Ying Gao Mentored by Sergei Bernstein

Introduction

Posets Depths

Past Work

Refinement

Tools for finding ndepth Rotations Classes

Ndepth of a refinement -ordered pos

Results

Conclusion

Acknowledgments

Depths of Posets Ordered by Refinement

Ying Gao Mentored by Sergei Bernstein

3rd Annual PRIMES Conference

May 18th, 2013

Ying Gao Mentored by Sergei Bernstein

Introduction

Posets Depths

Past Work

Refinement

Tools for finding ndepth Rotations Classes

Ndepth of a refinement -ordered pose

Results

Conclusion

Acknowledgments

Posets

• Partially-ordered sets, or posets, are sets in which any two elements may be related by a binary relation \leq .

Posets

Ying Gao Mentored by Sergei Bernstein

Introduction

Posets Depths

Past Work

Refinement

Tools for finding ndepth Rotations Classes

Ndepth of a refinement

Results

Conclusion

Acknowledgments

- Partially-ordered sets, or posets, are sets in which any two elements may be related by a binary relation \leq .
- For elements A, B, C of a poset,
 - 1. $A \leq A$ (reflexivity);
 - 2. If $A \leq B$ and $B \leq A$, then A = B (anti-symmetry);
 - 3. If $A \leq B$ and $B \leq C$, then $A \leq C$ (transitivity).

Posets

Ying Gao Mentored by Sergei Bernstein

Introduction

Posets Depths

Past Work

Refinement

Tools for finding ndepth Rotations Classes

Ndepth of a refinement

Results

Conclusion

Acknowledgments

- Partially-ordered sets, or posets, are sets in which any two elements may be related by a binary relation \leq .
- For elements A, B, C of a poset,
 - 1. $A \leq A$ (reflexivity);
 - 2. If $A \leq B$ and $B \leq A$, then A = B (anti-symmetry);
 - 3. If $A \leq B$ and $B \leq C$, then $A \leq C$ (transitivity).
- Posets may be represented by Hasse diagrams, in which elements A and B are connected, with A below B, if A < B and there is no element C such that A < C < B.

Examples

Ying Gao Mentored by Sergei Bernstein

Introduction

Posets Depths

Past Work

Refinement

Tools for finding ndepth Rotations Classes

Ndepth of a refinement -ordered pos

Results

Conclusion

Acknowledgments

• The set of the first 6 natural numbers, ordered by divisibility.

Ying Gao Mentored by Sergei Bernstein

Introduction

Posets Depths

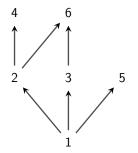
Past Work

Refinement

Tools for finding ndepth Rotations Classes

Ndepth of a refinement -ordered pose

Results


Conclusion

Acknowledgments

• The set of the first 6 natural numbers, ordered by divisibility.

Hasse Diagrams

Examples

Ying Gao Mentored by Sergei Bernstein

Introduction

Posets Depths

Past Work

Refinement

Tools for finding ndepth Rotations Classes

Ndepth of a refinement -ordered pos

Results

Conclusion

Acknowledgments

Examples

- The set of subsets of $\{1,2\},$ ordered by inclusion.

Ying Gao Mentored by Sergei Bernstein

Introduction

Posets Depths

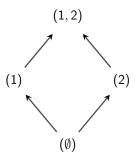
Past Work

Refinement

Tools for finding ndepth Rotations Classes

Ndepth of a refinement -ordered pose

Results


Conclusion

Acknowledgments

• The set of subsets of $\{1,2\}$, ordered by inclusion.

Hasse Diagrams

Examples

Ying Gao Mentored by Sergei Bernstein

Introduction

Posets Depths

Past Work

Refinement

Tools for finding ndepth Rotations Classes

Ndepth of a refinement -ordered pos

Results

Conclusion

Acknowledgments

Intervals

An interval *I* = [*A*, *B*] of a poset includes all elements *C* such that *A* ≤ *C* ≤ *B*.

Ying Gao Mentored by Sergei Bernstein

Introduction

Posets Depths

Past Work

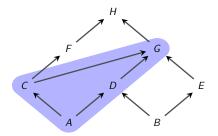
Refinement

Tools for finding ndepth Rotations

Ndepth of a refinement -ordered pose

Results

Conclusion


Acknowledgments

An interval *I* = [*A*, *B*] of a poset includes all elements *C* such that *A* ≤ *C* ≤ *B*.

Example

Intervals

The color blue represents the interval.

An interval I = [A, G]

Ying Gao Mentored by Sergei Bernstein

Introduction

Posets Depths

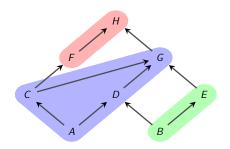
Past Work

Refinement

Tools for finding ndepth Rotations Classes

Ndepth of a refinement -ordered pose

Results


Conclusion

Acknowledgments

Interval partitions of a poset

• In an interval partition, the poset is completely partitioned into non-overlapping intervals. Each element of the poset is in exactly one interval.

Example

An interval partition P

Ying Gao Mentored by Sergei Bernstein

Introduction

Posets Depths

Past Work

Refinement

Tools for finding ndepth Rotations Classes

Ndepth of a refinement -ordered pose

Results

Conclusion

Acknowledgments

Depth

Definition

The *depth* of an element X_0 in a poset is defined to be the maximum possible number of elements in a chain $X_0 > X_1 > X_2 > \cdots > X_n$ from X_0 to the bottom of the poset.

Ying Gao Mentored by Sergei Bernstein

Introduction

Posets Depths

Past Work

Refinement

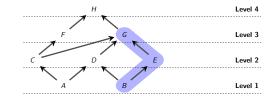
Tools for finding ndepth Rotations Classes

Ndepth of a refinement -ordered pose

Results

Conclusion

Acknowledgments


Depth

Definition

The *depth* of an element X_0 in a poset is defined to be the maximum possible number of elements in a chain $X_0 > X_1 > X_2 > \cdots > X_n$ from X_0 to the bottom of the poset.

• We say that a *level n* contains all elements of depth *n*.

Example

Ying Gao Mentored by Sergei Bernstein

Introduction

Posets Depths

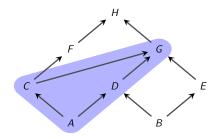
Past Work

Refinement

Tools for finding ndepth Rotations Classes

Ndepth of a refinement -ordered pose

Results


Conclusion

Acknowledgments

nDepth

For an interval *I*, ndepth[I] = max(depth[X]) over all elements *X* in *I*.

• For I = [A, B], ndepth[I] = depth[B].

Interval I = [A, G]. ndepth[I] = depth[G] = 3.

Ying Gao Mentored by Sergei Bernstein

Introduction

Posets Depths

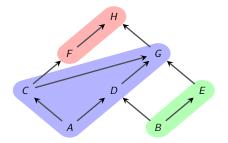
Past Work

Refinement

Tools for finding ndepth Rotations Classes

Ndepth of a refinement -ordered pose

Results


Conclusion

Acknowledgments

nDepth

For a partition P of a poset, ndepth[P] = min(ndepth[I])over all intervals I in P.

• Which interval in the partition has the least depth?

ndepth[P] = ndepth[B, E] = 2.

nDepth

Ying Gao Mentored by Sergei Bernstein

Introduction

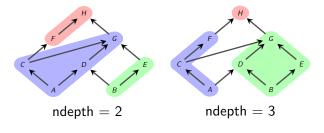
Posets Depths

Past Work

Refinement

Tools for finding ndepth Rotations Classes

Ndepth of a refinement -ordered pose


Results

Conclusion

Acknowledgments

For a poset G, ndepth[G] = max(ndepth[P]) over all possible partitions P of G.

• Which partition(s) of the poset have the greatest depth?

ndepth[G] = 3.

Ying Gao Mentored by Sergei Bernstein

Introduction

Posets Depths

Past Work

Refinement

Tools for finding ndepth Rotations Classes

Ndepth of a refinement -ordered pose

Results

Conclusion

Acknowledgments

Yinghui Wang:

Past work

• ndepth of a product of chains $n^k \setminus 0$ is $(n-1)\lceil k/2 \rceil$

Biro, Howard, Keller, Trotter, and Young

 For a poset B of the non-empty subsets of an n-element set ordered by inclusion, ndepth[B] ≥ n/2

We will study the properties of posets comprised of partitions of sets ordered by refinement.

Ying Gao Mentored by Sergei Bernstein

Introduction

Posets Depths

Past Work

Refinement

Tools for finding ndepth Rotations Classes

Ndepth of a refinement -ordered pose

Results

Conclusion

Acknowledgments

Set-Partitions

- A partition of a set is the division of the set of distinct points into subsets.
- Every element of the set is partitioned into some subset, and no element is within two or more subsets.

Examples

Partitions of a 6-element set.

Ying Gao Mentored by Sergei Bernstein

Introduction

Posets Depths

Past Work

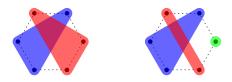
Refinement

Tools for finding ndepth Rotations Classes

Ndepth of a refinement -ordered pose

Results

Conclusion


Acknowledgments

• It is possible to order partitions of a set by *refinement*.

• A partition of a set P_b is considered *finer* than another partition P_a if all subsets within P_b are within some subset in P_a . If P_b is finer than P_a , P_a is *coarser* than P_b .

Examples

Refinement

Right partition is finer than left partition

Ying Gao Mentored by Sergei Bernstein

Introduction

Posets Depths

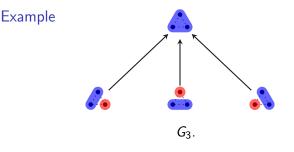
Past Work

Refinement

Tools for finding ndepth Rotations Classes

Ndepth of a refinement -ordered pose

Results


Conclusion

Acknowledgments

Posets of the refinement ordering

• These posets depend solely on the size of the set that is partitioned

Let G_i denote a poset ordered by refinement of all set partitions of the set with *i* elements except the "empty partition", the partition of each element into a separate subset.

Ying Gao Mentored by Sergei Bernstein

Introduction

Posets Depth:

Past Work

Refinement

Tools for finding ndepth

Rotations Classes

Ndepth of a refinement -ordered pose

Results

Conclusion

Acknowledgments

Now that we know what a poset ordered by refinement looks like \ldots

How do we find the ndepth of such a poset?

First, we need a few tools.

Ying Gao Mentored by Sergei Bernstein

Introduction

Posets

Past Work

Refinement

Tools for finding ndepth

Rotations Classes

Ndepth of a refinement -ordered pose

Results

Conclusion

Acknowledgments

Rotations

- A rotation of a certain partition is any other partition that may be obtained by rotating the partition around a circle.
- A rotation of an interval is the interval formed by rotating each element of the interval the same number of times.

Ying Gao Mentored by Sergei Bernstein

Introduction

Posets

Past Work

Refinement

Tools for finding ndepth

Rotations Classes

Ndepth of a refinement -ordered pose

Results

Conclusion

Acknowledgments

Rotations

- A rotation of a certain partition is any other partition that may be obtained by rotating the partition around a circle.
- A rotation of an interval is the interval formed by rotating each element of the interval the same number of times.

Examples

Ying Gao Mentored by Sergei Bernstein

Introduction

- Posets
- Past Work
- Refinement
- Tools for finding ndepth Rotations Classes
- Ndepth of a refinement -ordered pose
- Results
- Conclusion
- Acknowledgments

Classes of set partitions

- It is possible to group set partitions into classes based on the sizes of subsets in the set partitions.
- The class $C = (S_1, S_2, S_3, \dots, S_n)$ with all S_i positive integers and $S_1 \ge S_2 \ge S_3 \ge \dots \ge S_n$ includes all partitions which consist of exactly *n* subsets of size S_1, S_2, \dots, S_n .
- All rotations of a partition are in the same class as the partition.

Ying Gao Mentored by Sergei Bernstein

Introduction

- Posets
- Past Work
- Refinement
- Tools for finding ndepth Rotations Classes
- Ndepth of a refinement -ordered pose
- Results
- Conclusion
- Acknowledgments

Classes of set partitions

- It is possible to group set partitions into classes based on the sizes of subsets in the set partitions.
- The class $C = (S_1, S_2, S_3, \dots, S_n)$ with all S_i positive integers and $S_1 \ge S_2 \ge S_3 \ge \dots \ge S_n$ includes all partitions which consist of exactly *n* subsets of size S_1, S_2, \dots, S_n .
- All rotations of a partition are in the same class as the partition.
- Examples

Ying Gao Mentored by Sergei Bernstein

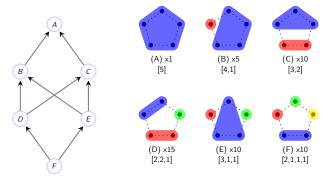
Introduction

Posets Depths

Past Work

Refinement

Tools for finding ndepth Rotations Classes


Ndepth of a refinement -ordered poset

Results

Conclusion

Acknowledgments

ndepth[G₅]

Poset of classes in G_5

Ying Gao Mentored by Sergei Bernstein

Introduction

Posets Depths

Past Work

Refinement

Tools for finding ndepth Rotations Classes

Ndepth of a refinement -ordered poset

Results

Conclusion

Acknowledgments

In order for it to be true that $ndepth[G_5] = L \dots$

- It must be impossible to partition the poset so that all intervals I have ndepth[I] > L
- It must be possible make a partiton P of G₅ such that each interval I in P has ndepth[I] ≥ L

Ying Gao Mentored by Sergei Bernstein

Introduction

Posets Depths

Past Work

Refinement

Tools for finding ndepth Rotations Classes

Ndepth of a refinement -ordered poset

Results

Conclusion

Acknowledgments

In order for it to be true that $ndepth[G_5] = L \dots$

- It must be impossible to partition the poset so that all intervals I have ndepth[I] > L
- It must be possible make a partition P of G₅ such that each interval I in P has ndepth[I] ≥ L

Lemma $ndepth[G_5] < 4.$

Ying Gao Mentored by Sergei Bernstein

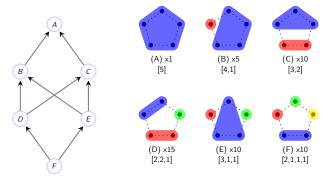
Introduction

Posets Depths

Past Work

Refinement

Tools for finding ndepth Rotations Classes


Ndepth of a refinement -ordered poset

Results

Conclusion

Acknowledgments

ndepth[G₅]

Poset of classes in G_5

Ying Gao Mentored by Sergei Bernstein

Introduction

Posets

Past Work

Refinement

Tools for finding ndepth Rotations Classes

Ndepth of a refinement -ordered poset

Results

Conclusion

Acknowledgments

ndepth[G₅]

- We attempt to show that $ndepth[G_5] = 3$ by constructing a partition *P* of G_5 with ndepth 3.
- It is possible to make a partition *P* with ten non-overlapping intervals of the form [*F*, *C*] and five non-overlapping intervals of the form [*D*, *B*], as well as an interval [*A*, *A*], which will completely partition the poset into intervals of ndepth 3 or greater.

Theorem The ndepth of G_5 is 3.

Ying Gao Mentored by Sergei Bernstein

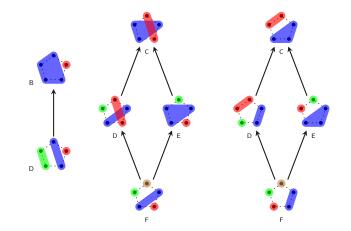
Introduction

Posets Depths

Past Work

Refinement

Tools for finding ndepth Rotations Classes


Ndepth of a refinement -ordered poset

Results

Conclusion

Acknowledgments

ndepth[G₅]

The 10 intervals of the form [F, C] and 5 intervals of the form [D, B] include all the rotations of these three intervals.

Ying Gao Mentored by Sergei Bernstein

Introduction

Posets

Past Work

Refinement

Tools for finding ndepth Rotations Classes

Ndepth of a refinement -ordered pose

Results

Conclusion

Acknowledgments

Results

The values of $ndepth[G_i]$

Ying Gao Mentored by Sergei Bernstein

Introduction

Posets

Past Work

Refinement

Tools for finding ndepth Rotations Classes

Ndepth of a refinement -ordered poset

Results

Conclusion

Acknowledgments

Results

-

The values of $ndepth[G_i]$

ndepth[G_i] is non-decreasing; for all *i*, *ndepth*[G_{i+1}] ≥ *ndepth*[G_i]

Ying Gao Mentored by Sergei Bernstein

Introduction

Posets

Past Work

Refinement

Tools for finding ndepth Rotations

Ndepth of a refinement -ordered pose

Results

Conclusion

Acknowledgments

Results

The values of $ndepth[G_i]$

 ndepth[G_i] is non-decreasing; for all *i*, ndepth[G_{i+1}] ≥ ndepth[G_i]

_

 ndepth[G_i] does not increase very fast; for all i, ndepth[G_{i+1}] ≤ ndepth[G_i] + 1

Ying Gao Mentored by Sergei Bernstein

Introduction

Posets

Past Work

Refinement

Tools for finding ndepth Rotations Classes

Ndepth of a refinement -ordered pose

Results

Conclusion

Acknowledgments

Results

The values of $ndepth[G_i]$

 ndepth[G_i] is non-decreasing; for all *i*, ndepth[G_{i+1}] ≥ ndepth[G_i]

_

- *ndepth*[G_i] does not increase very fast; for all i, *ndepth*[G_{i+1}] ≤ *ndepth*[G_i] + 1
- ndepth[G_i] increases infinitely; for any ndepth L, there is some i large enough that ndepth[G_i] = L.

Future Work

Ying Gao Mentored by Sergei Bernstein

Introduction

Posets

Past Work

Refinement

Tools for finding ndepth Rotations

Ndepth of a refinement

Results

Conclusion

Acknowledgments

- Describe upper and lower bounds for *ndepth*[*G_i*] for very large *i*
- Prove that *ndepth*[G_i] increases linearly
- Concretely describe the sequence *ndepth*[G_i]

Ying Gao Mentored by Sergei Bernstein

Introduction

Posets Depths

Past Work

Refinement

Tools for finding ndepth Rotations Classes

Ndepth of a refinement

Results

Conclusion

Acknowledgments

Acknowledgments

Thanks to

- My mentor, Sergei Bernstein, for his patience and guidance
- Professor Richard Stanley, for suggesting the project
- Tanya Khovanova and Dai Yang, for their advice
- PRIMES, for providing this research opportunity
- My parents, for their continuing support

Bibliography

Ying Gao Mentored by Sergei Bernstein

Introduction

Posets

Past Work

Refinement

Tools for finding ndepth Rotations Classes

Ndepth of a refinement -ordered pose

Results

Conclusion

Acknowledgments

- Wang, Yinghui. (2010). "A New Depth Related to the Stanley Depth of Some Power Sets of Multisets." Online. http://arxiv.org/pdf/0908.3699v4.pdf.
- Biro, C. Howard, D. Keller, M. Trotter, W. Young, S. "Interval Partitions and Stanley Depth." Online. http://rellek.net/home/images/publications/partition.pdf.
- Stanley, Richard. (2011). Enumerative Combinatorics, Volume 1, Second Edition, 277-284.