A New Approach to *q*-Enumeration of Modular Statistics

William Kuszmaul Third Annual PRIMES Conference Mentored by Darij Grinberg

May 18, 2013

EXAMPLE OF ENUMERATING A MODULAR STATISTIC

Consider integers *x* from 0 to 7.

A modular statistic counts (enumerates) the # of rows that share a given modular answer.

A GENERAL PROBLEM

The question: Let *M* be a finite set and $f : M \to \mathbb{Z}$. How many $a \in M$ have $f(a) \equiv i \mod n$ for a given *i* and *n*?

- ► *M* can contain anything: paths, words, numbers, etc.
- Two variables to remember: *i* and *n*.

A step forward: I find a restructuring of the problem that often yields a simple solution.

A DEFINITION: NONTRIVIALLY PERIODIC VECTOR

Definition

A *nontrivially periodic vector* of length n repeats every k positions for some k|n where k < n.

Examples:

Not nontrivially periodic:

 $\langle 1,0,0,0,0,0\rangle$

(1, 3, 2, 1, 2, 4)

 $\langle 3,2,2,1,3,2\rangle$

 $\begin{array}{c} \langle 1,3,2,1,2,4\rangle \\ -\langle 0,1,0,1,0,1\rangle \\ \hline \langle 1,2,2,0,2,3\rangle \end{array}$

 $\langle 3, 2, 2, 1, 3, 2 \rangle$

 $\begin{array}{c} \langle 1,3,2,1,2,4\rangle \\ -\langle 0,1,0,1,0,1\rangle \\ \hline \langle 1,2,2,0,2,3\rangle \end{array}$

 $\langle 3, 2, 2, 1, 3, 2 \rangle$

 $\begin{array}{c} \langle 1,2,2,0,2,3\rangle \\ -\langle 0,0,1,0,0,1\rangle \\ \hline \langle 1,2,1,0,2,2\rangle \end{array}$

 $\langle 3, 2, 2, 1, 3, 2 \rangle$

 $\begin{array}{c} \langle 1,2,2,0,2,3\rangle \\ -\langle 0,0,1,0,0,1\rangle \\ \hline \langle 1,2,1,0,2,2\rangle \end{array}$

 $\langle 3,2,2,1,3,2\rangle$

 $\begin{array}{c} \langle 1,2,1,0,2,2\rangle \\ + \langle 1,0,0,1,0,0\rangle \\ \hline \langle 2,2,1,1,2,2\rangle \end{array}$

 $\langle 3, 2, 2, 1, 3, 2 \rangle$

 $\begin{array}{c} \langle 1,2,1,0,2,2\rangle \\ + \langle 1,0,0,1,0,0\rangle \\ \hline \langle 2,2,1,1,2,2\rangle \end{array}$

 $\langle 3,2,2,1,3,2\rangle$

 $\begin{array}{c} \langle 2,2,1,1,2,2\rangle \\ +\langle 1,0,1,0,1,0\rangle \\ \hline \langle 3,2,2,1,3,2\rangle \end{array}$

 $\langle 3, 2, 2, 1, 3, 2 \rangle$

 $\begin{array}{c} \langle 2,2,1,1,2,2\rangle \\ +\langle 1,0,1,0,1,0\rangle \\ \hline \langle 3,2,2,1,3,2\rangle \end{array}$

 $\langle 3,2,2,1,3,2\rangle$

 $\langle 3,2,2,1,3,2\rangle \qquad \qquad \langle 3,2,2,1,3,2\rangle$

We win! If we can win the game using \overrightarrow{a} and \overrightarrow{b} as our vectors, we say that \overrightarrow{a} and \overrightarrow{b} **equivalent** under the period game equivalence.

Sometimes we cannot win

 $\langle 2,1,1,1,1,1\rangle \qquad \qquad \langle 1,1,1,1,1\rangle$

No way to connect these two vectors.

Function G tells us when we can win

► *G* maps vectors to vectors.

Theorem

$$G(\overrightarrow{a}) = G(\overrightarrow{b})$$

$$(1)$$
We can win the game using \overrightarrow{a} and \overrightarrow{b} as our vectors.

AN EXAMPLE WHERE WE CANNOT WIN

No way to connect these two vectors.

WHAT IS G OF \overrightarrow{x} (A VECTOR OF SIZE n)?

• Let
$$T_d^j(\overrightarrow{x}) = \sum_{k \equiv j \mod d} \overrightarrow{x}_k$$
.
• Let $G_j(\overrightarrow{x}) = \sum_{d \mid n} d T_d^j \mu\left(\frac{n}{d}\right)$.
• Then $G(\overrightarrow{x}) = \langle G_0, G_1, \dots, G_{n-1} \rangle$.

Why does it work?

- Proof of invariance is combinatorial.
- Proof of exhaustiveness related to norms of cyclotomic integers. Proved by my mentor Darij Grinberg.

RESTRUCTURING THE PROBLEM: A COUNTING THEOREM

- Let *M* be a finite set and $f : M \to \mathbb{Z}$. Pick *i* and *n*.
- ► For each d|n, let $\overline{X(d)}$ be the vector with $\overline{X(d)_j}$ = number of $b \in M$ with $f(b) \equiv j \mod d$.
- ► For $\overrightarrow{X(d)}$, pick **any** vector $\overrightarrow{A(d)}$ that is equivalent to $\overrightarrow{X(d)}$ under the period game equivalence.
 - $\overrightarrow{A(d)}$ can be picked to be much simpler than $\overrightarrow{X(d)}$.

Theorem

The number of $a \in M$ *with* $f(a) \equiv i \mod n$ *is*

$$\frac{1}{n}\sum_{d|n}G_i(\overrightarrow{A(d)}).$$

Some previously unsolved problems

A new result: The number of words, each with major index $\equiv i \mod n$, consisting of the letters $1, 2, \ldots$ each appearing a_1, a_2, \ldots times respectively where $n | (a_1 + a_2 + \cdots)$ is

$$\sum_{d|n,a_1,a_2,\dots} \left(\frac{(\frac{a_1}{d} + \frac{a_2}{d} + \frac{a_3}{d} + \dots)!}{\frac{a_1}{d}! \frac{a_2}{d}! \frac{a_3}{d}! \dots} \sum_{k|d,i} \frac{k}{n} \mu(\frac{d}{k}) \right).$$

Another new result: The number of Catalan paths with major index $\equiv i \mod n$ on a $j \times j$ grid with n|2j is

$$C_j/n + \sum_{\substack{d \mid n, j \\ d \neq 1}} \left(\binom{2j/d}{j/d} \sum_{k \mid d, i} \frac{k}{n} \mu(\frac{d}{k}) \right)$$

AN APPLICATION: AREA OF MONOTONIC PATHS

- ► From top left of grid to bottom right of grid.
- ► Goes only right and down.

Question: Let n|(j + k). How many paths on a $j \times k$ grid have area $\equiv i \mod n$ for a given iand n?

(Previously solved by Reiner, Stanton, and White.)

A TOOL: CYCLIC SHIFTS

- A path corresponds with a word of letters r (right) and d (down).
- The **cyclic shift** of a word is the same word, but with the last letter killed and inserted as the first letter.

e.g.
 rrdrrddd
 drrdrrdd
 ddrrdrrd
 dddrrdrrd
 dddrrdrr
 rdddrrdr
 rrdddrrd
 drrddrrd
 drrdddrr
 rdrddr

► The **cyclic shift** of a path is the path corresponding with the cyclic shift of its word.

Example on a 4×2 grid

- Each cyclic shift either kills a column or adds a row.
- Each cyclic shift changes area by 4 mod 6.

FINDING A SIMPLE $\overrightarrow{A(6)}$ FOR A 4 × 2 GRID

- ► Each cyclic shift changes area by 4 mod 6. Modulo 6, the areas 1, 5, 3, 1, 5, 3 appear.
- ► The modular statistics of the areas modulo 6 of the resulting paths form a nontrivially periodic vector: (0,2,0,2,0,2).
- \implies we do not need to consider them in $\overrightarrow{A(6)}$.
- \implies we can cancel out all paths in this way.

So we can simply pick

$$\overrightarrow{A(6)} = \langle 0, 0, 0, 0, 0, 0 \rangle.$$

A SIMPLE PROOF OF A KNOWN RESULT

- Using cyclic shifts, we find that $\overrightarrow{A(d)}$ is (0, 0, 0, 0, ...) when not d|j, k and $\binom{(j+k)/d}{j/d}, 0, 0, ...$ when d|j, k.
- We finish the problem by plugging $\overrightarrow{A(d)}$ into

$$\frac{1}{n}\sum_{d|n}G_i(\overrightarrow{A(d)}).$$

Theorem

The number of monotonic paths on a $j \times k$ *grid with n*|(j + k) *and with area* $\equiv i \mod n$ *is*

$$\sum_{d|n,j} \left(\binom{(j+k)/d}{j/d} \sum_{r|d,i} \frac{r}{n} \mu(\frac{d}{r}) \right).$$

FUTURE WORK

- Study relations between our results and the cyclic sieving phenomenon.
- Find additional enumerative applications of our main result.
 - Let λ be a partition of n. Can one prove *combinatorially* that the number of Standard Young Tableaux T of shape λ such that T has major index $\equiv i \mod n$ depends only on λ and the gcd(i, n)?
- ► To continue studying the period game equivalence.

ACKNOWLEDGEMENTS

I want to thank

- 1. My mentor Darij Grinberg.
- 2. MIT Professor Stanley for his encouragement.
- 3. MIT PRIMES for giving me the opportunity to conduct this research.

Related work

- 1. J. Haglund. *The q, t-Catalan numbers and the space of diagonal harmonics: with an appendix on the combinatorics of Macdonald polynomials,* volume 41. American Mathematical Soc., 2008.
- 2. V. Reiner, D. Stanton, and D. White. *The cyclic sieving phenomenon*. Journal of Combinatorial Theory, Series A, 108(1):1750, 2004.
- 3. B.E. Sagan. *The cyclic sieving phenomenon: a survey*. arXiv preprint arXiv:1008.0790, 2010.
- 4. R. Stanley, *Enumerative Combinatorics Volume 1*, no. 49 in Cambridge Studies in Advanced Mathematics, Cambridge University Press, 1999.