Equivalence classes of length-changing replacements of size-3 patterns

Vahid Fazel-Rezai Mentor: Tanya Khovanova

2013 MIT-PRIMES Conference May 18, 2013

4 **A b b b b b b**

Vahid Fazel-Rezai

Length-Changing Pattern Replacements

イロト イヨト イヨト イヨト

Outline

Results

- β Decreasing
- Shift Right, Shift Left
- Drop Only
- Drop One, Swap * with Neighbor

A > + = + + =

Outline

Results

- β Decreasing
- Shift Right, Shift Left
- Drop Only
- Drop One, Swap * with Neighbor

3 Future Plans

Permutations and Patterns

Definition

A **permutation** is a string consisting of 1, 2, 3, ..., *n*.

Permutations and Patterns

Definition

A **permutation** is a string consisting of 1, 2, 3, ..., *n*.

Special permutations:

- 123...n (identity permutation)
- Ø (empty permutation)

Permutations and Patterns

Definition

A permutation is a string consisting of 1, 2, 3, ..., n.

Special permutations:

- 123...n (identity permutation)
- Ø (empty permutation)

Definition

Let *p* be a string of distinct positive integers. A substring of a permutation π order-isomorphic to *p* is a **copy** of the **pattern** *p* in π . If no such substrings exist, π **avoids** *p*.

Definition

Let α and β be strings, of equal length, of distinct integers and *.

Then, σ is the result of a **replacement** $\alpha \rightarrow \beta$ on π if σ is obtained by:

- **1** adding instances of * in π as necessary,
- **2** replacing a copy of the pattern α with β ,
- 3 dropping all instances of *, and then
- 4 relabeling as necessary.

イロト イポト イラト イラ

Definition

Let α and β be strings, of equal length, of distinct integers and *.

Then, σ is the result of a **replacement** $\alpha \rightarrow \beta$ on π if σ is obtained by:

- **1** adding instances of * in π as necessary,
- **2** replacing a copy of the pattern α with β ,
- 3 dropping all instances of *, and then
- 4 relabeling as necessary.

Example: Under 123 \rightarrow 3*2, behold!

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Definition

Let α and β be strings, of equal length, of distinct integers and *.

Then, σ is the result of a **replacement** $\alpha \rightarrow \beta$ on π if σ is obtained by:

- **1** adding instances of * in π as necessary,
- 2 replacing a copy of the pattern α with β ,
- 3 dropping all instances of *, and then
- 4 relabeling as necessary.

Example: Under 123 \rightarrow 3*2, behold!

14253

Definition

Let α and β be strings, of equal length, of distinct integers and *. Then, σ is the result of a **replacement** $\alpha \rightarrow \beta$ on π if σ is obtained by:

- **1** adding instances of * in π as necessary,
- 2 replacing a copy of the pattern α with β ,
- 3 dropping all instances of *, and then
- 4 relabeling as necessary.

Example: Under 123 \rightarrow 3*2, behold!

14253

Definition

Let α and β be strings, of equal length, of distinct integers and *. Then, σ is the result of a **replacement** $\alpha \rightarrow \beta$ on π if σ is obtained by:

- 1 adding instances of * in π as necessary,
- 2 replacing a copy of the pattern α with β ,
- 3 dropping all instances of *, and then
- 4 relabeling as necessary.

Example: Under 123 \rightarrow 3*2, behold!

*****14253

Definition

Let α and β be strings, of equal length, of distinct integers and *.

Then, σ is the result of a **replacement** $\alpha \rightarrow \beta$ on π if σ is obtained by:

- **1** adding instances of * in π as necessary,
- **2** replacing a copy of the pattern α with β ,
- 3 dropping all instances of *, and then
- 4 relabeling as necessary.

```
Example: Under 123 \rightarrow 3*2, behold!
```

*14253

 $14253 \rightarrow *14253$

Definition

Let α and β be strings, of equal length, of distinct integers and *.

Then, σ is the result of a **replacement** $\alpha \rightarrow \beta$ on π if σ is obtained by:

- **1** adding instances of * in π as necessary,
- **2** replacing a copy of the pattern α with β ,
- 3 dropping all instances of *, and then
- 4 relabeling as necessary.

Example: Under 123 \rightarrow 3*2, behold!

***1425**3

 $14253 \rightarrow *14253$

Definition

Let α and β be strings, of equal length, of distinct integers and *.

Then, σ is the result of a **replacement** $\alpha \rightarrow \beta$ on π if σ is obtained by:

- **1** adding instances of * in π as necessary,
- **2** replacing a copy of the pattern α with β ,
- 3 dropping all instances of *, and then
- 4 relabeling as necessary.

Example: Under 123 \rightarrow 3*2, behold!

***5**4*23

$$14253 \rightarrow *14253 \rightarrow *54*23$$

Definition

Let α and β be strings, of equal length, of distinct integers and *.

Then, σ is the result of a **replacement** $\alpha \rightarrow \beta$ on π if σ is obtained by:

- **1** adding instances of * in π as necessary,
- 2 replacing a copy of the pattern α with β ,
- 3 dropping all instances of *, and then
- 4 relabeling as necessary.

Example: Under 123 \rightarrow 3*2, behold!

*54*23

$$14253 \rightarrow *14253 \rightarrow *54*23$$

Definition

Let α and β be strings, of equal length, of distinct integers and *.

Then, σ is the result of a **replacement** $\alpha \rightarrow \beta$ on π if σ is obtained by:

- **1** adding instances of * in π as necessary,
- 2 replacing a copy of the pattern α with β ,
- 3 dropping all instances of *, and then

4 relabeling as necessary.

Example: Under 123 \rightarrow 3*2, behold!

***54*23**

$$14253 \rightarrow *14253 \rightarrow *54*23$$

Definition

Let α and β be strings, of equal length, of distinct integers and *.

Then, σ is the result of a **replacement** $\alpha \rightarrow \beta$ on π if σ is obtained by:

- **1** adding instances of * in π as necessary,
- 2 replacing a copy of the pattern α with β ,
- 3 dropping all instances of *, and then
- 4 relabeling as necessary.

Example: Under 123 \rightarrow 3*2, behold!

5423

$$14253 \rightarrow *14253 \rightarrow *54*23 \rightarrow 5423$$

Definition

Let α and β be strings, of equal length, of distinct integers and *.

Then, σ is the result of a **replacement** $\alpha \rightarrow \beta$ on π if σ is obtained by:

- **1** adding instances of * in π as necessary,
- 2 replacing a copy of the pattern α with β ,
- 3 dropping all instances of *, and then
- 4 relabeling as necessary.

Example: Under 123 \rightarrow 3*2, behold!

5423

$$14253 \rightarrow *14253 \rightarrow *54*23 \rightarrow 5423$$

Definition

Let α and β be strings, of equal length, of distinct integers and *.

Then, σ is the result of a **replacement** $\alpha \rightarrow \beta$ on π if σ is obtained by:

- **1** adding instances of * in π as necessary,
- **2** replacing a copy of the pattern α with β ,
- 3 dropping all instances of *, and then
- 4 relabeling as necessary.

Example: Under 123 \rightarrow 3*2, behold!

4312

 $14253 \rightarrow *14253 \rightarrow *54*23 \rightarrow 5423 \rightarrow 4312$

Definition

Let α and β be strings, of equal length, of distinct integers and *.

Then, σ is the result of a **replacement** $\alpha \rightarrow \beta$ on π if σ is obtained by:

- **1** adding instances of * in π as necessary,
- **2** replacing a copy of the pattern α with β ,
- 3 dropping all instances of *, and then
- 4 relabeling as necessary.

Example: Under 123 \rightarrow 3*2, behold!

 $\mathbf{14253} \rightarrow \mathbf{4312}$

Equivalence

Definition

Two permutations π and σ are **equivalent** ($\pi \equiv \sigma$) under $\alpha \leftrightarrow \beta$ if σ can be attained through a sequence of $\alpha \rightarrow \beta$ or $\beta \rightarrow \alpha$ replacements on π .

・ロト ・ 四ト ・ ヨト ・ ヨト

Equivalence

Definition

Two permutations π and σ are **equivalent** ($\pi \equiv \sigma$) under $\alpha \leftrightarrow \beta$ if σ can be attained through a sequence of $\alpha \rightarrow \beta$ or $\beta \rightarrow \alpha$ replacements on π .

Example: Under 123 \leftrightarrow 3*2, we have

 $14253 \equiv 4312.$

• We are interested in equivalence classes.

- We are interested in equivalence classes.
- We look at replacements of the type 123 $\leftrightarrow \beta$ where β has one * (total of 18 cases).

- We are interested in equivalence classes.
- We look at replacements of the type 123 $\leftrightarrow \beta$ where β has one * (total of 18 cases).
- We organize these replacements into four categories:

- We are interested in equivalence classes.
- We look at replacements of the type 123 $\leftrightarrow \beta$ where β has one * (total of 18 cases).
- We organize these replacements into four categories:
 - β Decreasing (9 cases)
 e.g. 123 ↔ 3*1

- We are interested in equivalence classes.
- We look at replacements of the type 123 ↔ β where β has one * (total of 18 cases).
- We organize these replacements into four categories:
 - β Decreasing (9 cases)
 e.g. 123 ↔ 3*1
 - Shift Right, Shift Left (2 cases) 123 ↔ *12 and 123 ↔ 23*

- We are interested in equivalence classes.
- We look at replacements of the type 123 $\leftrightarrow \beta$ where β has one * (total of 18 cases).
- We organize these replacements into four categories:
 - β Decreasing (9 cases)
 e.g. 123 ↔ 3*1
 - Shift Right, Shift Left (2 cases) 123 ↔ *12 and 123 ↔ 23*
 - Drop Only (3 cases)
 e.g. 123 ↔ 12*

- We are interested in equivalence classes.
- We look at replacements of the type 123 $\leftrightarrow \beta$ where β has one * (total of 18 cases).
- We organize these replacements into four categories:
 - β Decreasing (9 cases)
 e.g. 123 ↔ 3*1
 - Shift Right, Shift Left (2 cases) 123 ↔ *12 and 123 ↔ 23*
 - Drop Only (3 cases)
 e.g. 123 ↔ 12*
 - Drop, Swap ∗ with Neighbor (4 cases)
 e.g. 123 ↔ 1*2

Outline

Definitions

2 Results

- β Decreasing
- Shift Right, Shift Left
- Drop Only
- Drop One, Swap * with Neighbor

3 Future Plans

Two Lemmas

Lemma

If β is decreasing, then any permutation is equivalent under 123 $\leftrightarrow \beta$ to some identity permutation.

イロト イヨト イヨト イヨト

Two Lemmas

Lemma

If β is decreasing, then any permutation is equivalent under 123 $\leftrightarrow \beta$ to some identity permutation.

The above is because a descent can be replaced with an increasing substring.

< 回 > < 三 > < 三 >

Lemma

If β is decreasing, then any permutation is equivalent under 123 $\leftrightarrow \beta$ to some identity permutation.

The above is because a descent can be replaced with an increasing substring.

Lemma

If β is decreasing, all identity permutations of length 4 or greater are equivalent.

 β Decreasing

Finitely Many Classes

Theorem

If β is decreasing, there are five equivalence classes:

$\{\emptyset\}, \{1\}, \{12\}, \{123, 21\}, \{\textit{everything else}\}$

Outline

2 Results

• β Decreasing

Shift Right, Shift Left

- Drop Only
- Drop One, Swap * with Neighbor

3 Future Plans

A (10) > A (10) > A (10)

Reverse Identities Isolated

We observe the following:

- All identities of length 2 or greater are equivalent.
- All permutations of length 3, except 321, are equivalent.

Reverse Identities Isolated

We observe the following:

- All identities of length 2 or greater are equivalent.
- All permutations of length 3, except 321, are equivalent.

Theorem

Under 123 \leftrightarrow *12 and 123 \leftrightarrow 23*, each reverse identity is in a distinct class while all other permutations are equivalent.

< 回 > < 回 > < 回 >

Outline

2 Results

- β Decreasing
- Shift Right, Shift Left
- Drop Only
- Drop One, Swap * with Neighbor

3 Future Plans

Shortest Equivalent Permutation

Lemma

Apply the replacement $123 \rightarrow \beta$ as many times as possible (in any order) to some π , and call the result $p(\pi)$.

- $p(\pi)$ is the unique shortest permutation equivalent to π .
- *p*(*π*) avoids 123.

A (10) A (10)

Shortest Equivalent Permutation

Lemma

Apply the replacement $123 \rightarrow \beta$ as many times as possible (in any order) to some π , and call the result $p(\pi)$.

- $p(\pi)$ is the unique shortest permutation equivalent to π .
- p(π) avoids 123.

Thus, there is a bijection between equivalence classes and permutations avoiding 123:

Drop Only

Shortest Equivalent Permutation

Lemma

Apply the replacement $123 \rightarrow \beta$ as many times as possible (in any order) to some π , and call the result $p(\pi)$.

- $p(\pi)$ is the unique shortest permutation equivalent to π .
- p(π) avoids 123.

Thus, there is a bijection between equivalence classes and permutations avoiding 123:

Theorem

Under drop only replacements, for each σ avoiding 123, there exists a distinct class containing all π with $p(\pi) = \sigma$.

Outline

Results

- β Decreasing
- Shift Right, Shift Left
- Drop Only
- Drop One, Swap * with Neighbor

3 Future Plans

A (10) > A (10) > A (10)

The following lemma allows previous work to be applied here.

Lemma

There exists some length-preserving replacement under which equivalence implies equivalence under $123 \rightarrow \beta$ for each $123 \rightarrow \beta$ in this category.

For example, equivalence under 123 \leftrightarrow 132 implies equivalence under 123 \leftrightarrow 13*.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Characterizing Classes by Invariants

Definition

An element of a permutation is called a **left-to-right minimum** if it has a value smaller than every element to its left.

A (10) A (10)

Characterizing Classes by Invariants

Definition

An element of a permutation is called a **left-to-right minimum** if it has a value smaller than every element to its left.

Theorem

Two permutations are equivalent under $123 \leftrightarrow 13*$ if and only if they have the following in common:

• number of left-to-right minima,

and out of the elements that are not left-to-right minima,

- leftmost position, and
- largest value (relative to left-right minima).

The other three replacements have similar invariants.

Future Work

I plan to continue this research by:

- characterizing equivalence classes of 132 $\leftrightarrow \beta$ replacements
- considering the case when β contains two *
- generalizing to longer patterns
- exploring the shortest distance between two permutations
- examining why some replacements have the same classes

Thank You!

I would like to thank:

- my mentor Tanya Khovanova for extremely valuable guidance
- Prof. James Propp for suggesting the project and continually providing direction
- PRIMES for allowing this research to happen

4 **A** N A **B** N A **B** N

Thank You!

I would like to thank:

- my mentor Tanya Khovanova for extremely valuable guidance
- Prof. James Propp for suggesting the project and continually providing direction
- PRIMES for allowing this research to happen

Thank you for listening!

EN 4 EN

4 6 1 1 4

Thank You!

I would like to thank:

- my mentor Tanya Khovanova for extremely valuable guidance
- Prof. James Propp for suggesting the project and continually providing direction
- PRIMES for allowing this research to happen

Thank you for listening!

Questions?

不得る とうちょうちょ