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Compact Riemann surfaces

Definition

A Riemann surface is a one-dimensional complex manifold.
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1http://upload.wikimedia.org/wikipedia/commons/f/f0/Triple_
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Algebraic curves

Loosely speaking, an algebraic curve is a one-dimensional
object that is the set of common zeros of a finite set of
multivariate polynomials.

y2 = x3 − x

Theorem (Riemann Existence)

Every compact Riemann surface has an algebraic structure.

An algebraic curve is defined over Q if the equations can be
taken to have coefficients in Q.
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Belyi functions

Definition

A Belyi function is a morphism f : X → P1
C,

X a compact Riemann surface (smooth, projective, irreducible
curve over C)

f unbranched outside {0, 1,∞}.

Theorem (Belyi)

An algebraic curve over C admits a Belyi function if and only if it
is defined over Q.
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Dessins d’enfants

Definition

A dessin d’enfant is a connected, bipartite graph G embedded as
a map into a topological compact oriented surface.
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2M. M. Wood, Belyi-Extending Maps and the Galois Action on Dessins
d’Enfants, Publ. RIMS, Kyoto Univ., 42: 721737, 2006.
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Correspondence between Belyi functions and dessins

Theorem (Grothendieck)

There is a natural one-to-one correspondence between isomorphism
classes of Belyi functions and isomorphism classes of dessins
d’enfants.

Associate f : X → P1
C to the graph f −1([0, 1]).

Bipartite with parts V0 = f −1({0}) and V1 = f −1({1})
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The full dictionary of objects

The following objects define equivalent data:

isomorphism classes of dessin d’enfants with n edges

isomorphism classes of Belyi functions of degree n

conjugacy classes of transitive representations 〈x , y〉 → Sn

conjugacy classes of subgroups of 〈x , y〉 of index n
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Action of Gal(Q/Q)

There is a natural action of Gal(Q/Q) on the category of
algebraic curves over Q.

Apply an automorphism of Q to all the coefficients of the
defining polynomials
Equivalently, base-change by an automorphism of SpecQ

By Belyi’s Theorem, this gives an action of Gal(Q/Q) on the
category of Belyi functions.

The action is faithful.

Hence, Gal(Q/Q) acts faithfully on the set of isomorphism
classes of dessins as well.

So, a number-theoretic object acts on a purely combinatorial
object.
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Application to inverse Galois theory

Question (Inverse Galois Problem)

What are all finite quotients of Gal(Q/Q)? What is Gal(Q/Q)?

One can study Gal(Q/Q) by its (faithful) action on the category of
dessins.

Question (Grothendieck)

How does Gal(Q/Q) act on the category of Belyi functions (set of
isomorphism classes of dessins)?
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Galois invariants of dessins

Question (Grothendieck)

When are two dessins in the same Galois orbit?

To answer this, it suffices to find a perfect Galois invariant.
Three particularly simple Galois invariants are:

degree multisets of V0 and V1, and the number of edges that
bound each face of the dessin

equivalently, the cycle types of the monodromy generators
very simple to compute!

monodromy group of a Belyi function

not as simple to compute

rational Nielsen class
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Precision of known Galois invariants

Question

How precise is the monodromy cycle type as a Galois invariant?
What about other known invariants?
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Precision of known Galois invariants

3

not Galois conjugate, but share the same degrees, monodromy
groups, and rational Nielsen classes

distinguished by a different Galois invariant (due to Zapponi)
3L. Zapponi, Fleurs, arbres et cellules: un invariant galoisien pour une

famille d’arbres, Compositio Mathematica 122: 113-133, 2000.
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The Main Theorem

Definition

For all positive integers N, let

Cl(N) = max
n≤N

max
λ1,λ2,λ3an

 number of Galois orbits of
Belyi functions with monodromy

of cycle type (λ1, λ2, λ3).



Our Theorem

For all positive integers N, we have

Cl(N) ≥ 1

16
2

√
2N
3 .
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Future Directions

Upper bound on Cl(N)

Consider Cartesian commutative squares of the form

Y ←−−−− Xy y
P1 ←−−−−−

f= (z+1)2

4z

P1

.

For a fixed right morphism, consider all possible left morphisms
Leads to an extrinsic Galois invariant for the right morphism
(used in the proof of the Main Theorem)
How does one define this invariant intrinsically?
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