Orbits of G on $V \times G / B \times G / B$ in type A Orbits of K on $V \times G /$ Pin type A
 By Jeffrey Cai MIT-PRIMES
 Mentor: Vinoth Nandakumar

Part I - Orbits of G on $V \times G / B \times G / B$ in type A

- $\mathrm{V}=\mathbf{C}^{\mathrm{n}}, \mathrm{n}$-dimensional complex vector space
$\Rightarrow \mathrm{G}=\mathrm{GL}_{\mathrm{n}}(\mathbf{C})$, the general linear group (invertible matrices)
- $\left(e_{1}, e_{2}, \ldots, e_{n}\right)$ is a fixed basis of V
- Notation for permutations: w sends $123 \ldots$ to $\mathrm{w}_{1} \mathrm{w}_{2} \mathrm{w}_{3} \ldots$

Definitions

- Flag: $\left\{0 \subset\left\langle\mathrm{v}_{1}\right\rangle \subset\left\langle\mathrm{v}_{1}, \mathrm{v}_{2}\right\rangle \subset \ldots \subset\left\langle\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{k}}\right\rangle \subset \mathrm{V}\right\}$
- $\mathrm{B}=$ Borel subgroup of G , consists of invertible upper triangular matrices, the stabilizer of the complete flag $\left.\left.\left.\left\{0 \subset<\mathrm{e}_{1}\right\rangle \subset<\mathrm{e}_{1}, \mathrm{e}_{2}\right\rangle \subset \ldots \subset<\mathrm{e}_{1}, \ldots, \mathrm{e}_{\mathrm{n}}\right\rangle\right\}$

$$
A=\left[\begin{array}{ccccc}
A_{11} & A_{12} & A_{13} & A_{14} & A_{15} \\
0 & A_{22} & A_{23} & A_{24} & A_{25} \\
0 & 0 & A_{33} & A_{34} & A_{35} \\
0 & 0 & 0 & A_{44} & A_{45} \\
0 & 0 & 0 & 0 & A_{55}
\end{array}\right]
$$

- $\mathrm{G} / \mathrm{B}=$ complete flag variety $\left\{0 \subset \mathrm{~V}_{1} \subset \mathrm{~V}_{2} \subset \ldots \subset \mathrm{~V}_{\mathrm{n}-1} \subset \mathrm{~V}\right\}$

Preliminary: Orbits of B on G / B (Bruhat decomposition)

- Orbit representatives: F_{w} (w is a permutation)
$>\left(e_{1}, \ldots, e_{n}\right)$ is a fixed basis of V
$>\mathrm{F}_{\mathrm{w}}=\left\{0 \subset\left\langle\mathrm{e}_{\mathrm{w}_{-} 1}\right\rangle \subset\left\langle\mathrm{e}_{\mathrm{w}_{-} 1}, \mathrm{e}_{\mathrm{w}_{-} 2}\right\rangle \subset \ldots \subset \mathrm{V}\right\}$
pe.g. $\left.\left.\left\{<\mathrm{e}_{2}\right\rangle \subset\left\langle\mathrm{e}_{2}, \mathrm{e}_{1}\right\rangle \subset<\mathrm{e}_{2}, \mathrm{e}_{1}, \mathrm{e}_{3}\right\rangle\right\}$ represents $\mathrm{n}=3$, w: $123 \rightarrow$ 213
- Each F_{w} lies in a different orbit
- Each $\mathrm{F} \in \mathrm{G} / \mathrm{B}$ is in the same B -orbit as some F_{w}

Preliminary: Orbits of G on $G / B \times G / B$

- Same as orbits of B on G/B (group-theoretic result)
\rightarrow Orbit representatives: $\left(\mathrm{F}_{\mathrm{e}}, \mathrm{F}_{\mathrm{w}}\right)$
$>\mathrm{F}_{\mathrm{w}}=\left\{0 \subset\left\langle\mathrm{e}_{\mathrm{w}_{-} 1}\right\rangle \subset\left\langle\mathrm{e}_{\mathrm{w}_{-} 1}, e_{\mathrm{w}_{-} 2}\right\rangle \subset \ldots \subset \mathrm{V}\right\}$
$\rightarrow F_{e}=\left\{0 \subset\left\langle e_{1}\right\rangle \subset\left\langle e_{1}, e_{2}\right\rangle \subset \ldots \subset\left\langle e_{1}, \ldots, e_{n}\right\rangle\right\}$

Orbits of G on $\mathrm{V} \times \mathrm{G} / \mathrm{B} \times \mathrm{G} / \mathrm{B}$

Proposition 1. Each of the following elements of $V \times G / B \times G / B$ is a representative of a unique orbit of G on $V \times G / B \times G / B$, and together they represent all such orbits: $\left(v, F_{e}, F_{w}\right)$, where w spans all permutations on n letters and v represents any $\sum_{s \in s_{b}} e_{s}$ such that $s_{b} \subseteq\{1,2, \ldots, n\}$ and if $w_{i}, w_{j} \in$ s_{b}, then $i<j \leftrightarrow w_{i}>w_{j}$ (i.e. the elements of s_{b} appear in descending order in $\left.w_{1} w_{2} w_{3} \ldots\right)$.

Orbits of G on $\mathrm{V} \times \mathrm{G} / \mathrm{B} \times \mathrm{G} / \mathrm{B}$

- Any $\left(\mathrm{v}, \mathrm{F}_{1}, \mathrm{~F}_{2}\right) \in \mathrm{V} \times \mathrm{G} / \mathrm{B} \times \mathrm{G} / \mathrm{B}$ is in the same orbit as some ($\mathrm{v}, \mathrm{F}_{\mathrm{e}}, \mathrm{F}_{\mathrm{w}}$)
- The orbits of G_{w} on V are the orbits of G on $V \times G / B \times G / B$
$>\mathrm{n}=4$; let w: $1234 \rightarrow 1342$, and let G_{w} stabilize $\left(\mathrm{F}_{\mathrm{e}}, \mathrm{F}_{\mathrm{w}}\right)$.

$$
\begin{aligned}
& F_{e}=\left\{0 \subset\left\langle e_{1}\right\rangle \subset\left\langle e_{1}, e_{2}\right\rangle \subset\left\langle e_{1}, e_{2}, e_{3}\right\rangle \subset V\right\} \\
& F_{w}=\left\{0 \subset\left\langle e_{1}\right\rangle \subset\left\langle e_{1}, e_{3}\right\rangle \subset\left\langle e_{1}, e_{3}, e_{4}\right\rangle \subset V\right\}
\end{aligned}
$$

$\left(F_{e}, F_{w}\right)$ stabilizer : $\left[\begin{array}{cccc}1 & * & * & * \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & * \\ 0 & 0 & 0 & 1\end{array}\right]$

Orbits of G on $\mathrm{V} \times \mathrm{G} / \mathrm{B} \times \mathrm{G} / \mathrm{B}$

- Example: $\mathrm{n}=4$, w can be any permutation
\Rightarrow If w: $1234 \rightarrow 1342$, then possible s_{b} are $\emptyset,\{1\},\{2\},\{3\},\{4\}$, $\{3,2\},\{4,2\}$ (s_{b} must be descending subset of $\left.\mathrm{w}_{1} \mathrm{w}_{2} \mathrm{w}_{3} \mathrm{w}_{4}\right)$

s_{b}	v	Orbit
\varnothing	0	0
$\{1\}$	e_{1}	$\left\langle e_{1}\right\rangle \backslash 0$
$\{2\}$	e_{2}	$\left\langle e_{1}, e_{2}\right\rangle \backslash\left\langle e_{1}\right\rangle$
$\{3\}$	e_{3}	$\left\langle e_{1}, e_{3}\right\rangle \backslash\left\langle e_{1}\right\rangle$
$\{4\}$	e_{4}	$\left\langle e_{1}, e_{3}, e_{4}\right\rangle \backslash\left\langle e_{1}, e_{3}\right\rangle$
$\{2,3\}$	$e_{2}+e_{3}$	$\left\langle e_{1}, e_{2}, e_{3}\right\rangle \backslash\left(\left\langle e_{1}, e_{2}\right\rangle \cup\left\langle e_{1}, e_{3}\right\rangle\right)$
$\{2,4\}$	$e_{2}+e_{4}$	$\left\langle e_{1}, e_{2}, e_{3}, e_{4}\right\rangle \backslash\left(\left\langle e_{1}, e_{2}, e_{3}\right\rangle \cup\left\langle e_{1}, e_{3}, e_{4}\right\rangle\right)$

Part II - Orbits of K on G/P in type A

$\Rightarrow \mathrm{K}=\mathrm{Sp}_{2 \mathrm{n}}(\mathbf{C})$, the symplectic group

- $\mathrm{P}=$ a parabolic subgroup of G (stabilizer of a partial flag)
- $\mathrm{G} / \mathrm{P}=$ a partial flag variety, $\left\{0 \subset \mathrm{~V}_{\mathrm{i}_{-} 1} \subset \mathrm{~V}_{\mathrm{i}_{-} 2} \subset \ldots \subset \mathrm{~V}_{\mathrm{i}_{-\mathrm{m}}} \subset \mathrm{V}\right\}$

Orbits of K on $\mathrm{V} \times \mathrm{G} / \mathrm{P}$

- Symplectic form $(\mathrm{V} \times \mathrm{V} \rightarrow \mathbf{C})$
$-\omega(\mathrm{v}, \mathrm{w})=\mathrm{v}_{1} \mathrm{w}_{4}+\mathrm{v}_{2} \mathrm{w}_{3}-\mathrm{v}_{3} \mathrm{w}_{2}-\mathrm{v}_{4} \mathrm{w}_{1}($ in $2 \mathrm{n}=4)$
- Properties:
\Rightarrow Bilinear: $\omega\left(\lambda_{1} \mathrm{v}_{1}+\lambda_{2} \mathrm{v}_{2}, \mathrm{w}\right)=\lambda_{1} \omega\left(\mathrm{v}_{1}, \mathrm{w}\right)+\lambda_{2} \omega\left(\mathrm{v}_{2}, \mathrm{w}\right)$
$>\omega\left(\mathrm{v}, \lambda_{1} \mathrm{w}_{1}+\lambda_{2} \mathrm{w}_{2}\right)=\lambda_{1} \omega\left(\mathrm{v}, \mathrm{w}_{1}\right)+\lambda_{2} \omega\left(\mathrm{v}, \mathrm{w}_{2}\right)$
$\Rightarrow \omega(\mathrm{v}, \mathrm{w})=-\omega(\mathrm{w}, \mathrm{v})$ (skew-symmetric)
$>\omega(\mathrm{v}, \mathrm{v})=0$ (totally isotropic)
\Rightarrow If $\omega(\mathrm{v}, \mathrm{w})=0$ for all w , then $\mathrm{v}=0$ (nondegenerate)

Orbits of K on $V \times G / P$

- Perpendicularity: $\mathrm{v} \perp \mathrm{w}$ iff $\omega(\mathrm{v}, \mathrm{w})=0$
\Rightarrow For the unit vectors, e_{i} not perp. to $e_{j} \leftrightarrow i+j=2 n+1$
- $\omega\left(\mathrm{e}_{1}, \mathrm{e}_{4}\right)=1, \omega\left(\mathrm{e}_{2}, \mathrm{e}_{3}\right)=1$
$\nabla \omega\left(e_{i}, e_{j}\right)=0$ for all other $\mathrm{i} \leq \mathrm{j}$

Orbits of K on $V \times G / P$

- Symplectic matrix: preserves the symplectic form
- $\omega(\mathrm{k} . \mathrm{v}, \mathrm{k} . \mathrm{w})=\omega(\mathrm{v}, \mathrm{w})$
\Rightarrow A matrix k is symplectic iff $\omega\left(\mathrm{k}_{\mathrm{i}}, \mathrm{k}_{\mathrm{i}}\right)=\omega\left(\mathrm{e}_{\mathrm{i}}, \mathrm{e}_{\mathrm{j}}\right)$ for all (i, j) (where k_{i} is the $\mathrm{i}^{\text {ih }}$ column of k)

$$
\left(\begin{array}{cccc}
2 & 1 & 1 & 0 \\
1 & 4 & 6 & -1 \\
1 & 7 & 11 & -2 \\
3 & 0 & -1 & 1
\end{array}\right)
$$

Orbits of K on $V \times G / P$

- Technique
- Same idea as orbits of G on $\mathrm{V} \times \mathrm{G} / \mathrm{B} \times \mathrm{G} / \mathrm{B}$
- Take a representative of each orbit of G / P
- Find the stabilizer G_{s} in G
$\Rightarrow K_{s}=G_{s} \cap K$
\Rightarrow Determine orbits of K_{s} on V
- Example:
$-\mathrm{G} / \mathrm{P}=\left\{0 \subset \mathrm{~V}_{1} \subset \mathrm{~V}_{2} \subset \mathrm{~V}\right\}$ with $2 \mathrm{n}=4$

Orbits of K on $\mathrm{V} \times \mathrm{G} / \mathrm{P}$ where $\mathrm{G} / \mathrm{P}=\left\{0 \subset \mathrm{~V}_{1} \subset \mathrm{~V}_{2} \subset \mathrm{~V}\right\}$

- $\mathrm{G} / \mathrm{P}=\left\{0 \subset\left\langle\mathrm{v}_{1}\right\rangle \subset\left\langle\mathrm{v}_{1}, \mathrm{v}_{2}\right\rangle \subset \mathrm{V}\right\}$ and $2 \mathrm{n}=4$
- Two orbits of K on G / P
$\Rightarrow \mathrm{v}_{1}$ perpendicular to v_{2} - choose to stabilize $\left\{\left\langle\mathrm{e}_{1}\right\rangle \subset\left\langle\mathrm{e}_{1}, \mathrm{e}_{2}\right\rangle\right\}$
$\Rightarrow \mathrm{v}_{1}$ not perpendicular to v_{2} - choose to stabilize $\left\{\left\langle\mathrm{e}_{1}\right\rangle \subset\left\langle\mathrm{e}_{1}, \mathrm{e}_{4}\right\rangle\right\}$

Orbits of K on $V \times G / P$ where $G / P=\left\{0 \subset V_{1} \subset V_{2} \subset V\right\}$

- Perpendicular case - stabilizing $\left.\left\{<\mathrm{e}_{1}\right\rangle \subset\left\langle\mathrm{e}_{1}, \mathrm{e}_{2}\right\rangle\right\}$

$$
G_{s}=\left[\begin{array}{cccc}
1 & * & * & * \\
0 & * & * & * \\
0 & 0 & * & * \\
0 & 0 & * & *
\end{array}\right] \quad K_{s}=G_{s} \cap K
$$

- 0 is its own orbit
- $K_{1} \cdot e_{1}=\left\langle e_{1}\right\rangle \backslash 0$
- $K_{1} . e_{2}=\left\langle e_{1}, e_{2}\right\rangle \backslash\left\langle e_{1}\right\rangle$
- $K_{1} \cdot e_{3}=\left\langle e_{1}, e_{2}, e_{3}\right\rangle \backslash\left\langle e_{1}, e_{2}\right\rangle$
- $K_{1} \cdot e_{4}=\left\langle e_{1}, e_{2}, e_{3}, e_{4}\right\rangle \backslash\left\langle e_{1}, e_{2}, e_{3}\right\rangle$

Orbits of K on $\mathrm{V} \times \mathrm{G} / \mathrm{P}$ where $\mathrm{G} / \mathrm{P}=\left\{0 \subset \mathrm{~V}_{1} \subset \mathrm{~V}_{2} \subset \mathrm{~V}\right\}$
$>$ Nonperpendicular case - stabilizing $\left\{\left\langle\mathrm{e}_{1}\right\rangle \subset\left\langle\mathrm{e}_{1}, \mathrm{e}_{4}\right\rangle\right\}$

$$
G_{s}=\left[\begin{array}{cccc}
1 & * & * & * \\
0 & * & * & 0 \\
0 & * & * & 0 \\
0 & * & * & *
\end{array}\right] \quad K_{s}=G_{s} \cap K
$$

- 0 is its own orbit
- $K_{2} . e_{1}=\left\langle e_{1}\right\rangle \backslash 0$
- $K_{2} \cdot e_{4}=\left\langle e_{1}, e_{4}\right\rangle \backslash\left\langle e_{1}\right\rangle$
- $K_{2} . e_{2}=\left\langle e_{2}, e_{3}\right\rangle \backslash 0$
- $K_{2} \cdot\left(e_{1}+e_{2}\right)=\left\langle e_{1}, e_{2}, e_{3}\right\rangle \backslash\left(\left\langle e_{1}\right\rangle \cup\left\langle e_{2}, e_{3}\right\rangle\right)$
- $K_{2} \cdot\left(e_{2}+e_{4}\right)=\left\langle e_{1}, e_{2}, e_{3}, e_{4}\right\rangle \backslash\left(\left\langle e_{1}, e_{4}\right\rangle \cup\left\langle e_{1}, e_{2}, e_{3}\right\rangle\right)$

Orbits of K on $V \times G / P$ where $G / P=\left\{0 \subset V_{1} \subset V\right\}$
$>\mathrm{K}=\mathrm{Sp}_{2 \mathrm{n}}$ acts on G / P transitively (with one orbit)
$\Rightarrow K_{s}$ is stabilizer of a point in G / P

- Orbits of K_{s} on V :
- 0
- $\left\langle e_{1}\right\rangle \backslash 0$
- $\left\langle e_{1}, \ldots, e_{2 n-1}\right\rangle \backslash\left\langle e_{1}\right\rangle$
- $\left\langle e_{1}, \ldots, e_{2 n}\right\rangle \backslash\left\langle e_{1}, \ldots, e_{2 n-1}\right\rangle$

Orbits of K on $\mathrm{V} \times \mathrm{G} / \mathrm{P}$ where $\mathrm{G} / \mathrm{P}=\left\{0 \subset \mathrm{~V}_{2} \subset \mathrm{~V}\right\}$

- Two orbits of K on G/P
$>$ Perpendicular case: stabilizing $\left\langle\mathrm{e}_{1}, \mathrm{e}_{2}\right\rangle$
- Nonperpendicular case: stabilizing $\left\langle\mathrm{e}_{1}, \mathrm{e}_{2 \mathrm{n}}\right\rangle$
- Orbits of K_{s} on V in each case:
- 0
- $\left\langle e_{1}, e_{2}\right\rangle \backslash 0$
- $\left\langle e_{1}, \ldots, e_{2 n-2}\right\rangle \backslash\left\langle e_{1}, e_{2}\right\rangle$
- $\left\langle e_{1}, \ldots, e_{2 n}\right\rangle \backslash\left\langle e_{1}, \ldots, e_{2 n-2}\right\rangle$
- 0
- $\left\langle e_{1}, e_{2 n}\right\rangle \backslash 0$
- $\left\langle e_{2}, \ldots, e_{2 n-1}\right\rangle \backslash 0$
- $\left\langle e_{1}, \ldots, e_{2 n}\right\rangle \backslash\left(\left\langle e_{1}, e_{2 n}\right\rangle \cup\left\langle e_{2}, \ldots, e_{2 n-1}\right\rangle\right.$

Orbits of K on $V \times G / P$
General problem: K-orbits on $V \times G / P$ for general G / P
$>\mathrm{K}=\mathrm{Sp}_{\mathrm{en}_{\mathrm{n}}}(\mathbf{C})$
$\Rightarrow \mathrm{G} / \mathrm{P}=\left\{0 \subset \mathrm{~V}_{\mathrm{i}_{-} 1} \subset \mathrm{~V}_{\mathrm{i}_{-} 2} \subset \ldots \subset \mathrm{~V}_{\mathrm{i}_{\mathrm{i}} \mathrm{k}} \subset \mathrm{V}\right\}$

Acknowledgements

- Thanks to:
$>$ My mentor, Vinoth Nandakumar
- The MIT-PRIMES program
- My parents

