left|x_{i}-x_{j}\right| \geq \frac{\lambda_{1}\left(B^{f, \epsilon}\right)}{2 k}$ for all $i, j \leq k+1$.
- By Lagrange interpolation:

$$
\begin{aligned}
& f(x)=\sum_{i=1}^{k+1} f\left(x_{i}\right) \prod_{j=1, j \neq i}^{k+1} \frac{x-x_{j}}{x_{i}-x_{j}} \\
& \Longrightarrow\|f\|_{B} \leq(k+1) \epsilon\left(\frac{\lambda_{1}(B)}{\frac{\lambda_{1}\left(B^{f, \epsilon}\right)}{2 k}}\right)^{k} \\
& \Longrightarrow \lambda_{1}\left(B^{f, \epsilon}\right) \leq 2 k(k+1)^{\frac{1}{k}}\left(\frac{\epsilon}{\|f\|_{B}}\right)^{\frac{1}{k}} \lambda_{1}(B) .
\end{aligned}
$$

Project Goals

- Can we find optimal C's and α 's for these or other families of functions?

Project Goals

- Can we find optimal C's and α 's for these or other families of functions?
- A group of Brandeis undergraduates showed that $C=\frac{2 k}{\sqrt[k]{k!}}$ is optimal for single-variable polynomials.

Project Goals

- Can we find optimal C's and α 's for these or other families of functions?
- A group of Brandeis undergraduates showed that $C=\frac{2 k}{\sqrt[k]{k!}}$ is optimal for single-variable polynomials.
- Can we explore multivariable polynomials?

Project Goals

- Can we find optimal C's and α 's for these or other families of functions?
- A group of Brandeis undergraduates showed that $C=\frac{2 k}{\sqrt[k]{k!}}$ is optimal for single-variable polynomials.
- Can we explore multivariable polynomials?
- Kleinbock and Margulis showed that n-variable functions of degree k are $\left(C, \frac{1}{n k}\right)$-good for some C.

Project Goals

- Can we find optimal C's and α 's for these or other families of functions?
- A group of Brandeis undergraduates showed that $C=\frac{2 k}{\sqrt[k]{k!}}$ is optimal for single-variable polynomials.
- Can we explore multivariable polynomials?
- Kleinbock and Margulis showed that n-variable functions of degree k are $\left(C, \frac{1}{n k}\right)$-good for some C.

Conjecture

All polynomial functions $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ of degree k are $\left(C, \frac{1}{k}\right)$-good for some C.

Multivariable Linear Polynomials

Theorem
All linear polynomial functions $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ are $\left(\frac{4 V_{n-1}}{V_{n}}, 1\right)$-good. ${ }^{1}$
${ }^{1}$ Here V_{n} stands for the volume of the unit ball in \mathbb{R}^{n}, i.e.
$V_{0}=1, V_{1}=2, V_{2}=\pi, V_{3}=\frac{4 \pi}{3}, \cdots$.

Multivariable Linear Polynomials

Theorem
All linear polynomial functions $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ are $\left(\frac{4 V_{n-1}}{V_{n}}, 1\right)$-good. ${ }^{1}$
Proof.

- Let r be the radius of B and c be the perpendicular distance from its center to the hyperplane $f(\mathbf{x})=0$.

[^0]
Multivariable Linear Polynomials

Theorem
All linear polynomial functions $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ are $\left(\frac{4 V_{n-1}}{V_{n}}, 1\right)$-good. ${ }^{1}$
Proof.

- Let r be the radius of B and c be the perpendicular distance from its center to the hyperplane $f(\mathbf{x})=0$.
- Let $f(\mathbf{x})=\sum_{i=1}^{n} a_{i} x_{i}$ and let $d=\sqrt{\sum_{i=1}^{n} a_{i}^{2}}$.
${ }^{1}$ Here V_{n} stands for the volume of the unit ball in \mathbb{R}^{n}, i.e.
$V_{0}=1, V_{1}=2, V_{2}=\pi, V_{3}=\frac{4 \pi}{3}, \cdots$.

Multivariable Linear Polynomials

Theorem
All linear polynomial functions $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ are $\left(\frac{4 V_{n-1}}{V_{n}}, 1\right)$-good. ${ }^{1}$

Proof.

- Let r be the radius of B and c be the perpendicular distance from its center to the hyperplane $f(\mathbf{x})=0$.
- Let $f(\mathbf{x})=\sum_{i=1}^{n} a_{i} x_{i}$ and let $d=\sqrt{\sum_{i=1}^{n} a_{i}^{2}}$.
- Then, $\|f\|_{B}=d(c+r)$ and the distance between the hyperplanes $f(\mathbf{x})=\epsilon$ and $f(\mathbf{x})=-\epsilon$ is $\frac{2 \epsilon}{d}$.

[^1]
Multivariable Linear Polynomials

Theorem
All linear polynomial functions $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ are $\left(\frac{4 V_{n-1}}{V_{n}}, 1\right)$-good. ${ }^{1}$

Proof.

- Let r be the radius of B and c be the perpendicular distance from its center to the hyperplane $f(\mathbf{x})=0$.
- Let $f(\mathbf{x})=\sum_{i=1}^{n} a_{i} x_{i}$ and let $d=\sqrt{\sum_{i=1}^{n} a_{i}^{2}}$.
- Then, $\|f\|_{B}=d(c+r)$ and the distance between the hyperplanes $f(\mathbf{x})=\epsilon$ and $f(\mathbf{x})=-\epsilon$ is $\frac{2 \epsilon}{d}$.
- We have four cases:

[^2]
Multivariable Linear Polynomials

$$
r<c, \frac{\epsilon}{d}<c-r \quad r<c, c-r \leq \frac{\epsilon}{d}<c+r
$$

Multivariable Linear Polynomials

- Case 1: $B^{f, \epsilon}=B \Longrightarrow$ Trivial
- Case 2: $B^{f, \epsilon}$ can be bounded by hypercylinder of height $\frac{2 \epsilon}{d}$ and base $V_{n-1} r^{n-1} \Longrightarrow \lambda_{n}\left(B^{f, \epsilon}\right) \leq \frac{4 V_{n}}{V_{n-1}}\left(\frac{\epsilon}{\|f\|_{B}}\right)^{\alpha} \lambda_{n}(B)$
- Case 3: $B^{f, \epsilon}=\emptyset \Longrightarrow$ Trivial
- Case 4: $B^{f, \epsilon}$ can be bounded by hypercylinder of height $\epsilon+r-c$ and base

$$
V_{n-1} r^{n-1} \Longrightarrow \lambda_{n}\left(B^{f, \epsilon}\right) \leq \frac{2 V_{n}}{V_{n-1}}\left(\frac{\epsilon}{\|f\|_{B}}\right)^{\alpha} \lambda_{n}(B)
$$

Multivariable Quadratic Polynomials

Theorem
$f(\mathbf{x})=\sum_{i=1}^{n} x_{i}^{2}$ is $\left(\frac{4 V_{n-1}}{V_{n}}, \frac{1}{2}\right)$-good.

Multivariable Quadratic Polynomials

Theorem
$f(\mathbf{x})=\sum_{i=1}^{n} x_{i}^{2}$ is $\left(\frac{4 V_{n-1}}{V_{n}}, \frac{1}{2}\right)$-good.

- This proof is similar to that of the linear polynomials, except we intersect two balls rather than a ball and the region between two hyperplanes.

Multivariable Quadratic Polynomials

Theorem
$f(\mathbf{x})=\sum_{i=1}^{n} x_{i}^{2}$ is $\left(\frac{4 V_{n-1}}{V_{n}}, \frac{1}{2}\right)$-good.

- This proof is similar to that of the linear polynomials, except we intersect two balls rather than a ball and the region between two hyperplanes.
- Interestingly, this case gives better C's than the optimal C for the entire family of quadratic polynomials, i.e. where the optimal C for single-variable quadratic polynomials is $2 \sqrt{2}$ the optimal C for specifically this function $\left(f(x)=x^{2}\right)$ is 2 .

General Case

Theorem
All polynomial functions $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ of degree k are $\left(\frac{8 k}{\sqrt[k]{k!}}, \frac{1}{k}\right)$-good.

General Case

Theorem

All polynomial functions $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ of degree k are
$\left(\frac{8 k}{\sqrt[k]{k}!}, \frac{1}{k}\right)$-good.
Proof.

- Draw chords through the supremum of f on B, yielding single-variable polynomials. For each chord $I, \frac{\lambda_{1}\left(I \cap B^{f, \epsilon}\right)}{\lambda_{1}(I \cap B)}$ is bounded $\left(\right.$ by $\left.\frac{2 k}{\sqrt[k]{k!}}\left(\frac{\epsilon}{\|f\|_{B}}\right)^{\frac{1}{k}}\right)$ so we can bound $\frac{\lambda_{2}\left(B^{f, \epsilon}\right)}{\lambda_{2}(B)}$.

General Case

Theorem

All polynomial functions $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ of degree k are
$\left(\frac{8 k}{\sqrt[k]{k!}}, \frac{1}{k}\right)$-good.
Proof.

- Draw chords through the supremum of f on B, yielding single-variable polynomials. For each chord $I, \frac{\lambda_{1}\left(\cap \cap B^{f, \epsilon}\right)}{\lambda_{1}(I \cap B)}$ is bounded (by $\frac{2 k}{\sqrt[k]{k!}}\left(\frac{\epsilon}{\|f\|_{B}}\right)^{\frac{1}{k}}$) so we can bound $\frac{\lambda_{2}\left(B^{f, \epsilon}\right)}{\lambda_{2}(B)}$.
- The problem reduces to how best to maximize such a region when $\frac{\lambda_{1}\left(\cap B^{f, \epsilon}\right)}{\lambda_{1}(I \cap B)}$ is a fixed p.

General Case

Theorem

All polynomial functions $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ of degree k are
$\left(\frac{8 k}{\sqrt[k]{k!}}, \frac{1}{k}\right)$-good.
Proof.

- Draw chords through the supremum of f on B, yielding single-variable polynomials. For each chord $I, \frac{\lambda_{1}\left(I \cap B^{f, \epsilon}\right)}{\lambda_{1}(\cap \cap B)}$ is bounded (by $\left.\frac{2 k}{\sqrt[k]{k!}}\left(\frac{\epsilon}{\|f\|_{B}}\right)^{\frac{1}{k}}\right)$ so we can bound $\frac{\lambda_{2}\left(B^{f, \epsilon}\right)}{\lambda_{2}(B)}$.
- The problem reduces to how best to maximize such a region when $\frac{\lambda_{1}\left(I \cap B^{f, \epsilon}\right)}{\lambda_{1}(I \cap B)}$ is a fixed p.
- Letting c be the distance from the center of the circle to the supremum, we want to spread the points of the region as far away from the supremum as possible.

General Case

General Case

Lemma
Let R be a subset of circle S such that for every chord I of S through some point $P, \frac{\lambda_{1}(I \cap R)}{\lambda_{1}(I \cap S)}$ is at most p. Then

$$
\frac{\lambda_{2}(R)}{\lambda_{2}(S)}<4 p-2 p^{2}
$$

General Case

Lemma
Let R be a subset of circle S such that for every chord I of S through some point $P, \frac{\lambda_{1}(I \cap R)}{\lambda_{1}(I \cap S)}$ is at most p. Then

$$
\frac{\lambda_{2}(R)}{\lambda_{2}(S)}<4 p-2 p^{2}
$$

$$
\begin{aligned}
\lambda_{2}\left(B^{f, \epsilon}\right) & <\left(4 \frac{2 k}{\sqrt[k]{k!}}\left(\frac{\epsilon}{\|f\|_{B}}\right)^{\frac{1}{k}}-2\left(\frac{2 k}{\sqrt[k]{k!}}\right)^{2}\left(\frac{\epsilon}{\|f\|_{B}}\right)^{\frac{2}{k}}\right) \lambda_{2}(B) \\
& <\frac{8 k}{\sqrt[k]{k!}}\left(\frac{\epsilon}{\|f\|_{B}}\right)^{\frac{1}{k}} \lambda_{2}(B) .
\end{aligned}
$$

Future Research

- We would like to prove that the value of $\frac{1}{k}$ is the optimal value for k degree multivariable polynomials.

Future Research

- We would like to prove that the value of $\frac{1}{k}$ is the optimal value for k degree multivariable polynomials.
- We would like to optimize our values for C. The estimations we used to get our values of C are clearly not optimal and we hope to lower our value of C.

Related Works

BPS S. Bacon, J. Pardo and G. Sturm, (C, α)-good functions, Brandeis University course project 2011.
DM S.G. Dani and G.A Margulis, Limit distributions of orbits of unipotent flows and values of quadratic forms, Adv. in Soviet Math. 16 (1993), 91-137.
KM D. Kleinbock and G.A Margulis, Flows on homogeneous spaces and Diophantine approximation on manifolds, Ann. Math. 148 (1998), 339-360.
KT D. Kleinbock and G. Tomanov, Flows on S-arithmetic homogeneous spaces and applications to metric Diophantine approximation, Comm. Math. Helv. 82 (2007), 519- 581.

Acknowledgments

- We would like to thank a number of people for enabling our research:

Acknowledgments

- We would like to thank a number of people for enabling our research:
- Professor Dmitry Kleinbock for proposing our project and providing us guidance on our projects the last two years

Acknowledgments

- We would like to thank a number of people for enabling our research:
- Professor Dmitry Kleinbock for proposing our project and providing us guidance on our projects the last two years
- Our mentor Tue Ly, for providing us tips for the problem and dedicating countless hours to making this project a success

Acknowledgments

- We would like to thank a number of people for enabling our research:
- Professor Dmitry Kleinbock for proposing our project and providing us guidance on our projects the last two years
- Our mentor Tue Ly, for providing us tips for the problem and dedicating countless hours to making this project a success
- The MIT PRIMES program for enabling the two of us to work together the last two years

Acknowledgments

- We would like to thank a number of people for enabling our research:
- Professor Dmitry Kleinbock for proposing our project and providing us guidance on our projects the last two years
- Our mentor Tue Ly, for providing us tips for the problem and dedicating countless hours to making this project a success
- The MIT PRIMES program for enabling the two of us to work together the last two years
- And last but not least, our parents for providing us with cars and rides to get back and forth from our meetings.

[^0]: ${ }^{1}$ Here V_{n} stands for the volume of the unit ball in \mathbb{R}^{n}, i.e.
 $V_{0}=1, V_{1}=2, V_{2}=\pi, V_{3}=\frac{4 \pi}{3}, \cdots$.

[^1]: ${ }^{1}$ Here V_{n} stands for the volume of the unit ball in \mathbb{R}^{n}, i.e.
 $V_{0}=1, V_{1}=2, V_{2}=\pi, V_{3}=\frac{4 \pi}{3}$,

[^2]: ${ }^{1}$ Here V_{n} stands for the volume of the unit ball in \mathbb{R}^{n}, i.e.
 $V_{0}=1, V_{1}=2, V_{2}=\pi, V_{3}=\frac{4 \pi}{3}$,

