Quotients of Lower Central Series With Multiple Relations

Mentor: Yael Fregier

Isaac Xia

MIT PRIMES

Saturday, May 18 2013

Isaac Xia Quotients of Lower Central Series With Multiple Relations

・ロト ・回ト ・モト ・モト

Outline

Introduction

- Non-commutative algebras
- Quotients of Ideals
- Computer Data
- Abelian Groups: Rank and Torsion

2 Results

- Patterns and Conjectures
- 3 Further Research
- Acknowledgements

Non-commutative algebras Quotients of Ideals Abelian Groups: Rank and Torsion

What is a Non-commutative Algebra?

• Take 2 letters: x, y

- Words: *xyx*, *yyxyx*, *xyxyxyx*
- Sentences: 2xyx + 5yyxyx
- This describes A₂
- Non-commutative letters: *logarithm* \neq *algorithm*
- Why study Non-commutative algebras?
- Classical physics \iff Quantum physics
- Commutative algebras \iff Non-commutative algebras

<ロ> <同> <同> < 回> < 回>

Non-commutative algebras Quotients of Ideals Abelian Groups: Rank and Torsion

What is a Non-commutative Algebra?

- Take 2 letters: x, y
- Words: xyx, yyxyx, xyxyxyx
- Sentences: 2xyx + 5yyxyx
- This describes A₂
- Non-commutative letters: *logarithm* \neq *algorithm*
- Why study Non-commutative algebras?
- Classical physics \iff Quantum physics
- Commutative algebras \iff Non-commutative algebras

Non-commutative algebras Quotients of Ideals Abelian Groups: Rank and Torsion

What is a Non-commutative Algebra?

- Take 2 letters: x, y
- Words: xyx, yyxyx, xyxyxyx
- Sentences: 2xyx + 5yyxyx
- This describes A₂
- Non-commutative letters: *logarithm* \neq *algorithm*
- Why study Non-commutative algebras?
- Classical physics \iff Quantum physics
- Commutative algebras \iff Non-commutative algebras

<ロ> <同> <同> < 回> < 回>

Non-commutative algebras Quotients of Ideals Abelian Groups: Rank and Torsion

What is a Non-commutative Algebra?

- Take 2 letters: x, y
- Words: xyx, yyxyx, xyxyxyx
- Sentences: 2xyx + 5yyxyx
- This describes A₂
- Non-commutative letters: $logarithm \neq algorithm$
- Why study Non-commutative algebras?
- Classical physics \(\low \rightarrow Quantum physics \)
- Commutative algebras \iff Non-commutative algebras

Non-commutative algebras Quotients of Ideals Abelian Groups: Rank and Torsion

What is a Non-commutative Algebra?

- Take 2 letters: x, y
- Words: xyx, yyxyx, xyxyxyx
- Sentences: 2xyx + 5yyxyx
- This describes A₂
- Non-commutative letters: $logarithm \neq algorithm$
- Why study Non-commutative algebras?
- Classical physics \iff Quantum physics
- Commutative algebras ⇔ Non-commutative algebras

Non-commutative algebras Quotients of Ideals Abelian Groups: Rank and Torsion

What is a Non-commutative Algebra?

- Take 2 letters: x, y
- Words: xyx, yyxyx, xyxyxyx
- Sentences: 2xyx + 5yyxyx
- This describes A₂
- Non-commutative letters: $logarithm \neq algorithm$
- Why study Non-commutative algebras?
- Classical physics \iff Quantum physics
- Commutative algebras \iff Non-commutative algebras

(日) (同) (日) (日)

Non-commutative algebras Quotients of Ideals Abelian Groups: Rank and Torsion

What is a Non-commutative Algebra?

- Take 2 letters: x, y
- Words: xyx, yyxyx, xyxyxyx
- Sentences: 2xyx + 5yyxyx
- This describes A₂
- Non-commutative letters: $logarithm \neq algorithm$
- Why study Non-commutative algebras?
- Classical physics \iff Quantum physics
- Commutative algebras \iff Non-commutative algebras

(日) (同) (日) (日)

Non-commutative algebras Quotients of Ideals Abelian Groups: Rank and Torsion

Free Algebra A_n

Definition

Free algebra: $A_n := \mathbf{k} \langle x_1, x_2, x_3, \dots, x_n \rangle$ and $\{1, x_1, x_2, x_3, \dots, x_1 x_1, x_1 x_2, x_1 x_3, x_2 x_1, \dots\}$

- Free algebra is the most "non-commutative"
- A_n generated by generators x_1, x_2, \ldots, x_n
- Example: A₃:

 x_1, x_2, x_3 $x_1^2, x_1x_2, x_1x_3, x_2x_1, x_2^2, x_2x_3, x_3x_1, x_3x_2, x_3^2$

- Grading keeps track of data better: $A_n[d]$
- $A_n[d]$ spanned by n^d basis elements

Non-commutative algebras Quotients of Ideals Abelian Groups: Rank and Torsion

Free Algebra A_n

Definition

Free algebra: $A_n := \mathbf{k} \langle x_1, x_2, x_3, \dots, x_n \rangle$ and $\{1, x_1, x_2, x_3, \dots, x_1 x_1, x_1 x_2, x_1 x_3, x_2 x_1, \dots\}$

- Free algebra is the most "non-commutative"
- A_n generated by generators x_1, x_2, \ldots, x_n
- Example: A₃:

 $\begin{array}{c} x_1, x_2, x_3 \\ x_1^2, x_1 x_2, x_1 x_3, x_2 x_1, x_2^2, x_2 x_3, x_3 x_1, x_3 x_2, x_3^2 \end{array}$

- Grading keeps track of data better: $A_n[d]$
- $A_n[d]$ spanned by n^d basis elements

Non-commutative algebras Quotients of Ideals Abelian Groups: Rank and Torsion

Free Algebra A_n

Definition

Free algebra: $A_n := \mathbf{k} \langle x_1, x_2, x_3, \dots, x_n \rangle$ and $\{1, x_1, x_2, x_3, \dots, x_1 x_1, x_1 x_2, x_1 x_3, x_2 x_1, \dots\}$

- Free algebra is the most "non-commutative"
- A_n generated by generators x_1, x_2, \ldots, x_n
- Example: A_3 :

 x_1, x_2, x_3 $x_1^2, x_1x_2, x_1x_3, x_2x_1, x_2^2, x_2x_3, x_3x_1, x_3x_2, x_3^2$ • Grading keeps track of data better: $A_n[d]$ • $A_n[d]$ spanned by n^d basis elements

・ロト ・四ト ・モト・ モー

Non-commutative algebras Quotients of Ideals Abelian Groups: Rank and Torsion

Free Algebra A_n

Definition

Free algebra: $A_n := \mathbf{k} \langle x_1, x_2, x_3, \dots, x_n \rangle$ and $\{1, x_1, x_2, x_3, \dots, x_1 x_1, x_1 x_2, x_1 x_3, x_2 x_1, \dots\}$

- Free algebra is the most "non-commutative"
- A_n generated by generators x_1, x_2, \ldots, x_n
- Example: A₃:

1

 x_1, x_2, x_3 $x_1^2, x_1x_2, x_1x_3, x_2x_1, x_2^2, x_2x_3, x_3x_1, x_3x_2, x_3^2$

- Grading keeps track of data better: A_n[d]
- $A_n[d]$ spanned by n^d basis elements

Isaac Xia Quotients of Lower Central Series With Multiple Relations

Non-commutative algebras Quotients of Ideals Abelian Groups: Rank and Torsion

Free Algebra A_n

Definition

Free algebra: $A_n := \mathbf{k} \langle x_1, x_2, x_3, \dots, x_n \rangle$ and $\{1, x_1, x_2, x_3, \dots, x_1 x_1, x_1 x_2, x_1 x_3, x_2 x_1, \dots\}$

- Free algebra is the most "non-commutative"
- A_n generated by generators x_1, x_2, \ldots, x_n
- Example: A₃:

1

x_1, x_2, x_3

 $x_1^2, x_1x_2, x_1x_3, x_2x_1, x_2^2, x_2x_3, x_3x_1, x_3x_2, x_3^2$

- Grading keeps track of data better: $A_n[d]$
- $A_n[d]$ spanned by n^d basis elements

Isaac Xia

Quotients of Lower Central Series With Multiple Relations

・ロト ・四ト ・モト・ モー

Non-commutative algebras Quotients of Ideals Abelian Groups: Rank and Torsion

Free Algebra A_n

Definition

Free algebra: $A_n := \mathbf{k} \langle x_1, x_2, x_3, \dots, x_n \rangle$ and $\{1, x_1, x_2, x_3, \dots, x_1 x_1, x_1 x_2, x_1 x_3, x_2 x_1, \dots\}$

- Free algebra is the most "non-commutative"
- A_n generated by generators x_1, x_2, \ldots, x_n
- Example: A₃:

1

 x_1, x_2, x_3 $x_1^2, x_1x_2, x_1x_3, x_2x_1, x_2^2, x_2x_3, x_3x_1, x_3x_2, x_3^2$

- Grading keeps track of data better: $A_n[d]$
- $A_n[d]$ spanned by n^d basis elements

Non-commutative algebras Quotients of Ideals Abelian Groups: Rank and Torsion

Free Algebra A_n

Definition

Free algebra: $A_n := \mathbf{k} \langle x_1, x_2, x_3, \dots, x_n \rangle$ and $\{1, x_1, x_2, x_3, \dots, x_1 x_1, x_1 x_2, x_1 x_3, x_2 x_1, \dots\}$

- Free algebra is the most "non-commutative"
- A_n generated by generators x_1, x_2, \ldots, x_n
- Example: A₃:

1

- x_1, x_2, x_3 $x_1^2, x_1x_2, x_1x_3, x_2x_1, x_2^2, x_2x_3, x_3x_1, x_3x_2, x_3^2$
- Grading keeps track of data better: $A_n[d]$
- $A_n[d]$ spanned by n^d basis elements

Non-commutative algebras Quotients of Ideals Abelian Groups: Rank and Torsion

Free Algebra A_n

Definition

Free algebra: $A_n := \mathbf{k} \langle x_1, x_2, x_3, \dots, x_n \rangle$ and $\{1, x_1, x_2, x_3, \dots, x_1 x_1, x_1 x_2, x_1 x_3, x_2 x_1, \dots\}$

- Free algebra is the most "non-commutative"
- A_n generated by generators x_1, x_2, \ldots, x_n
- Example: A₃:

1

 $\begin{array}{c} x_1, x_2, x_3 \\ x_1^2, x_1 x_2, x_1 x_3, x_2 x_1, x_2^2, x_2 x_3, x_3 x_1, x_3 x_2, x_3^2 \end{array}$

- Grading keeps track of data better: $A_n[d]$
- $A_n[d]$ spanned by n^d basis elements

Relations

Non-commutative algebras Quotients of Ideals Abelian Groups: Rank and Torsion

• A_n already studied

- All finitely generated non-commutative algebras are quotients of *A_n* by relations
- Relations: e.g. $(xy = 0, y^2 = 0)$
- $A_2/(xy, y^2)$

• Restrict to homogeneous relations to preserve grading

Isaac Xia Quotients of Lower Central Series With Multiple Relations

Non-commutative algebras Quotients of Ideals Abelian Groups: Rank and Torsion

Relations

- A_n already studied
- All finitely generated non-commutative algebras are quotients of *A_n* by relations
- Relations: e.g. $(xy = 0, y^2 = 0)$
- $A_2/(xy, y^2)$

• Restrict to homogeneous relations to preserve grading

Isaac Xia Quotients of Lower Central Series With Multiple Relations

Non-commutative algebras Quotients of Ideals Abelian Groups: Rank and Torsion

Relations

- A_n already studied
- All finitely generated non-commutative algebras are quotients of *A_n* by relations
- Relations: e.g. $(xy = 0, y^2 = 0)$
- $A_2/(xy, y^2)$

• Restrict to homogeneous relations to preserve grading

Isaac Xia Quotients of Lower Central Series With Multiple Relations

Non-commutative algebras Quotients of Ideals Abelian Groups: Rank and Torsion

Relations

- A_n already studied
- All finitely generated non-commutative algebras are quotients of *A_n* by relations
- Relations: e.g. $(xy = 0, y^2 = 0)$
- $A_2/(xy, y^2)$

Restrict to homogeneous relations to preserve grading

Non-commutative algebras Quotients of Ideals Abelian Groups: Rank and Torsion

Relations

- A_n already studied
- All finitely generated non-commutative algebras are quotients of *A_n* by relations
- Relations: e.g. $(xy = 0, y^2 = 0)$
- $A_2/(xy, y^2)$

Restrict to homogeneous relations to preserve grading

Non-commutative algebras Quotients of Ideals Abelian Groups: Rank and Torsion

Relations

- A_n already studied
- All finitely generated non-commutative algebras are quotients of *A_n* by relations
- Relations: e.g. $(xy = 0, y^2 = 0)$
- $A_2/(xy, y^2)$

Restrict to homogeneous relations to preserve grading

Non-commutative algebras Quotients of Ideals Abelian Groups: Rank and Torsion

Relations

- A_n already studied
- All finitely generated non-commutative algebras are quotients of *A_n* by relations
- Relations: e.g. $(xy = 0, y^2 = 0)$
- $A_2/(xy, y^2)$

$$1$$

$$x, y$$

$$x^{2}, yx$$

$$x^{3}, yx^{2}$$

Restrict to homogeneous relations to preserve grading

Non-commutative algebras Quotients of Ideals Abelian Groups: Rank and Torsion

Relations

- A_n already studied
- All finitely generated non-commutative algebras are quotients of *A_n* by relations
- Relations: e.g. $(xy = 0, y^2 = 0)$
- $A_2/(xy, y^2)$

$$1$$

$$x, y$$

$$x^{2}, yx$$

$$x^{3}, yx^{2}$$

• Restrict to homogeneous relations to preserve grading

Introduction

Results Further Research Acknowledgements

Commutator

Non-commutative algebras Quotients of Ideals Abelian Groups: Rank and Torsion

Definition

Commutator: Let *A* be an algebra. The **commutator** of *x* and *y* is [x, y] = xy - yx. If *H* and *K* are subspaces of *A*, then $[H, K] = \text{span}\{[h, k] | h \in H \text{ and } k \in K\}$).

Non-commutative algebras Quotients of Ideals Abelian Groups: Rank and Torsion

Lower Central Series

• Study A_n by Lower Central Series Filtration

Definition

Lower Central Series Filtration: $A = L_1 \supseteq L_2 \supseteq L_3 \supseteq \dots$ Where $L_1 := A$ and $L_{k+1} := [L_k, A]$ for $k \ge 1$.

- L_{i+1} is the smallest subspace such that $a\ell = \ell a \mod L_{i+1}$ for all $\ell \in L_i$ and $a \in A$.
- Provides a measure of non-commutativity for the original algebra

< ロ > < 同 > < 回 > < 回 > < □ > <

Non-commutative algebras Quotients of Ideals Abelian Groups: Rank and Torsion

Lower Central Series

• Study A_n by Lower Central Series Filtration

Definition

Lower Central Series Filtration:

 $\begin{array}{l} \mathcal{A} = \mathcal{L}_1 \supseteq \mathcal{L}_2 \supseteq \mathcal{L}_3 \supseteq \dots \\ \text{Where } \mathcal{L}_1 := \mathcal{A} \text{ and } \mathcal{L}_{k+1} := [\mathcal{L}_k, \mathcal{A}] \text{ for } k \geq 1. \end{array}$

- L_{i+1} is the smallest subspace such that aℓ = ℓa mod L_{i+1} for all ℓ ∈ L_i and a ∈ A.
- Provides a measure of non-commutativity for the original algebra

Non-commutative algebras Quotients of Ideals Abelian Groups: Rank and Torsion

Lower Central Series

• Study A_n by Lower Central Series Filtration

Definition

Lower Central Series Filtration:

$$A = L_1 \supseteq L_2 \supseteq L_3 \supseteq \dots$$

Where $L_1 := A$ and $L_{k+1} := [L_k, A]$ for $k \ge 1$.

- L_{i+1} is the smallest subspace such that $a\ell = \ell a \mod L_{i+1}$ for all $\ell \in L_i$ and $a \in A$.
- Provides a measure of non-commutativity for the original algebra

イロト 不得 トイヨト イヨト 二日

Introduction

Further Research Acknowledgements Non-commutative algebras Quotients of Ideals Abelian Groups: Rank and Torsion

Ideal

• Study ideals M_k in order to preserve structures

• Sets and element: $Cd := \{cd | c \in C\}$

Definition

Ideal M_k : $M_k = AL_k = L_k A = \operatorname{span}\{\ell a | \ell \in L_k, a \in A\}.$

Isaac Xia Quotients of Lower Central Series With Multiple Relations

・ロト ・回ト ・ヨト ・ヨト

Non-commutative algebras Quotients of Ideals Abelian Groups: Rank and Torsion

Ideal

- Study ideals M_k in order to preserve structures
- Sets and element: $Cd := \{cd | c \in C\}$

Definition

Ideal M_k : $M_k = AL_k = L_k A = \operatorname{span}\{\ell a | \ell \in L_k, a \in A\}.$

< ロ > < 同 > < 回 > < 回 > < □ > <

Non-commutative algebras Quotients of Ideals Abelian Groups: Rank and Torsion

Ideal

- Study ideals M_k in order to preserve structures
- Sets and element: $Cd := \{cd | c \in C\}$

Definition

Ideal M_k : $M_k = AL_k = L_kA = \operatorname{span}\{\ell a | \ell \in L_k, a \in A\}.$

ヘロト ヘヨト ヘヨト ヘヨト

Introduction

Results Further Research Acknowledgements

Question

Non-commutative algebras Quotients of Ideals Abelian Groups: Rank and Torsion

Problem

1. How many basis elements are in each M_k in each degree?

Problem

2. How fast does this number shrink as k grows?

Isaac Xia Quotients of Lower Central Series With Multiple Relations

・ロト ・回ト ・モト ・モト

Introduction

Results Further Research Acknowledgements

Question

Non-commutative algebras Quotients of Ideals Abelian Groups: Rank and Torsion

Problem

1. How many basis elements are in each M_k in each degree?

Problem

2. How fast does this number shrink as k grows?

Isaac Xia Quotients of Lower Central Series With Multiple Relations

<ロ> <同> <同> < 同> < 同>

Non-commutative algebras Quotients of Ideals Abelian Groups: Rank and Torsion

Quotient of the Ideals

• Shrinking is essentially "Difference"

• We take the quotient of these ideals:

Definition

Quotient $N_k := M_k / M_{k+1}$

ヘロト ヘヨト ヘヨト ヘヨト

Non-commutative algebras Quotients of Ideals Abelian Groups: Rank and Torsion

Quotient of the Ideals

- Shrinking is essentially "Difference"
- We take the quotient of these ideals:

Definition

Quotient $N_k := M_k / M_{k+1}$

・ロト ・回ト ・ヨト ・ヨト

Non-commutative algebras Quotients of Ideals Abelian Groups: Rank and Torsion

Quotient of the Ideals

- Shrinking is essentially "Difference"
- We take the quotient of these ideals:

Definition

Quotient $N_k := M_k / M_{k+1}$

・ロト ・回ト ・ヨト ・ヨト

Coefficients

Non-commutative algebras Quotients of Ideals Abelian Groups: Rank and Torsion

- What coefficients do we work over for $A_2 = \mathbf{k} \langle x_1, x_2 \rangle$?
- Option 1: Work over k = ℤ make N_k Abelian groups (ℤ not field)
- Option 2: $\mathbf{k} = \mathbf{GF}(p)$ or \mathbb{Q} make N_k vector spaces

Coefficients

Non-commutative algebras Quotients of Ideals Abelian Groups: Rank and Torsion

- What coefficients do we work over for $A_2 = \mathbf{k} \langle x_1, x_2 \rangle$?
- Option 1: Work over k = ℤ make N_k Abelian groups (ℤ not field)
- Option 2: $\mathbf{k} = \mathbf{GF}(p)$ or \mathbb{Q} make N_k vector spaces

イロン 不同 とくほう イロン

Coefficients

Non-commutative algebras Quotients of Ideals Abelian Groups: Rank and Torsion

- What coefficients do we work over for $A_2 = \mathbf{k} \langle x_1, x_2 \rangle$?
- Option 1: Work over k = ℤ make N_k Abelian groups (ℤ not field)
- Option 2: $\mathbf{k} = \mathbf{GF}(p)$ or \mathbb{Q} make N_k vector spaces

イロン 不同 とくほう イロン

Non-commutative algebras Quotients of Ideals Abelian Groups: Rank and Torsion

Abelian Groups

- \bullet Working with coefficients over $\mathbb Z$ yield Abelian groups
- Finitely generated Abelian groups decomposable:

$$\mathbb{A} = \mathbb{Z}^r \oplus \bigoplus_i \mathbb{Z}_i^{lpha_i}$$
 for prime powers *i*.

- Data presented as $r(\prod(i^{\alpha_i}))$
- $\mathbb{Z}^3 \oplus \mathbb{Z}_2^4 \oplus \mathbb{Z}_4 \oplus \mathbb{Z}_5 \iff 3(2^4 \cdot 4 \cdot 5)$

Patterns and Conjectures

Data on $N_k[d]$

• MAGMA calculations/data reconfiguration

Previous work exists, modified to automate data collection
Example: Z(x, y)/(x⁵, y⁷)

Table: $\mathbb{Z}\langle x, y \rangle / (x^2, y^5)$

		4			
					$20(2^{33}\cdot 3\cdot 4\cdot 5\cdot 7)$

• Only 2 or 5 torsion appears except in N₈[10]

・ロ・ ・ 日・ ・ 田・ ・ 日・

Patterns and Conjectures

Data on $N_k[d]$

- MAGMA calculations/data reconfiguration
- Previous work exists, modified to automate data collection
- Example: $\mathbb{Z}\langle x, y \rangle / (x^5, y^7)$

Table: $\mathbb{Z}\langle x, y \rangle / (x^2, y^5)$

		4			
					$20(2^{33}\cdot 3\cdot 4\cdot 5\cdot 7)$

• Only 2 or 5 torsion appears except in $N_8[10]$

Isaac Xia Quot

Quotients of Lower Central Series With Multiple Relations

・ロト ・回ト ・ヨト ・ヨト

Results

Patterns and Conjectures

Data on $N_k[d]$

- MAGMA calculations/data reconfiguration
- Previous work exists, modified to automate data collection
- Example: $\mathbb{Z}\langle x, y \rangle / (x^5, y^7)$

Table: $\mathbb{Z}\langle x, y \rangle / (x^2, y^5)$

$N_i[d]$	2	3	4	5	6	7	8	9	10
N ₂	1	1(2)	1(2)	1(2)	0(2 · 5)	0	0	0	0
N ₃	0	2	3(2)	3(2 ²)	3(2 ²)	$1(2^2 \cdot 5^2)$	0(2 · 5)	0	0
N ₄	0	0	2	3(2 ²)	3(2 ⁴)	2(2 ⁶)	0(2 ⁶)	0(2 ³)	0(2)
N ₅	0	0	0	4	7(2 ³)	7(2 ⁷)	$5(2^{10})$	$1(2^{11})$	0(2 ⁷)
N ₆	0	0	0	0	5	9(2 ⁵)	8(2 ¹²)	4(2 ¹⁷)	0(2 ¹⁸)
N ₇	0	0	0	0	0	9	$18(2^7)$	$17(2^{19})$	10(2 ²⁷)
N ₈	0	0	0	0	0	0	12	$24(2^{13})$	$20(2^{33} \cdot 3 \cdot 4 \cdot 5 \cdot 7)$
N ₉	0	0	0	0	0	0	0	20	43(2 ¹⁸)

• Only 2 or 5 torsion appears except in $N_8[10]$

Isaac Xia

Quotients of Lower Central Series With Multiple Relations

・ロン ・部 と ・ ヨ と ・ ヨ と …

Patterns and Conjectures

Data on $N_k[d]$

- MAGMA calculations/data reconfiguration
- Previous work exists, modified to automate data collection
- Example: $\mathbb{Z}\langle x, y \rangle / (x^5, y^7)$

Table: $\mathbb{Z}\langle x, y \rangle / (x^2, y^5)$

$N_i[d]$	2	3	4	5	6	7	8	9	10
N ₂	1	1(2)	1(2)	1(2)	0(2 · 5)	0	0	0	0
N ₃	0	2	3(2)	3(2 ²)	3(2 ²)	$1(2^2 \cdot 5^2)$	0(2 · 5)	0	0
N ₄	0	0	2	3(2 ²)	3(2 ⁴)	2(2 ⁶)	0(2 ⁶)	0(2 ³)	0(2)
N ₅	0	0	0	4	7(2 ³)	7(2 ⁷)	$5(2^{10})$	$1(2^{11})$	0(2 ⁷)
N ₆	0	0	0	0	5	9(2 ⁵)	8(2 ¹²)	4(2 ¹⁷)	0(2 ¹⁸)
N ₇	0	0	0	0	0	9	$18(2^7)$	$17(2^{19})$	10(2 ²⁷)
N ₈	0	0	0	0	0	0	12	$24(2^{13})$	$20(2^{33} \cdot 3 \cdot 4 \cdot 5 \cdot 7)$
N ₉	0	0	0	0	0	0	0	20	43(2 ¹⁸)

• Only 2 or 5 torsion appears except in $N_8[10]$

Isaac Xia

Quotients of Lower Central Series With Multiple Relations

イロン 不同 とくほう イロン

-

Patterns and Conjectures

Row Sums Over $\mathbf{GF}(p)$

Proposition 1

Take $A_2/(x^m, y^n)$, where *m* is divisible by a prime *p*. If N_i is computed over **GF**(*p*), its total dimension is divisible by *p*. In fact, if *m* and *n* are both divisible by *p*, then the total dimension is divisible by p^2 .

Table: $\mathbb{Z}_5\langle x, y \rangle / (x^5, y^4)$

$N_i[d]$	1	2	3	4	5	6	7	9	10	11
N_2										
N_3										
N_4										

Sums: 15, 45

Isaac Xia Quotients of Lower Central Series With Multiple Relations

Patterns and Conjectures

Row Sums Over $\mathbf{GF}(p)$

Proposition 1

Take $A_2/(x^m, y^n)$, where *m* is divisible by a prime *p*. If N_i is computed over **GF**(*p*), its total dimension is divisible by *p*. In fact, if *m* and *n* are both divisible by *p*, then the total dimension is divisible by p^2 .

Table: $\mathbb{Z}_5\langle x, y \rangle / (x^5, y^4)$

$N_i[d]$	0	1	2	3	4	5	6	7	8	9	10	11
<i>N</i> ₂	0	0	1	2	3	3	3	2	1	0	0	0
N ₃	0	0	0	2	5	8	9	9	7	4	1	0
N ₄	0	0	0	0	3	8	14	16	16	13	8	2

Isaac Xia

Sums: 15, 45

Quotients of Lower Central Series With Multiple Relations

Patterns and Conjectures

Another Example of Proposition 1

Table:
$$\mathbb{Z}_3\langle x, y \rangle / (x^3, y^3)$$

$N_i[d]$	0	1	2	3	4	5	6	7	8	9
N ₂	0	0	1	2	3	2	1	0	0	0
N ₃	0	0	0	2	5	8	7	4	1	0

• Sums: 9, 27

ヘロト ヘヨト ヘヨト ヘヨト

Patterns and Conjectures

Proving Proposition 1

Theorem 1

If all relations are functions of x_1^p , then all $N_i(A)$ carry an action of the Weyl algebra $D(\mathbf{k})$ with generators D, x and relations [D, x] = 1.

• Proof sketch: Define D acting on an element *a* as $D(a) = \frac{d}{dx_1}a$ and $xa = x_1a$. We can verify that [D, x] = 1.

・ロト ・同ト ・ヨト ・ヨト

Patterns and Conjectures

Proving Proposition 1

Theorem 1

If all relations are functions of x_1^p , then all $N_i(A)$ carry an action of the Weyl algebra $D(\mathbf{k})$ with generators D, x and relations [D, x] = 1.

• Proof sketch: Define D acting on an element *a* as $D(a) = \frac{d}{dx_1}a$ and $xa = x_1a$. We can verify that [D, x] = 1.

・ロト ・同ト ・ヨト ・ヨト

Patterns and Conjectures

Basic Corollary of Theorem 1

Corollary 2

If $N_i(A)$ is finite dimensional, then dim $(N_i(A))$ is divisible by p. In general, if the relations are non-commutative polynomials of p-th powers of the first r variables $x_1^p, x_2^p, \ldots, x_r^p$, then dim $(N_i(A))$ is divisible by p^r .

Proof sketch: We use k = GF(p).
 0 = Tr([D,x]) = Tr(1) = dim(V) in GF(p) where V is a representation of D(k), so every representation of D(k) has dimension divisible by p. For relations which are functions of x₁^p, x₂^p,...,x_r^p, we have an action of the tensor power algebra D(k)^{⊗r} whose representation dimensions are divisible by p^r.

イロン 不同 とくほう イロン

Patterns and Conjectures

Basic Corollary of Theorem 1

Corollary 2

If $N_i(A)$ is finite dimensional, then dim $(N_i(A))$ is divisible by p. In general, if the relations are non-commutative polynomials of p-th powers of the first r variables $x_1^p, x_2^p, \ldots, x_r^p$, then dim $(N_i(A))$ is divisible by p^r .

Proof sketch: We use k = GF(p).
 0 = Tr([D,x]) = Tr(1) = dim(V) in GF(p) where V is a representation of D(k), so every representation of D(k) has dimension divisible by p. For relations which are functions of x₁^p, x₂^p,...,x_r^p, we have an action of the tensor power algebra D(k)^{⊗r} whose representation dimensions are divisible by p^r.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Patterns and Conjectures

Further Corollary of Theorem 1

Corollary 3

Suppose that the relations are homogeneous in x_i . Then, the Hilbert series H of $N_i(A)$ with respect to X_1, \ldots, X_r is divisible by $P_r := (1 + X_1 + \ldots + X_1^{p-1}) \ldots (1 + X_r + \ldots + X_r^{p-1})$, i.e. $\frac{H}{P_r}$ is a power series with non-negative coefficients.

・ロト ・同ト ・ヨト ・ヨト

Further Research Options

- Bigrading: $N_k[d_x, d_y]$ instead of $N_k[d]$
- Example: xy^2x^3 has bidegree (4, 2), yxyx has bidegree (2, 2)
- Instead of N_k , find B_k (Quotients of L_k/L_{k+1})
- Use A_3 or even A_4

ヘロト ヘヨト ヘヨト ヘヨト

Further Research Options

- Bigrading: $N_k[d_x, d_y]$ instead of $N_k[d]$
- Example: xy^2x^3 has bidegree (4, 2), yxyx has bidegree (2, 2)
- Instead of N_k , find B_k (Quotients of L_k/L_{k+1})
- Use A_3 or even A_4

・ロト ・同ト ・ヨト ・ヨト

Further Research Options

- Bigrading: $N_k[d_x, d_y]$ instead of $N_k[d]$
- Example: xy^2x^3 has bidegree (4, 2), yxyx has bidegree (2, 2)
- Instead of N_k , find B_k (Quotients of L_k/L_{k+1})
- Use A₃ or even A₄

イロン 不同 とくほう イロン

Acknowledgements

- Thanks to Pavel Etingof for suggesting the project and conjectures
- Thanks to Teng Fei for providing assistance with MAGMA
- Thanks to Tanya Khovanova for her guidance and invaluable help in looking over the project
- Many thanks to my mentor Yael Fregier for his uncountable hours spent explaining concepts and closely monitored guidance!
- Thanks to PRIMES for this opportunity!

イロン 不同 とくほう イロン