
A Collaborative 
Editor in Ur/Web
Istvan Chung and Nathan Wolfe
Mentor: Benjamin Barenblat
MIT PRIMES 2013



Ur/Web

● Type-safe
○ Prevents segmentation faults, null pointers, and 

other type errors
● Secure

○ Automatically protects against cross-site scripting, 
most types of cross-site request forgery, and SQL 
injection attacks

● Ur/Web will never treat data as the wrong 
type

● Efficient



Design Goals

● Users are able to open and edit documents, 
which are saved on the server

● Any user's changes are seen by all other 
users in real time

● Users are prevented from editing the same 
area at the same time

● Editor integrates with larger course 
management system, allowing greater 
collaboration between students

● Editor will be open source, designed for 
code editing



Front End

● Compiled automatically from Ur/Web to 
Javascript

● Interfaces with the open-source CodeMirror 
editor using Ur/Web's Javascript FFI

● Necessary to break Ur/Web's document 
model in order to interface correctly with 
CodeMirror

● Automatically pushes and receives changes 
to and from the server



Back End

● Stores document data including title, body 
text, and permissions

● Keeps track of the users viewing each 
document

● Sends updates to clients about changes 
made



Relational Databases

Identification Number Name Birth Year

5 Michael Smith 1983

9 Bill Johnson 1979

10 Andrew Li 1988

12 Sarah Taber 1988

13 Taylor Simmons 1967

17 Christopher McMann 1972

25 Jane Sullivan 1975



Relational Databases

● We use relational databases to store data 
because they integrate extremely well with 
Ur/Web

● A limitation is that tables columns cannot be 
created on the fly for security reasons, so we 
have to declare all our columns while writing 
the code



Concurrent Editing

● Concurrent editing requires the server to 
update users on the edits of others

● We are using a system to locking to prevent 
editing conflicts

● Editing requires a lock on the line being 
edited

● A lock expires after a few seconds



Storing Text

● Originally we used a single string to store the 
text of each document

● Using a single string does not allow us to 
have different locks on each line

● Instead, we now use a linked list for each 
document: each line points to the next



Sending Updates to Clients

● We use Ur/Web's built-in "channels"
● Channels allow the server to send messages 

to clients, updating them instantly
● Each client gets its own channel, so we keep 

track of them with a database



Future Work

● Concurrency strategy
● Server-to-client updates
● Visual style


