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What is a Non-commutative Algebra?

Take 2 letters: x , y

Words: xyx , yyxyx , xyxyxyx

Sentences: 2xyx + 5yyxyx

This describes A2

Non-commutative letters: logarithm 6= algorithm

Why study Non-commutative algebras?

Classical physics ⇐⇒ Quantum physics

Commutative algebras ⇐⇒ Non-commutative algebras
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Non-commutative algebras
Quotients of Ideals
Abelian Groups: Rank and Torsion

Free Algebra An

Definition

Free algebra:
An := k〈x1, x2, x3, . . . , xn〉 and
{1, x1, x2, x3, . . . , x1x1, x1x2, x1x3, x2x1, . . .}

Free algebra is the most “non-commutative”

An generated by generators x1, x2, . . . , xn

Example: A3:

1
x1, x2, x3

x21 , x1x2, x1x3, x2x1, x
2
2 , x2x3, x3x1, x3x2, x

2
3

Grading keeps track of data better: An[d ]

An[d ] spanned by nd basis elements
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Relations

An already studied

All finitely generated non-commutative algebras are quotients
of An by relations

Relations: e.g. (xy = 0, y2 = 0)

A2/(xy , y2)

1
x , y
x2, yx
x3, yx2

Restrict to homogeneous relations to preserve grading
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Commutator

Definition

Commutator: Let A be an algebra. The commutator of x and y
is [x , y ] = xy − yx . If H and K are subspaces of A, then
[H,K ] = span{[h, k]|h ∈ H and k ∈ K}).
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Lower Central Series

Study An by Lower Central Series Filtration

Definition

Lower Central Series Filtration:
A = L1 ⊇ L2 ⊇ L3 ⊇ . . .
Where L1 := A and Lk+1 := [Lk ,A] for k ≥ 1.

Li+1 is the smallest subspace such that a` = `a mod Li+1 for
all ` ∈ Li and a ∈ A.

Provides a measure of non-commutativity for the original
algebra
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Ideal

Study ideals Mk in order to preserve structures

Sets and element: Cd := {cd |c ∈ C}

Definition

Ideal Mk :
Mk = ALk = LkA = span{`a|` ∈ Lk , a ∈ A}.
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Question

Problem

1. How many basis elements are in each Mk in each degree?

Problem

2. How fast does this number shrink as k grows?
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Quotient of the Ideals

Shrinking is essentially “Difference”

We take the quotient of these ideals:

Definition

Quotient Nk := Mk/Mk+1
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Coefficients

What coefficients do we work over for A2 = k〈x1, x2〉 ?

Option 1: Work over k = Z make Nk Abelian groups (Z not
field)

Option 2: k = GF(p) or Q make Nk vector spaces
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Abelian Groups

Working with coefficients over Z yield Abelian groups

Finitely generated Abelian groups decomposable:

A = Zr ⊕
⊕
i

Zαi
i for prime powers i .

Data presented as r(
∏

(iαi ))

Z3 ⊕ Z4
2 ⊕ Z4 ⊕ Z5 ⇐⇒ 3(24 · 4 · 5)
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Patterns and Conjectures

Data on Nk [d ]

MAGMA calculations/data reconfiguration

Previous work exists, modified to automate data collection

Example: Z〈x , y〉/(x5, y7)

Table: Z〈x , y〉/(x2, y5)

Ni [d ] 2 3 4 5 6 7 8 9 10

N2 1 1(2) 1(2) 1(2) 0(2 · 5) 0 0 0 0

N3 0 2 3(2) 3(22) 3(22) 1(22 · 52) 0(2 · 5) 0 0

N4 0 0 2 3(22) 3(24) 2(26) 0(26) 0(23) 0(2)

N5 0 0 0 4 7(23) 7(27) 5(210) 1(211) 0(27)

N6 0 0 0 0 5 9(25) 8(212) 4(217) 0(218)

N7 0 0 0 0 0 9 18(27) 17(219) 10(227)

N8 0 0 0 0 0 0 12 24(213) 20(233 · 3 · 4 · 5 · 7)
N9 0 0 0 0 0 0 0 20 43(218)

Only 2 or 5 torsion appears except in N8[10]
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Patterns and Conjectures

Row Sums Over GF(p)

Proposition 1

Take A2/(xm, yn), where m is divisible by a prime p. If Ni is
computed over GF(p), its total dimension is divisible by p. In fact,
if m and n are both divisible by p, then the total dimension is
divisible by p2.

Table: Z5〈x , y〉/(x5, y4)

Ni [d ] 0 1 2 3 4 5 6 7 8 9 10 11

N2 0 0 1 2 3 3 3 2 1 0 0 0
N3 0 0 0 2 5 8 9 9 7 4 1 0
N4 0 0 0 0 3 8 14 16 16 13 8 2

Sums: 15, 45
Isaac Xia Quotients of Lower Central Series With Multiple Relations
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Patterns and Conjectures

Another Example of Proposition 1

Table: Z3〈x , y〉/(x3, y3)

Ni [d ] 0 1 2 3 4 5 6 7 8 9

N2 0 0 1 2 3 2 1 0 0 0
N3 0 0 0 2 5 8 7 4 1 0

Sums: 9, 27
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Proving Proposition 1

Theorem 1

If all relations are functions of xp1 , then all Ni (A) carry an action of
the Weyl algebra D(k) with generators D,x and relations
[D, x ] = 1.

Proof sketch: Define D acting on an element a as

D(a) =
d

dx1
a and xa = x1a. We can verify that [D, x ] = 1.
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Basic Corollary of Theorem 1

Corollary 2

If Ni (A) is finite dimensional, then dim(Ni (A)) is divisible by p. In
general, if the relations are non-commutative polynomials of p-th
powers of the first r variables xp1 , x

p
2 , . . . , x

p
r , then dim(Ni (A)) is

divisible by pr .

Proof sketch: We use k = GF(p).
0 = Tr([D, x ]) = Tr(1) = dim(V ) in GF(p) where V is a
representation of D(k), so every representation of D(k) has
dimension divisible by p. For relations which are functions of
xp1 , x

p
2 , . . . , x

p
r , we have an action of the tensor power algebra

D(k)⊗r whose representation dimensions are divisible by pr .
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Further Corollary of Theorem 1

Corollary 3

Suppose that the relations are homogeneous in xi . Then, the
Hilbert series H of Ni (A) with respect to X1, . . . ,Xr is divisible by

Pr := (1 + X1 + . . . + X p−1
1 ) . . . (1 + Xr + . . . + X p−1

r ), i.e.
H

Pr
is a

power series with non-negative coefficients.
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Further Research Options

Bigrading: Nk [dx , dy ] instead of Nk [d ]

Example: xy2x3 has bidegree (4, 2), yxyx has bidegree (2, 2)

Instead of Nk , find Bk (Quotients of Lk/Lk+1)

Use A3 or even A4
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