q-Analogues of Symmetric Polynomials and nilHecke Algebras

Ritesh Ragavender
Mentor: Alex Ellis

May 18, 2013

Symmetric Functions

Definitions

Symmetric Functions

Definitions

Define the elementary symmetric functions by:

$$
\begin{aligned}
& e_{k}\left(x_{1}, \ldots, x_{n}\right)=\sum_{1 \leq i_{1}<\ldots<i_{k} \leq n} x_{i_{1}} \cdots x_{i_{n}} \\
& e_{2}\left(x_{1}, x_{2}, x_{3}\right)=x_{1} x_{2}+x_{2} x_{3}+x_{1} x_{3}
\end{aligned}
$$

Symmetric Functions

Definitions

Define the elementary symmetric functions by:

$$
\begin{aligned}
& e_{k}\left(x_{1}, \ldots, x_{n}\right)=\sum_{1 \leq i_{1}<\ldots<i_{k} \leq n} x_{i_{1}} \cdots x_{i_{n}} \\
& e_{2}\left(x_{1}, x_{2}, x_{3}\right)=x_{1} x_{2}+x_{2} x_{3}+x_{1} x_{3}
\end{aligned}
$$

Define the complete homogenous symmetric functions by:

$$
\begin{aligned}
& h_{k}\left(x_{1}, \ldots, x_{n}\right)=\sum_{1 \leq i_{1} \leq \ldots \leq i_{k} \leq n} x_{i_{1}} \cdots x_{i_{n}} \\
& h_{2}\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{1} x_{2}+x_{2} x_{3}+x_{1} x_{3}
\end{aligned}
$$

Goals and Motivation

1 To develop a q-analogue of symmetric functions.

Goals and Motivation

1 To develop a q-analogue of symmetric functions.
2 The "odd" $(q=-1)$ nilHecke algebra can be used in categorification of quantum groups.

We expect that our q-analogue can also be used in categorification.
3 Our q-bialgebra also has connections to 4D-topology.

Introduction to q-Bialgebras

Definition: Algebra

An algebra A is characterized by the following two maps:

$$
\begin{aligned}
& \eta: \mathbb{C} \rightarrow A \\
& m: A \otimes A \rightarrow A
\end{aligned}
$$

Introduction to q-Bialgebras

Definition: Algebra

An algebra A is characterized by the following two maps:

$$
\begin{aligned}
& \eta: \mathbb{C} \rightarrow A \\
& m: A \otimes A \rightarrow A
\end{aligned}
$$

q-Swap and Identity Maps

$$
\begin{aligned}
& \tau: v \otimes w \rightarrow q^{|v||w|} w \otimes v \\
& 1_{A}: A \rightarrow A
\end{aligned}
$$

Introduction to q-Bialgebras

Multiplication

We define the multiplication on $A \otimes A$ by

$$
(a \otimes b)(c \otimes d)=q^{|b||c|}(a c \otimes b d)
$$

Introduction to q-Bialgebras

Multiplication

We define the multiplication on $A \otimes A$ by

$$
(a \otimes b)(c \otimes d)=q^{|b||c|}(a c \otimes b d)
$$

Multiplication map m_{2}
The multiplication map $m_{2}: A^{\otimes 4} \rightarrow A^{\otimes 4}$ is

$$
m_{2}=(m \otimes m)\left(1_{A} \otimes \tau \otimes 1_{A}\right)
$$

Introduction to q-Bialgebras

Definition: Coalgebra

A coalgebra has the following maps:

$$
\begin{aligned}
& \epsilon: A \rightarrow \mathbb{C} \\
& \Delta: A \rightarrow A \otimes A
\end{aligned}
$$

Introduction to q-Bialgebras

Definition: Coalgebra

A coalgebra has the following maps:

$$
\begin{aligned}
& \epsilon: A \rightarrow \mathbb{C} \\
& \Delta: A \rightarrow A \otimes A
\end{aligned}
$$

Definition: Bialgebra

A bialgebra has all four maps η, m, ϵ, and Δ, with the added compatibility that the comultiplication is an algebra homomorphism.

Quantum Noncommutative Symmetric Functions

Description as a q-Bialgebra

Quantum Noncommutative Symmetric Functions

Description as a q-Bialgebra

■ Let $N \Lambda^{q}$ be a free, associative, \mathbb{Z}-graded \mathbb{C}-algebra with generators $h_{1}, h_{2} \ldots$ Let $q \in \mathbb{C}$.

Quantum Noncommutative Symmetric Functions

Description as a q-Bialgebra

■ Let $N \Lambda^{q}$ be a free, associative, \mathbb{Z}-graded \mathbb{C}-algebra with generators $h_{1}, h_{2} \ldots$ Let $q \in \mathbb{C}$.

- We define $h_{0}=1, h_{i}=0$ for $i<0$, and $\operatorname{deg}\left(h_{k}\right)=k$.

Quantum Noncommutative Symmetric Functions

Description as a q-Bialgebra

■ Let $N \Lambda^{q}$ be a free, associative, \mathbb{Z}-graded \mathbb{C}-algebra with generators $h_{1}, h_{2} \ldots$ Let $q \in \mathbb{C}$.

- We define $h_{0}=1, h_{i}=0$ for $i<0$, and $\operatorname{deg}\left(h_{k}\right)=k$.

■ We define $h_{\lambda}=h_{\lambda_{1}} h_{\lambda_{2}} \ldots h_{\lambda_{r}}$.

Quantum Noncommutative Symmetric Functions

Description as a q-Bialgebra

■ Let $N \Lambda^{q}$ be a free, associative, \mathbb{Z}-graded \mathbb{C}-algebra with generators $h_{1}, h_{2} \ldots$ Let $q \in \mathbb{C}$.

- We define $h_{0}=1, h_{i}=0$ for $i<0$, and $\operatorname{deg}\left(h_{k}\right)=k$.

■ We define $h_{\lambda}=h_{\lambda_{1}} h_{\lambda_{2}} \ldots h_{\lambda_{r}}$.

- Define multiplication as:
$(w \otimes x)(y \otimes z)=q^{\operatorname{deg}(x) \operatorname{deg}(y)}(w y \otimes x z)$.

Quantum Noncommutative Symmetric Functions

Description as a q-Bialgebra

■ Let $N \Lambda^{q}$ be a free, associative, \mathbb{Z}-graded \mathbb{C}-algebra with generators $h_{1}, h_{2} \ldots$ Let $q \in \mathbb{C}$.

■ We define $h_{0}=1, h_{i}=0$ for $i<0$, and $\operatorname{deg}\left(h_{k}\right)=k$.
■ We define $h_{\lambda}=h_{\lambda_{1}} h_{\lambda_{2}} \ldots h_{\lambda_{r}}$.

- Define multiplication as:
$(w \otimes x)(y \otimes z)=q^{\operatorname{deg}(x) \operatorname{deg}(y)}(w y \otimes x z)$.
■ Define comultiplication as:
$\Delta\left(h_{n}\right)=\sum_{m=0}^{n} h_{m} \otimes h_{n-m}$

Diagrammatics for the Bilinear Form

Let's consider the method to determine $\left(h_{1} h_{2} h_{1}, h_{2} h_{2}\right)$.

Diagrammatics for the Bilinear Form

Let's consider the method to determine $\left(h_{1} h_{2} h_{1}, h_{2} h_{2}\right)$.

Diagrammatics for the Bilinear Form

Let's consider the method to determine $\left(h_{1} h_{2} h_{1}, h_{2} h_{2}\right)$.

Use platforms with k strands to represent h_{k}.

Diagrammatics for the Bilinear Form

Let's consider the method to determine $\left(h_{1} h_{2} h_{1}, h_{2} h_{2}\right)$.

Use platforms with k strands to represent h_{k}.

Rules

There are no triple intersections, no critical points with respect to the height function, no instances of two curves intersecting at two or more points, and no crossing between curves originating from the same platform.

Diagrammatics for the Bilinear Form

Let's consider the method to determine $\left(h_{1} h_{2} h_{1}, h_{2} h_{2}\right)$.

Use platforms with k strands to represent h_{k}.

Rules

There are no triple intersections, no critical points with respect to the height function, no instances of two curves intersecting at two or more points, and no crossing between curves originating from the same platform.

$$
\left(h_{1} h_{2} h_{1}, h_{2} h_{2}\right)=1+2 q^{2}+q^{3}
$$

q-Symmetric Functions

Definition

Define $\operatorname{Sym}^{q} \cong N \Lambda^{q} / R$, where R is the radical of the bilinear form.

- The "odd case" refers to $q=-1$, studied in [EK].
- The "even" case refers to $q=1$, studied in [GKLLRT].

q-Symmetric Functions

Definition

Define $\operatorname{Sym}^{q} \cong N \Lambda^{q} / R$, where R is the radical of the bilinear form.

- The "odd case" refers to $q=-1$, studied in [EK].
- The "even" case refers to $q=1$, studied in [GKLLRT].

Diagrammatic Property

1 No strands from different tensor factors intersect:

$$
(w \otimes x, y \otimes z)=(w, y)(x, z)
$$

The Elementary Symmetric Functions

Definitions

$$
\text { Inductively define } \sum_{k=0}^{n}(-1)^{k} q^{\binom{k}{2}} h_{n-k} e_{k}=0
$$

The Elementary Symmetric Functions

Definitions

$$
\text { Inductively define } \sum_{k=0}^{n}(-1)^{k} q^{\binom{k}{2}} h_{n-k} e_{k}=0
$$

$$
e_{1}=h_{1}
$$

The Elementary Symmetric Functions

Definitions
Inductively define $\sum_{k=0}^{n}(-1)^{k} q\binom{k}{2} h_{n-k} e_{k}=0$
$e_{1}=h_{1}$
$q e_{2}=h_{1}^{2}-h_{2}$

The Elementary Symmetric Functions

Definitions
Inductively define $\sum_{k=0}^{n}(-1)^{k} q\binom{k}{2} h_{n-k} e_{k}=0$
$e_{1}=h_{1}$
$q e_{2}=h_{1}^{2}-h_{2}$
We will use a blue platform with k strands to denote e_{k}.

The Elementary Symmetric Functions

Definitions

Inductively define $\sum_{k=0}^{n}(-1)^{k} q\binom{k}{2} h_{n-k} e_{k}=0$
$e_{1}=h_{1}$
$q e_{2}=h_{1}^{2}-h_{2}$
We will use a blue platform with k strands to denote e_{k}.

Theorem

$\left(h_{\lambda}, e_{k}\right)=0$ if $|\lambda|=k$, unless $\lambda=1^{k}$.

Diagrammatics for the Bilinear Form

Idea of Proof

Diagrammatics for the Bilinear Form

Idea of Proof

- Show that

$$
\left(h_{m} x, e_{n}\right)=\left\{\begin{array}{lr}
\left(x, e_{n-1}\right) & \text { if } m=1 \\
0 & \text { otherwise }
\end{array}\right.
$$

Diagrammatics for the Bilinear Form

Idea of Proof

- Show that

$$
\left(h_{m} x, e_{n}\right)=\left\{\begin{array}{lr}
\left(x, e_{n-1}\right) & \text { if } m=1 \\
0 & \text { otherwise }
\end{array}\right.
$$

■ Use strong induction on n to find ($h_{m} x, e_{k} h_{n-k}$)

Diagrammatics for the Bilinear Form

Idea of Proof

- Show that

$$
\left(h_{m} x, e_{n}\right)=\left\{\begin{array}{lr}
\left(x, e_{n-1}\right) & \text { if } m=1 \\
0 & \text { otherwise }
\end{array}\right.
$$

- Use strong induction on n to find ($h_{m} x, e_{k} h_{n-k}$)
- By definition:
$(-1)^{n+1} q^{\binom{n}{2}}\left(h_{m} x, e_{n}\right)=\sum_{k=0}^{n-1}(-1)^{k} q^{\binom{k}{2}}\left(h_{m} x, e_{k} h_{n-k}\right)$

Diagrammatics for the Bilinear Form

Idea of Proof

There are two cases to consider by the inductive hypothesis applied to $k<n$. Either there is a strand connecting h_{m} and e_{k}, or there is not.

Diagrammatics for the Bilinear Form

Idea of Proof

If no strand connects h_{m} and e_{k}.
This contributes $q^{k m}\left(x, e_{k} h_{n-k-m}\right)$.

Diagrammatics for the Bilinear Form

Idea of Proof

If a strand connects h_{m} and e_{k}. This contributes $q^{(k-1)(m-1)}\left(x, e_{k-1} h_{n-k-m+1}\right)$.

Summary of Diagrammatic Rules for any q

Theorem
$\left(e_{n}, e_{n}\right)=q^{-\binom{n}{2}}$

Summary of Diagrammatic Rules for any q

Theorem

$\left(e_{n}, e_{n}\right)=q^{-\binom{n}{2}}$

Diagammatics

- There is at most one strand connecting an orange (h) platform and a blue (e) platform.
- There is a sign as given above when n strands connect two blue platforms.

Relations and the Center

Theorem

h_{1}^{n} is in the center of $N \Lambda^{q}$, if $q^{n}=1$.

Relations and the Center

> Theorem
> h_{1}^{n} is in the center of $N \Lambda^{q}$, if $q^{n}=1$.
> $\left(h_{1112}, e_{4} x\right)=\left(h_{2111}, e_{4} x\right)$

Relations and the Center

Theorem

h_{1}^{n} is in the center of $N \Lambda^{q}$, if $q^{n}=1$.
$\left(h_{1112}, e_{4} x\right)=\left(h_{2111}, e_{4} x\right)$

Relations and the Center

Theorem

h_{1}^{n} is in the center of $N \Lambda^{q}$, if $q^{n}=1$.
$\left(h_{1112}, e_{4} x\right)=\left(h_{2111}, e_{4} x\right)$

Other Relations (for $q^{3}=1$)

$$
\begin{aligned}
& v_{1}=h_{11211}+h_{12111}+h_{21111} \\
& v_{2}=h_{1122}-2 h_{1221}+3 h_{2112}+h_{2211} \\
& v_{3}=2 h_{1131}-2 h_{114}+2 h_{1311}-2 h_{141}+3 h_{222}+2 h_{1113}-2 h_{411} \\
& v_{1}+q^{2} v_{2}+q v_{3}=0
\end{aligned}
$$

q-divided Difference Operators

Definition

The ring of q-symmetric polynomials $\left(q \mathrm{Pol}_{a}\right)$: $\mathbb{Z}\left\langle x_{1}, x_{2}, \ldots, x_{a}\right\rangle /\left\langle x_{j} x_{i}-q x_{i} x_{j}=0\right.$ if $\left.j>i\right\rangle$

q-divided Difference Operators

Definition

The ring of q-symmetric polynomials $\left(q \mathrm{Pol}_{a}\right)$:
$\mathbb{Z}\left\langle x_{1}, x_{2}, \ldots, x_{a}\right\rangle /\left\langle x_{j} x_{i}-q x_{i} x_{j}=0\right.$ if $\left.j>i\right\rangle$
We now define the linear q-divided difference operators:

q-divided Difference Operators

Definition

The ring of q-symmetric polynomials $\left(q \mathrm{Pol}_{a}\right)$:
$\mathbb{Z}\left\langle x_{1}, x_{2}, \ldots, x_{a}\right\rangle /\left\langle x_{j} x_{i}-q x_{i} x_{j}=0\right.$ if $\left.j>i\right\rangle$
We now define the linear q-divided difference operators:

$$
\begin{aligned}
& \partial_{i}(1)=0 \\
& \partial_{i}\left(x_{i}\right)=q \\
& \partial_{i}\left(x_{i+1}\right)=-1 \\
& \partial_{i}\left(x_{j}\right)=0 \text { if } j \neq i, i+1
\end{aligned}
$$

q-divided Difference Operators

Definition

The ring of q-symmetric polynomials $\left(q \mathrm{Pol}_{a}\right)$:
$\mathbb{Z}\left\langle x_{1}, x_{2}, \ldots, x_{a}\right\rangle /\left\langle x_{j} x_{i}-q x_{i} x_{j}=0\right.$ if $\left.j>i\right\rangle$
We now define the linear q-divided difference operators:

$$
\begin{aligned}
& \partial_{i}(1)=0 \\
& \partial_{i}\left(x_{i}\right)=q \\
& \partial_{i}\left(x_{i+1}\right)=-1 \\
& \partial_{i}\left(x_{j}\right)=0 \text { if } j \neq i, i+1
\end{aligned}
$$

$$
\begin{aligned}
& r_{i}\left(x_{i}\right)=q x_{i+1} \\
& r_{i}\left(x_{i+1}\right)=q^{-1} x_{i} \\
& r_{i}\left(x_{j}\right)=q x_{j} \text { if } j>i+1 \\
& r_{i}\left(x_{j}\right)=q^{-1} x_{j} \text { if } j<i
\end{aligned}
$$

q-divided Difference Operators

Definition

The ring of q-symmetric polynomials $\left(q \mathrm{Pol}_{a}\right)$:
$\mathbb{Z}\left\langle x_{1}, x_{2}, \ldots, x_{a}\right\rangle /\left\langle x_{j} x_{i}-q x_{i} x_{j}=0\right.$ if $\left.j>i\right\rangle$
We now define the linear q-divided difference operators:

$$
\begin{array}{ll}
\partial_{i}(1)=0 & r_{i}\left(x_{i}\right)=q x_{i+1} \\
\partial_{i}\left(x_{i}\right)=q & r_{i}\left(x_{i+1}\right)=q^{-1} x_{i} \\
\partial_{i}\left(x_{i+1}\right)=-1 & r_{i}\left(x_{j}\right)=q x_{j} \text { if } j>i+1 \\
\partial_{i}\left(x_{j}\right)=0 \text { if } j \neq i, i+1 & r_{i}\left(x_{j}\right)=q^{-1} x_{j} \text { if } j<i
\end{array}
$$

Leibniz Rule: $\partial_{i}(f g)=\partial_{i}(f) g+r_{i}(f) \partial_{i}(g)$

q-divided Difference Operators

Definition

The ring of q-symmetric polynomials $\left(q \mathrm{Pol}_{a}\right)$:
$\mathbb{Z}\left\langle x_{1}, x_{2}, \ldots, x_{a}\right\rangle /\left\langle x_{j} x_{i}-q x_{i} x_{j}=0\right.$ if $\left.j>i\right\rangle$
We now define the linear q-divided difference operators:

$$
\begin{array}{ll}
\partial_{i}(1)=0 & r_{i}\left(x_{i}\right)=q x_{i+1} \\
\partial_{i}\left(x_{i}\right)=q & r_{i}\left(x_{i+1}\right)=q^{-1} x_{i} \\
\partial_{i}\left(x_{i+1}\right)=-1 & r_{i}\left(x_{j}\right)=q x_{j} \text { if } j>i+1 \\
\partial_{i}\left(x_{j}\right)=0 \text { if } j \neq i, i+1 & r_{i}\left(x_{j}\right)=q^{-1} x_{j} \text { if } j<i
\end{array}
$$

Leibniz Rule: $\partial_{i}(f g)=\partial_{i}(f) g+r_{i}(f) \partial_{i}(g)$
Note that these definitions account for the odd case as well.

Properties of the q-divided Difference Operators

Lemma
$\partial_{i}\left(x_{j} x_{i}-q x_{i} x_{j}\right)=0$ for $j>i$.

Properties of the q-divided Difference Operators

Lemma

$\partial_{i}\left(x_{j} x_{i}-q x_{i} x_{j}\right)=0$ for $j>i$.
As a consequence, ∂_{i} descends to an operator on $q \mathrm{Pol}_{a}$

Properties of the q-divided Difference Operators

Lemma

$\partial_{i}\left(x_{j} x_{i}-q x_{i} x_{j}\right)=0$ for $j>i$.
As a consequence, ∂_{i} descends to an operator on $q \mathrm{Pol}_{a}$ We have the following properties of the q-divided difference operators:

Properties of the q-divided Difference Operators

Lemma

$\partial_{i}\left(x_{j} x_{i}-q x_{i} x_{j}\right)=0$ for $j>i$.
As a consequence, ∂_{i} descends to an operator on $q \mathrm{Pol}_{a}$ We have the following properties of the q-divided difference operators:
$\partial_{i}^{2}=0$

Properties of the q-divided Difference Operators

Lemma

$\partial_{i}\left(x_{j} x_{i}-q x_{i} x_{j}\right)=0$ for $j>i$.
As a consequence, ∂_{i} descends to an operator on $q \mathrm{Pol}_{a}$ We have the following properties of the q-divided difference operators:
$\partial_{i}^{2}=0$
$\partial_{i} \partial_{j}=q \partial_{j} \partial_{i}$ when $i>j+1$

Properties of the q-divided Difference Operators

Lemma

$\partial_{i}\left(x_{j} x_{i}-q x_{i} x_{j}\right)=0$ for $j>i$.
As a consequence, ∂_{i} descends to an operator on $q \mathrm{Pol}_{a}$ We have the following properties of the q-divided difference operators:

$$
\partial_{i}^{2}=0
$$

$$
\partial_{i} \partial_{j}=q \partial_{j} \partial_{i} \text { when } i>j+1
$$

$$
\partial_{i} \partial_{j}=q^{-1} \partial_{j} \partial_{i} \text { when } i<j
$$

Properties of the q-divided Difference Operators

Lemma

$\partial_{i}\left(x_{j} x_{i}-q x_{i} x_{j}\right)=0$ for $j>i$.
As a consequence, ∂_{i} descends to an operator on $q \mathrm{Pol}_{a}$ We have the following properties of the q-divided difference operators:
$\partial_{i}^{2}=0$
$\partial_{i} \partial_{j}=q \partial_{j} \partial_{i}$ when $i>j+1$
$\partial_{i} \partial_{j}=q^{-1} \partial_{j} \partial_{i}$ when $i<j$
$\partial_{i}\left(x_{i}^{m} x_{i+1}^{m}\right)=0$ for any positive integer m

Properties of the q-divided Difference Operators

Lemma

$\partial_{i}\left(x_{j} x_{i}-q x_{i} x_{j}\right)=0$ for $j>i$.
As a consequence, ∂_{i} descends to an operator on $q \mathrm{Pol}_{a}$ We have the following properties of the q-divided difference operators:
$\partial_{i}^{2}=0$
$\partial_{i} \partial_{j}=q \partial_{j} \partial_{i}$ when $i>j+1$
$\partial_{i} \partial_{j}=q^{-1} \partial_{j} \partial_{i}$ when $i<j$
$\partial_{i}\left(x_{i}^{m} x_{i+1}^{m}\right)=0$ for any positive integer m
$\partial_{i}\left(x_{i}^{k}\right)=\sum_{j=0}^{k-1} q^{j k-2 j-j^{2}+k} x_{i}^{j} x_{i+1}^{k-1-j}$

Properties of the q-divided Difference Operators

Lemma

$\partial_{i}\left(x_{j} x_{i}-q x_{i} x_{j}\right)=0$ for $j>i$.
As a consequence, ∂_{i} descends to an operator on $q \mathrm{Pol}_{a}$ We have the following properties of the q-divided difference operators:
$\partial_{i}^{2}=0$
$\partial_{i} \partial_{j}=q \partial_{j} \partial_{i}$ when $i>j+1$
$\partial_{i} \partial_{j}=q^{-1} \partial_{j} \partial_{i}$ when $i<j$
$\partial_{i}\left(x_{i}^{m} x_{i+1}^{m}\right)=0$ for any positive integer m
$\partial_{i}\left(x_{i}^{k}\right)=\sum_{j=0}^{k-1} q^{j k-2 j-j^{2}+k} x_{i}^{j} x_{i+1}^{k-1-j}$
$\partial_{i}\left(x_{i+1}^{k}\right)=-\sum_{j=0}^{k-1} q^{-j} x_{i}^{j} x_{i+1}^{k-1-j}$

Properties of the q-divided Difference Operators

Definition

Define the k-th elementary q-symmetric polynomial to be

Properties of the q-divided Difference Operators

Definition

Define the k-th elementary q-symmetric polynomial to be

$$
e_{k}\left(x_{1}, \ldots, x_{n}\right)=\sum_{1 \leq i_{1}<\ldots<i_{k} \leq n} x_{i_{1}} \cdots x_{i_{n}}
$$

Properties of the q-divided Difference Operators

Definition

Define the k-th elementary q-symmetric polynomial to be

$$
e_{k}\left(x_{1}, \ldots, x_{n}\right)=\sum_{1 \leq i_{1}<\ldots<i_{k} \leq n} x_{i_{1}} \cdots x_{i_{n}}
$$

and the k-th twisted elementary q-symmetric polynomial:

$$
\widetilde{e}_{k}\left(x_{1}, \ldots, x_{n}\right)=\sum_{1 \leq i_{1}<\ldots<i_{k} \leq n} \widetilde{x}_{i_{1}} \cdots \widetilde{x}_{i_{n}},
$$

where $\widetilde{x}_{j}=q^{j-1} x_{j}$.

Properties of the q-divided Difference Operators

Theorem

$\partial_{i}\left(\widetilde{e}_{k}\right)=0$. Hence $\widetilde{\Lambda}_{n}^{q} \subseteq \bigcap_{i=1}^{n-1} \operatorname{ker}\left(\partial_{i}\right)$.

Properties of the q-divided Difference Operators

Theorem

$\partial_{i}\left(\widetilde{e}_{k}\right)=0$.
Hence $\widetilde{\Lambda}_{n}^{q} \subseteq \bigcap_{i=1}^{n-1} \operatorname{ker}\left(\partial_{i}\right)$.
Conjecture
$\bigcap_{i=1}^{n-1} \operatorname{ker}\left(\partial_{i}\right) \subseteq \widetilde{\Lambda}_{n}^{q}$.

More properties

nilHecke Relations

$$
\begin{aligned}
& \partial_{i} x_{i}-q x_{i+1} \partial_{i}=q \\
& \partial_{i} x_{i+1}-\frac{1}{q} x_{i} \partial_{i}=-1
\end{aligned}
$$

More properties

nilHecke Relations

$$
\begin{aligned}
& \partial_{i} x_{i}-q x_{i+1} \partial_{i}=q \\
& \partial_{i} x_{i+1}-\frac{1}{q} x_{i} \partial_{i}=-1
\end{aligned}
$$

Braiding Relation

$$
\partial_{i} \partial_{i+1} \partial_{i} \partial_{i+1} \partial_{i} \partial_{i+1}=-\partial_{i+1} \partial_{i} \partial_{i+1} \partial_{i} \partial_{i+1} \partial_{i}
$$

References

- A.P. Ellis and M. Khovanov. The Hopf algebra of odd symmetric functions. 2011. http://arxiv.org/abs/1107.5610
- Gelfand, Krob, Lascoux, Leclerc, Retakh, and Thibon. Noncommutative symmetric functions. 1994. http://arxiv.org/abs/hep-th/9407124

Acknowledgements

Acknowledgements

- Alexander Ellis, for being an excellent mentor and providing guidance/resources.

Acknowledgements

- Alexander Ellis, for being an excellent mentor and providing guidance/resources.
- MIT PRIMES USA, for giving me the opportunity to conduct this research.

Acknowledgements

- Alexander Ellis, for being an excellent mentor and providing guidance/resources.
- MIT PRIMES USA, for giving me the opportunity to conduct this research.
- My family, for always supporting me.

