A New Approach to q-Enumeration of Modular Statistics

William Kuszmaul
Third Annual PRIMES Conference
Mentored by Darij Grinberg

May 18, 2013

Example of enumerating a modular statistic

Consider integers x from 0 to 7 .

$f: \mathbb{Z} \rightarrow \mathbb{Z}$			
\checkmark	v	$f(x) \bmod n$	Question: What is
x	x^{2}	$x^{2} \bmod 5$	$\mid\left\{x: x^{2} \equiv 4(\bmod \right.$
0	0	0	
1	1	1	
2	4	4	
3	9	4	
4	16	1	Answer:
5	25	0	
6	36	1	
7	49	4	

A modular statistic counts (enumerates) the \# of rows that share a given modular answer.

A GENERAL PROBLEM

The question: Let M be a finite set and $f: M \rightarrow \mathbb{Z}$. How many $a \in M$ have $f(a) \equiv i \bmod n$ for a given i and n ?

- M can contain anything: paths, words, numbers, etc.
- Two variables to remember: i and n.

A step forward: I find a restructuring of the problem that often yields a simple solution.

A definition: Nontrivially periodic vector

Definition

A nontrivially periodic vector of length n repeats every k positions for some $k \mid n$ where $k<n$.

Examples:

Not nontrivially periodic:

$\langle 1,0,0,0,0,0\rangle$

PLAYING A GAME

$\langle 1,3,2,1,2,4\rangle$

$\langle 3,2,2,1,3,2\rangle$

Goal: Connect two vectors by adding and subtracting nontrivially periodic vectors.

Playing A GAME

$\begin{array}{r}\langle 1,3,2,1,2,4\rangle \\ -\langle 0,1,0,1,0,1\rangle \\ \hline\langle 1,2,2,0,2,3\rangle\end{array}$
Goal: Connect two vectors by adding and subtracting nontrivially periodic vectors.

Playing A GAME

$\begin{array}{r}\langle 1,3,2,1,2,4\rangle \\ -\langle 0,1,0,1,0,1\rangle \\ \hline\langle 1,2,2,0,2,3\rangle\end{array}$

$\langle 3,2,2,1,3,2\rangle$

Goal: Connect two vectors by adding and subtracting nontrivially periodic vectors.

Playing A GAME

$\begin{array}{r}\langle 1,2,2,0,2,3\rangle \\ -\langle 0,0,1,0,0,1\rangle \\ \hline\langle 1,2,1,0,2,2\rangle\end{array}$

$\langle 3,2,2,1,3,2\rangle$

Goal: Connect two vectors by adding and subtracting nontrivially periodic vectors.

Playing A GAME

$\begin{array}{r}\langle 1,2,2,0,2,3\rangle \\ -\langle 0,0,1,0,0,1\rangle \\ \hline\langle 1,2,1,0,2,2\rangle\end{array}$
$\langle 3,2,2,1,3,2\rangle$

Goal: Connect two vectors by adding and subtracting nontrivially periodic vectors.

Playing A GAME

$\begin{array}{r}\langle 1,2,1,0,2,2\rangle \\ +\langle 1,0,0,1,0,0\rangle \\ \hline\langle 2,2,1,1,2,2\rangle\end{array}$
Goal: Connect two vectors by adding and subtracting nontrivially periodic vectors.

Playing A GAME

$\begin{array}{r}\langle 1,2,1,0,2,2\rangle \\ +\langle 1,0,0,1,0,0\rangle \\ \hline\langle 2,2,1,1,2,2\rangle\end{array}$
Goal: Connect two vectors by adding and subtracting nontrivially periodic vectors.

Playing A GAME

$\begin{array}{r}\langle 2,2,1,1,2,2\rangle \\ +\langle 1,0,1,0,1,0\rangle \\ \hline\langle 3,2,2,1,3,2\rangle\end{array}$
Goal: Connect two vectors by adding and subtracting nontrivially periodic vectors.

Playing A GAME

$\begin{array}{r}\langle 2,2,1,1,2,2\rangle \\ +\langle 1,0,1,0,1,0\rangle \\ \hline\langle 3,2,2,1,3,2\rangle\end{array}$
Goal: Connect two vectors by adding and subtracting nontrivially periodic vectors.

Playing a GAME

$\langle 3,2,2,1,3,2\rangle$

$\langle 3,2,2,1,3,2\rangle$

We win! If we can win the game using \vec{a} and \vec{b} as our vectors, we say that \vec{a} and \vec{b} equivalent under the period game equivalence.

SOMETIMES WE CANNOT WIN

$\langle 2,1,1,1,1,1\rangle$

$\langle 1,1,1,1,1,1\rangle$

No way to connect these two vectors.

Function G tells us when we can win

- G maps vectors to vectors.

Theorem

$$
G(\vec{a})=G(\vec{b})
$$

\Uparrow
We can win the game using \vec{a} and \vec{b} as our vectors.

An example Where we cannot Win

$$
\begin{gathered}
\langle 2,1,1,1,1,1\rangle \\
G(\langle 2,1,1,1,1,1\rangle) \\
=\langle 2,1,-1,-2,-1,1\rangle
\end{gathered}
$$

What is G OF \vec{x} (A VECTOR OF SIZE n)?

- Let $T_{d}^{j}(\vec{x})=\sum_{k \equiv j \bmod d} \vec{x}_{k}$.
- Let $G_{j}(\vec{x})=\sum_{d \mid n} d T_{d}^{j} \mu\left(\frac{n}{d}\right)$.
- Then $G(\vec{x})=\left\langle G_{0}, G_{1}, \ldots, G_{n-1}\right\rangle$.

Why does it work?

- Proof of invariance is combinatorial.
- Proof of exhaustiveness related to norms of cyclotomic integers. Proved by my mentor Darij Grinberg.

Restructuring the problem: A counting THEOREM

- Let M be a finite set and $f: M \rightarrow \mathbb{Z}$. Pick i and n.
- For each $d \mid n$, let $\overrightarrow{X(d)}$ be the vector with $\overrightarrow{X(d)}{ }_{j}=$ number of $b \in M$ with $f(b) \equiv j \bmod d$.
- For $\overrightarrow{X(d)}$, pick any vector $\overrightarrow{A(d)}$ that is equivalent to $\overrightarrow{X(d)}$ under the period game equivalence.
- $\overrightarrow{A(d)}$ can be picked to be much simpler than $\overrightarrow{X(d)}$.

Theorem

The number of $a \in M$ with $f(a) \equiv i \bmod n$ is

$$
\frac{1}{n} \sum_{d \mid n} G_{i}(\overrightarrow{A(d)})
$$

SOME PREVIOUSLY UNSOLVED PROBLEMS

A new result: The number of words, each with major index $\equiv i \bmod n$, consisting of the letters $1,2, \ldots$ each appearing a_{1}, a_{2}, \ldots times respectively where $n \mid\left(a_{1}+a_{2}+\cdots\right)$ is

$$
\sum_{d \mid n, a_{1}, a_{2}, \ldots}\left(\frac{\left(\frac{a_{1}}{d}+\frac{a_{2}}{d}+\frac{a_{3}}{d}+\cdots\right)!}{\frac{a_{1}}{d}!\frac{a_{2}}{d}!\frac{a_{2}}{d}!\cdots} \sum_{k \mid d, i} \frac{k}{n} \mu\left(\frac{d}{k}\right)\right) .
$$

Another new result: The number of Catalan paths with major index $\equiv i \bmod n$ on a $j \times j$ grid with $n \mid 2 j$ is

$$
C_{j} / n+\sum_{\substack{d \mid n, j \\ d \neq 1}}\left(\binom{2 j / d}{j / d} \sum_{k \mid d, i} \frac{k}{n} \mu\left(\frac{d}{k}\right)\right) .
$$

An application: Area of monotonic paths

- From top left of grid to bottom right of grid.
- Goes only right and down.

Question: Let $n \mid(j+k)$. How many paths on a $j \times k$ grid have area $\equiv i \bmod n$ for a given i and n ?

area $=10$
path on a 5×4 grid
(Previously solved by Reiner, Stanton, and White.)

A TOOL: CYCLIC SHIFTS

- A path corresponds with a word of letters r (right) and d (down).
- The cyclic shift of a word is the same word, but with the last letter killed and inserted as the first letter.
- e.g.
rrdrrddd
drrdrrdd
ddrrdrrd
dddrrdrr
rdddrrdr
rrdddrrd
drrdddrr
rdrrdddr
- The cyclic shift of a path is the path corresponding with the cyclic shift of its word.

EXAMPLE ON A 4×2 GRID

	rdrdrr $\text { area } \equiv 5 \bmod 6$	

- Each cyclic shift either kills a column or adds a row.
- Each cyclic shift changes area by $4 \bmod 6$.

FINDING A SIMPLE $\overrightarrow{A(6)}$ FOR A 4×2 GRID

- Each cyclic shift changes area by 4 mod 6 . Modulo 6, the areas $1,5,3,1,5,3$ appear.
- The modular statistics of the areas modulo 6 of the resulting paths form a nontrivially periodic vector: $\langle 0,2,0,2,0,2\rangle$.
- \Longrightarrow we do not need to consider them in $\overrightarrow{A(6)}$.
- \Longrightarrow we can cancel out all paths in this way.

So we can simply pick

$$
\overrightarrow{A(6)}=\langle 0,0,0,0,0,0\rangle
$$

A SIMPLE PROOF OF A KNOWN RESULT

- Using cyclic shifts, we find that $\overrightarrow{A(d)}$ is $\langle 0,0,0,0, \ldots\rangle$ when

- We finish the problem by plugging $\overrightarrow{A(d)}$ into

$$
\frac{1}{n} \sum_{d \mid n} G_{i}(\overrightarrow{A(d)}) .
$$

Theorem

The number of monotonic paths on a $j \times k$ grid with $n \mid(j+k)$ and with area $\equiv i \bmod n$ is

$$
\sum_{d \mid n, j}\left(\binom{(j+k) / d}{j / d} \sum_{r \mid d, i} \frac{r}{n} \mu\left(\frac{d}{r}\right)\right) .
$$

Future work

- Study relations between our results and the cyclic sieving phenomenon.
- Find additional enumerative applications of our main result.
- Let λ be a partition of n. Can one prove combinatorially that the number of Standard Young Tableaux T of shape λ such that T has major index $\equiv i \bmod n$ depends only on λ and the $\operatorname{gcd}(i, n)$?
- To continue studying the period game equivalence.

AcKnowledgements

I want to thank

1. My mentor Darij Grinberg.
2. MIT Professor Stanley for his encouragement.
3. MIT PRIMES for giving me the opportunity to conduct this research.

RELATED WORK

1. J. Haglund. The q, t-Catalan numbers and the space of diagonal harmonics: with an appendix on the combinatorics of Macdonald polynomials, volume 41. American Mathematical Soc., 2008.
2. V. Reiner, D. Stanton, and D. White. The cyclic sieving phenomenon. Journal of Combinatorial Theory, Series A, 108(1):1750, 2004.
3. B.E. Sagan. The cyclic sieving phenomenon: a survey. arXiv preprint arXiv:1008.0790, 2010.
4. R. Stanley, Enumerative Combinatorics Volume 1, no. 49 in Cambridge Studies in Advanced Mathematics, Cambridge University Press, 1999.
