Equivalence classes of length-changing replacements of size-3 patterns

Vahid Fazel-Rezai
Mentor: Tanya Khovanova

2013 MIT-PRIMES Conference May 18, 2013

Outline

(1) Definitions

Outline

(1) Definitions
(2) Results

- β Decreasing
- Shift Right, Shift Left
- Drop Only
- Drop One, Swap $*$ with Neighbor

Outline

(1) Definitions
(2) Results

- β Decreasing
- Shift Right, Shift Left
- Drop Only
- Drop One, Swap * with Neighbor
(3) Future Plans

Permutations and Patterns

Definition

A permutation is a string consisting of $1,2,3, \ldots, n$.

Permutations and Patterns

Definition

A permutation is a string consisting of $1,2,3, \ldots, n$.
Special permutations:

- $123 \ldots$. . (identity permutation)
- \emptyset (empty permutation)

Permutations and Patterns

Definition

A permutation is a string consisting of $1,2,3, \ldots, n$.
Special permutations:

- 123 . . . n (identity permutation)
- \emptyset (empty permutation)

Definition

Let p be a string of distinct positive integers. A substring of a permutation π order-isomorphic to p is a copy of the pattern p in π. If no such substrings exist, π avoids p.

Replacements

Definition

Let α and β be strings, of equal length, of distinct integers and $*$. Then, σ is the result of a replacement $\alpha \rightarrow \beta$ on π if σ is obtained by:
(1) adding instances of $*$ in π as necessary,
(2) replacing a copy of the pattern α with β,
(3) dropping all instances of $*$, and then
(4) relabeling as necessary.

Replacements

Definition

Let α and β be strings, of equal length, of distinct integers and $*$. Then, σ is the result of a replacement $\alpha \rightarrow \beta$ on π if σ is obtained by:
(1) adding instances of $*$ in π as necessary,
(2) replacing a copy of the pattern α with β,
(3) dropping all instances of $*$, and then
(4) relabeling as necessary.

$$
\text { Example: Under } 123 \rightarrow 3 * 2 \text {, behold! }
$$

Replacements

Definition

Let α and β be strings, of equal length, of distinct integers and $*$. Then, σ is the result of a replacement $\alpha \rightarrow \beta$ on π if σ is obtained by:
(1) adding instances of $*$ in π as necessary,
(2) replacing a copy of the pattern α with β,
(3) dropping all instances of $*$, and then
(4) relabeling as necessary.

$$
\text { Example: Under } 123 \rightarrow 3 * 2 \text {, behold! }
$$

Replacements

Definition

Let α and β be strings, of equal length, of distinct integers and $*$. Then, σ is the result of a replacement $\alpha \rightarrow \beta$ on π if σ is obtained by:
(1) adding instances of $*$ in π as necessary,
(2) replacing a copy of the pattern α with β,
(3) dropping all instances of $*$, and then
(4) relabeling as necessary.

$$
\text { Example: Under } 123 \rightarrow 3 * 2 \text {, behold! }
$$

Replacements

Definition

Let α and β be strings, of equal length, of distinct integers and $*$. Then, σ is the result of a replacement $\alpha \rightarrow \beta$ on π if σ is obtained by:
(1) adding instances of $*$ in π as necessary,
(2) replacing a copy of the pattern α with β,
(3) dropping all instances of $*$, and then
(4) relabeling as necessary.

$$
\text { Example: Under } 123 \rightarrow 3 * 2 \text {, behold! }
$$

*14253

Replacements

Definition

Let α and β be strings, of equal length, of distinct integers and $*$. Then, σ is the result of a replacement $\alpha \rightarrow \beta$ on π if σ is obtained by:
(1) adding instances of $*$ in π as necessary,
(2) replacing a copy of the pattern α with β,
(3) dropping all instances of $*$, and then
(4) relabeling as necessary.

Example: Under $123 \rightarrow 3 * 2$, behold!
*14253
$14253 \rightarrow * 14253$

Replacements

Definition

Let α and β be strings, of equal length, of distinct integers and $*$. Then, σ is the result of a replacement $\alpha \rightarrow \beta$ on π if σ is obtained by:
(1) adding instances of $*$ in π as necessary,
(2) replacing a copy of the pattern α with β,
(3) dropping all instances of $*$, and then
(4) relabeling as necessary.

Example: Under $123 \rightarrow 3 * 2$, behold!
*14253
$14253 \rightarrow * 14253$

Replacements

Definition

Let α and β be strings, of equal length, of distinct integers and $*$. Then, σ is the result of a replacement $\alpha \rightarrow \beta$ on π if σ is obtained by:
(1) adding instances of $*$ in π as necessary,
(2) replacing a copy of the pattern α with β,
(3) dropping all instances of $*$, and then
(4) relabeling as necessary.

Example: Under $123 \rightarrow 3 * 2$, behold!

$$
\begin{aligned}
* 54 * 23 \\
14253 \rightarrow * 14253 \rightarrow * 54 * 23
\end{aligned}
$$

Replacements

Definition

Let α and β be strings, of equal length, of distinct integers and $*$. Then, σ is the result of a replacement $\alpha \rightarrow \beta$ on π if σ is obtained by:
(1) adding instances of $*$ in π as necessary,
(2) replacing a copy of the pattern α with β,
(3) dropping all instances of $*$, and then
4) relabeling as necessary.

Example: Under $123 \rightarrow 3 * 2$, behold!

$$
\begin{aligned}
& * 54 * 23 \\
& 14253 \rightarrow * 14253 \rightarrow * 54 * 23
\end{aligned}
$$

Replacements

Definition

Let α and β be strings, of equal length, of distinct integers and $*$. Then, σ is the result of a replacement $\alpha \rightarrow \beta$ on π if σ is obtained by:
(1) adding instances of $*$ in π as necessary,
(2) replacing a copy of the pattern α with β,
(3) dropping all instances of $*$, and then
(4) relabeling as necessary.

Example: Under $123 \rightarrow 3 * 2$, behold!

$$
\begin{aligned}
& * 54 * 23 \\
& 14253 \rightarrow * 14253 \rightarrow * 54 * 23
\end{aligned}
$$

Replacements

Definition

Let α and β be strings, of equal length, of distinct integers and $*$. Then, σ is the result of a replacement $\alpha \rightarrow \beta$ on π if σ is obtained by:
(1) adding instances of $*$ in π as necessary,
(2) replacing a copy of the pattern α with β,
(3) dropping all instances of $*$, and then
(4) relabeling as necessary.

Example: Under $123 \rightarrow 3 * 2$, behold!
5423
$14253 \rightarrow * 14253 \rightarrow * 54 * 23 \rightarrow 5423$

Replacements

Definition

Let α and β be strings, of equal length, of distinct integers and $*$. Then, σ is the result of a replacement $\alpha \rightarrow \beta$ on π if σ is obtained by:
(1) adding instances of $*$ in π as necessary,
(2) replacing a copy of the pattern α with β,
(3) dropping all instances of $*$, and then
(4) relabeling as necessary.

Example: Under $123 \rightarrow 3 * 2$, behold!
5423
$14253 \rightarrow * 14253 \rightarrow * 54 * 23 \rightarrow 5423$

Replacements

Definition

Let α and β be strings, of equal length, of distinct integers and $*$. Then, σ is the result of a replacement $\alpha \rightarrow \beta$ on π if σ is obtained by:
(1) adding instances of $*$ in π as necessary,
(2) replacing a copy of the pattern α with β,
(3) dropping all instances of $*$, and then
(4) relabeling as necessary.

Example: Under $123 \rightarrow 3 * 2$, behold!
4312

$$
14253 \rightarrow * 14253 \rightarrow * 54 * 23 \rightarrow 5423 \rightarrow 4312
$$

Replacements

Definition

Let α and β be strings, of equal length, of distinct integers and $*$. Then, σ is the result of a replacement $\alpha \rightarrow \beta$ on π if σ is obtained by:
(1) adding instances of $*$ in π as necessary,
(2) replacing a copy of the pattern α with β,
(3) dropping all instances of $*$, and then
(4) relabeling as necessary.

$$
\text { Example: Under } 123 \rightarrow 3 * 2 \text {, behold! }
$$

$$
14253 \rightarrow 4312
$$

Equivalence

Definition

Two permutations π and σ are equivalent $(\pi \equiv \sigma$) under $\alpha \leftrightarrow \beta$ if σ can be attained through a sequence of $\alpha \rightarrow \beta$ or $\beta \rightarrow \alpha$ replacements on π.

Equivalence

Definition

Two permutations π and σ are equivalent $(\pi \equiv \sigma)$ under $\alpha \leftrightarrow \beta$ if σ can be attained through a sequence of $\alpha \rightarrow \beta$ or $\beta \rightarrow \alpha$ replacements on π.

Example: Under $123 \leftrightarrow 3 * 2$, we have
$14253 \equiv 4312$.

Our Focus

- We are interested in equivalence classes.

Our Focus

- We are interested in equivalence classes.
- We look at replacements of the type $123 \leftrightarrow \beta$ where β has one $*$ (total of 18 cases).

Our Focus

- We are interested in equivalence classes.
- We look at replacements of the type $123 \leftrightarrow \beta$ where β has one $*$ (total of 18 cases).
- We organize these replacements into four categories:

Our Focus

- We are interested in equivalence classes.
- We look at replacements of the type $123 \leftrightarrow \beta$ where β has one $*$ (total of 18 cases).
- We organize these replacements into four categories:
- β Decreasing (9 cases)
e.g. $123 \leftrightarrow 3 * 1$

Our Focus

- We are interested in equivalence classes.
- We look at replacements of the type $123 \leftrightarrow \beta$ where β has one $*$ (total of 18 cases).
- We organize these replacements into four categories:
- β Decreasing (9 cases)
e.g. $123 \leftrightarrow 3 * 1$
- Shift Right, Shift Left (2 cases) $123 \leftrightarrow * 12$ and $123 \leftrightarrow 23 *$

Our Focus

- We are interested in equivalence classes.
- We look at replacements of the type $123 \leftrightarrow \beta$ where β has one $*$ (total of 18 cases).
- We organize these replacements into four categories:
- β Decreasing (9 cases)
e.g. $123 \leftrightarrow 3 * 1$
- Shift Right, Shift Left (2 cases) $123 \leftrightarrow * 12$ and $123 \leftrightarrow 23 *$
- Drop Only (3 cases) e.g. $123 \leftrightarrow 12 *$

Our Focus

- We are interested in equivalence classes.
- We look at replacements of the type $123 \leftrightarrow \beta$ where β has one $*$ (total of 18 cases).
- We organize these replacements into four categories:
- β Decreasing (9 cases)
e.g. $123 \leftrightarrow 3 * 1$
- Shift Right, Shift Left (2 cases) $123 \leftrightarrow * 12$ and $123 \leftrightarrow 23 *$
- Drop Only (3 cases) e.g. $123 \leftrightarrow 12 *$
- Drop, Swap * with Neighbor (4 cases) e.g. $123 \leftrightarrow 1 * 2$

Outline

(1) Definitions

(2) Results

- β Decreasing
- Shift Right, Shift Left
- Drop Only
- Drop One, Swap $*$ with Neighbor
(3) Future Plans

Two Lemmas

Lemma

If β is decreasing, then any permutation is equivalent under $123 \leftrightarrow \beta$ to some identity permutation.

Two Lemmas

Lemma

If β is decreasing, then any permutation is equivalent under $123 \leftrightarrow \beta$ to some identity permutation.

The above is because a descent can be replaced with an increasing substring.

Two Lemmas

Lemma

If β is decreasing, then any permutation is equivalent under $123 \leftrightarrow \beta$ to some identity permutation.

The above is because a descent can be replaced with an increasing substring.

Lemma

If β is decreasing, all identity permutations of length 4 or greater are equivalent.

Finitely Many Classes

Theorem
If β is decreasing, there are five equivalence classes:

$$
\{\emptyset\},\{1\},\{12\},\{123,21\},\{\text { everything else }\}
$$

Outline

(1) Definitions

- β Decreasing
- Shift Right, Shift Left
- Drop Only
- Drop One, Swap $*$ with Neighbor
(3) Future Plans

Reverse Identities Isolated

We observe the following:

- All identities of length 2 or greater are equivalent.
- All permutations of length 3, except 321, are equivalent.

Reverse Identities Isolated

We observe the following:

- All identities of length 2 or greater are equivalent.
- All permutations of length 3, except 321, are equivalent.

Theorem

Under $123 \leftrightarrow * 12$ and $123 \leftrightarrow 23 *$, each reverse identity is in a distinct class while all other permutations are equivalent.

Outline

(1) Definitions

(2) Results

- β Decreasing
- Shift Right, Shift Left
- Drop Only
- Drop One, Swap * with Neighbor
(3) Future Plans

Shortest Equivalent Permutation

Lemma

Apply the replacement $123 \rightarrow \beta$ as many times as possible (in any order) to some π, and call the result $p(\pi)$.

- $p(\pi)$ is the unique shortest permutation equivalent to π.
- $p(\pi)$ avoids 123.

Shortest Equivalent Permutation

Lemma

Apply the replacement $123 \rightarrow \beta$ as many times as possible (in any order) to some π, and call the result $p(\pi)$.

- $p(\pi)$ is the unique shortest permutation equivalent to π.
- $p(\pi)$ avoids 123.

Thus, there is a bijection between equivalence classes and permutations avoiding 123:

Shortest Equivalent Permutation

Lemma

Apply the replacement $123 \rightarrow \beta$ as many times as possible (in any order) to some π, and call the result $p(\pi)$.

- $p(\pi)$ is the unique shortest permutation equivalent to π.
- $p(\pi)$ avoids 123.

Thus, there is a bijection between equivalence classes and permutations avoiding 123:

Theorem

Under drop only replacements, for each σ avoiding 123, there exists a distinct class containing all π with $p(\pi)=\sigma$.

Outline

(1) Definitions

- β Decreasing
- Shift Right, Shift Left
- Drop Only
- Drop One, Swap $*$ with Neighbor
(3) Future Plans

Alternative Equivalence

The following lemma allows previous work to be applied here.

Lemma

There exists some length-preserving replacement under which equivalence implies equivalence under $123 \rightarrow \beta$ for each $123 \rightarrow \beta$ in this category.

For example, equivalence under $123 \leftrightarrow 132$ implies equivalence under $123 \leftrightarrow 13 *$.

Characterizing Classes by Invariants

Definition

An element of a permutation is called a left-to-right minimum if it has a value smaller than every element to its left.

Characterizing Classes by Invariants

Definition

An element of a permutation is called a left-to-right minimum if it has a value smaller than every element to its left.

Theorem

Two permutations are equivalent under $123 \leftrightarrow 13 *$ if and only if they have the following in common:

- number of left-to-right minima, and out of the elements that are not left-to-right minima,
- leftmost position, and
- largest value (relative to left-right minima).

The other three replacements have similar invariants.

Future Work

I plan to continue this research by:

- characterizing equivalence classes of $132 \leftrightarrow \beta$ replacements
- considering the case when β contains two *
- generalizing to longer patterns
- exploring the shortest distance between two permutations
- examining why some replacements have the same classes

Thank You!

I would like to thank:

- my mentor Tanya Khovanova for extremely valuable guidance
- Prof. James Propp for suggesting the project and continually providing direction
- PRIMES for allowing this research to happen

Thank You!

I would like to thank:

- my mentor Tanya Khovanova for extremely valuable guidance
- Prof. James Propp for suggesting the project and continually providing direction
- PRIMES for allowing this research to happen

Thank you for listening!

Thank You!

I would like to thank:

- my mentor Tanya Khovanova for extremely valuable guidance
- Prof. James Propp for suggesting the project and continually providing direction
- PRIMES for allowing this research to happen

Thank you for listening!

Questions?

