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EXAMPLE OF ENUMERATING A MODULAR STATISTIC

0 0 0
1 1 1

3 9 4
2 4 4

4 16 1
5 25 0
6 36 1
7 49 4

Consider integers x from 0 to 7.
f : Z→ Z

f (x) mod n
Question: What is

|{x : x2 ≡ 4 (mod 5)}|?

Answer: 3

x2 mod 5x x2

A modular statistic counts (enumerates) the # of rows
that share a given modular answer.



A GENERAL PROBLEM

The question: Let M be a finite set and f : M→ Z. How many
a ∈M have f (a) ≡ i mod n for a given i and n?

I M can contain anything: paths, words, numbers, etc.
I Two variables to remember: i and n.

A step forward: I find a restructuring of the problem that often
yields a simple solution.



A DEFINITION: NONTRIVIALLY PERIODIC VECTOR

Definition
A nontrivially periodic vector of length n repeats every k positions
for some k|n where k < n.

Examples:

〈1, 1, 1, 1, 1, 1〉

〈0, 1, 0, 1, 0, 1〉
Not nontrivially periodic:

〈1, 0, 0, 0, 0, 0〉



PLAYING A GAME

〈1, 3, 2, 1, 2, 4〉 〈3, 2, 2, 1, 3, 2〉

Goal: Connect two vectors by adding and subtracting
nontrivially periodic vectors.



PLAYING A GAME

〈1, 3, 2, 1, 2, 4〉
−〈0, 1, 0, 1, 0, 1〉
〈1, 2, 2, 0, 2, 3〉

〈3, 2, 2, 1, 3, 2〉

Goal: Connect two vectors by adding and subtracting
nontrivially periodic vectors.



PLAYING A GAME

〈1, 3, 2, 1, 2, 4〉
−〈0, 1, 0, 1, 0, 1〉
〈1, 2, 2, 0, 2, 3〉

〈3, 2, 2, 1, 3, 2〉

Goal: Connect two vectors by adding and subtracting
nontrivially periodic vectors.



PLAYING A GAME

〈1, 2, 2, 0, 2, 3〉
−〈0, 0, 1, 0, 0, 1〉
〈1, 2, 1, 0, 2, 2〉

〈3, 2, 2, 1, 3, 2〉

Goal: Connect two vectors by adding and subtracting
nontrivially periodic vectors.



PLAYING A GAME

〈1, 2, 2, 0, 2, 3〉
−〈0, 0, 1, 0, 0, 1〉
〈1, 2, 1, 0, 2, 2〉

〈3, 2, 2, 1, 3, 2〉

Goal: Connect two vectors by adding and subtracting
nontrivially periodic vectors.



PLAYING A GAME

〈1, 2, 1, 0, 2, 2〉
+〈1, 0, 0, 1, 0, 0〉
〈2, 2, 1, 1, 2, 2〉

〈3, 2, 2, 1, 3, 2〉

Goal: Connect two vectors by adding and subtracting
nontrivially periodic vectors.



PLAYING A GAME

〈1, 2, 1, 0, 2, 2〉
+〈1, 0, 0, 1, 0, 0〉
〈2, 2, 1, 1, 2, 2〉

〈3, 2, 2, 1, 3, 2〉

Goal: Connect two vectors by adding and subtracting
nontrivially periodic vectors.



PLAYING A GAME

〈2, 2, 1, 1, 2, 2〉
+〈1, 0, 1, 0, 1, 0〉
〈3, 2, 2, 1, 3, 2〉

〈3, 2, 2, 1, 3, 2〉

Goal: Connect two vectors by adding and subtracting
nontrivially periodic vectors.



PLAYING A GAME

〈2, 2, 1, 1, 2, 2〉
+〈1, 0, 1, 0, 1, 0〉
〈3, 2, 2, 1, 3, 2〉

〈3, 2, 2, 1, 3, 2〉

Goal: Connect two vectors by adding and subtracting
nontrivially periodic vectors.



PLAYING A GAME

〈3, 2, 2, 1, 3, 2〉 〈3, 2, 2, 1, 3, 2〉

We win! If we can win the game using −→a and
−→
b as our vectors,

we say that −→a and
−→
b equivalent under the period game

equivalence.



SOMETIMES WE CANNOT WIN

〈2, 1, 1, 1, 1, 1〉 〈1, 1, 1, 1, 1, 1〉

No way to connect these two vectors.



FUNCTION G TELLS US WHEN WE CAN WIN

I G maps vectors to vectors.

Theorem

G(−→a ) = G(
−→
b )

m

We can win the game using −→a and
−→
b as our vectors.



AN EXAMPLE WHERE WE CANNOT WIN

〈2, 1, 1, 1, 1, 1〉

G(〈2, 1, 1, 1, 1, 1〉)

= 〈2, 1,−1,−2,−1, 1〉

〈1, 1, 1, 1, 1, 1〉

G(〈1, 1, 1, 1, 1, 1〉)

= 〈0, 0, 0, 0, 0, 0〉

No way to connect these two vectors.



WHAT IS G OF −→x (A VECTOR OF SIZE n)?

I Let Tj
d(
−→x ) =

∑
k≡j mod d

−→x k.

I Let Gj(
−→x ) =

∑
d|n

d Tj
d µ
(n

d

)
.

I Then G(−→x ) = 〈G0,G1, . . . ,Gn−1〉.

Why does it work?
I Proof of invariance is combinatorial.
I Proof of exhaustiveness related to norms of cyclotomic

integers. Proved by my mentor Darij Grinberg.



RESTRUCTURING THE PROBLEM: A COUNTING

THEOREM

I Let M be a finite set and f : M→ Z. Pick i and n.

I For each d|n, let
−−→
X(d) be the vector with

−−−→
X(d)j = number of

b ∈M with f (b) ≡ j mod d.

I For
−−→
X(d), pick any vector

−−→
A(d) that is equivalent to

−−→
X(d)

under the period game equivalence.
I
−−→
A(d) can be picked to be much simpler than

−−→
X(d).

Theorem
The number of a ∈M with f (a) ≡ i mod n is

1
n

∑
d|n

Gi(
−−→
A(d)).



SOME PREVIOUSLY UNSOLVED PROBLEMS

A new result: The number of words, each with major index
≡ i mod n, consisting of the letters 1, 2, . . . each appearing
a1, a2, . . . times respectively where n|(a1 + a2 + · · · ) is

∑
d|n,a1,a2,...

( a1
d + a2

d + a3
d + · · · )!

a1
d ! a2

d ! a3
d ! · · ·

∑
k|d,i

k
n
µ(

d
k
)

.
Another new result: The number of Catalan paths with major
index ≡ i mod n on a j× j grid with n|2j is

Cj/n +
∑
d|n,j
d6=1

(2j/d
j/d

)∑
k|d,i

k
n
µ(

d
k
)

 .



AN APPLICATION: AREA OF MONOTONIC PATHS

I From top left of grid to
bottom right of grid.

I Goes only right and
down.

Question: Let n|(j + k). How
many paths on a j×k grid have
area ≡ i mod n for a given i
and n?

j

k

area=10
path on a 5× 4 grid

(Previously solved by Reiner, Stanton, and White.)



A TOOL: CYCLIC SHIFTS

I A path corresponds with a word of letters
r (right) and d (down).

I The cyclic shift of a word is the same word, but with the
last letter killed and inserted as the first letter.

I e.g.
rrdrrddd

drrdrrdd
ddrrdrrd

dddrrdrr
rdddrrdr

rrdddrrd
drrdddrr

rdrrdddr

I The cyclic shift of a path is the path corresponding with
the cyclic shift of its word.



EXAMPLE ON A 4× 2 GRID

rrrdrd drrrdr rdrrrd
area ≡ 1 mod 6 area ≡ 5 mod 6 area ≡ 3 mod 6

drdrrr rdrdrr rrdrdr
area ≡ 1 mod 6 area ≡ 5 mod 6 area ≡ 3 mod 6
I Each cyclic shift either kills a column or adds a row.
I Each cyclic shift changes area by 4 mod 6.



FINDING A SIMPLE
−−→
A(6) FOR A 4× 2 GRID

I Each cyclic shift changes area by 4 mod 6. Modulo 6, the
areas 1, 5, 3, 1, 5, 3 appear.

I The modular statistics of the areas modulo 6 of the
resulting paths form a nontrivially periodic vector:
〈0, 2, 0, 2, 0, 2〉.

I =⇒ we do not need to consider them in
−−→
A(6).

I =⇒ we can cancel out all paths in this way.

So we can simply pick

−−→
A(6) = 〈0, 0, 0, 0, 0, 0〉.



A SIMPLE PROOF OF A KNOWN RESULT

I Using cyclic shifts, we find that
−−→
A(d) is 〈0, 0, 0, 0, . . .〉when

not d|j, k and 〈
((j+k)/d

j/d

)
, 0, 0, . . .〉when d|j, k.

I We finish the problem by plugging
−−→
A(d) into

1
n

∑
d|n

Gi(
−−→
A(d)).

Theorem
The number of monotonic paths on a j× k grid with n|(j + k) and
with area ≡ i mod n is

∑
d|n,j

((j + k)/d
j/d

)∑
r|d,i

r
n
µ(

d
r
)

 .



FUTURE WORK

I Study relations between our results and the cyclic sieving
phenomenon.

I Find additional enumerative applications of our main
result.

I Let λ be a partition of n. Can one prove combinatorially that
the number of Standard Young Tableaux T of shape λ such
that T has major index ≡ i mod n depends only on λ and
the gcd(i,n)?

I To continue studying the period game equivalence.
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