Automating Interactive
Theorem Proving with Coq
and Ltac

by Oron Propp and Alex Sekula
Mentored by Drew Haven
PRIMES

Motivation

e Math is usually written by hand, checked by
other mathematicians

e Verifying process takes time out of learning

e Computer potentially gives instant feedback

Overview

e Coq — alanguage that verifies proofs

e Goal

o Use Coq to help students learn proving, allowing
them to check their proofs by themselves

e Problem

o Coq is difficult to learn, and "raw Coq code" looks
nothing like the original proof

"Raw Coq code" Example

specialize(H1
intuition.
intuition.
rewrite H4 in H3.
destruct H2 as [t].
destruct H2 as [j].
assert(Z.divide x a).
unfold Z.divide.
exists q.

intuition.

rewrite HS.

ring.

H) .

A Brief Intro to Coq

e Fun Fact: Coq means rooster in French!
o Developed in INRIA, France

e A basic Coq proof consists of:
o Theorem statements
o Tactics

e Environment
o Coq code
o List of hypotheses
o List of subgoals

Approach

e Wrote number theory proofs in Coq

Two column proof "Raw" Coq proof

|

Look for repetitive,

/ messy, trivial parts

Automate Coq Proof Develop approach to
eliminate these parts

Approach

Proofs written:

Well ordering principle for natural numbers
No natural number between 0 and 1

Infinitude of primes
o Fundamental theorem of arithmetic

Division algorithm
Extended Euclidean algorithm
Euclidean algorithm

Two Column "Math" Proot

Theorem: there does not exist a natural number n such that 0 <n < 1
1 Let S be the set of all natural numbers between 0 and 1 | Definition
2 Assume that S is non-empty | For sake of contradiction
3 Let r be the least element of S | Well ordering principle and 2
4 O<r<1|risinS
5 O0*r<r*r<1*r|4andmath
6 0 <r?<r | 5and math
7 rr<1|4and6
8 rPisinS | 6,7 and 1
9 r’<r|6
10 Contradiction | 3and 9
11 Since S has no least element, it is empty, and our theorem is true | Definition
12 QED

Ugly Duckling

Theorem no_nat_between_1_and_@ : ~ exists n : nat, @ < n < 1.

Proof.
intro H.
destruct (nat_well_ordered _ H).
Clear H.
destruct HO.
assert (0 * X <X * X <1 * x).
split; apply mult_lt_compat_r; apply H.
assert (0 < X * X < X).
replace @ with (@ * x) by auto with arith.
replace (1 * x) with x in Hl1l by auto with arith.
assumption.
assert (x * x < 1).
apply lt_trans with Xx.
apply HZ2.
apply H.
assert (0 < x * X < 1).
split.
apply HZ2.
assumption.
specialize (HO _ H4).
apply (le_not_1t _ _ H@).
apply H2.
Qed.

Proving With Coq

Theorem no nat between 1 and 0 :
~ exists n : nat,

Proving With Coq

Theorem no nat between 1 and 0
~ exists n : nat,

Proof.
intro H.

Proving With Coq

~ exists n : nat, 0 < n < 1.

Proof.

intro H.

destruct (nat_well_ordered
H) .

Theorem no nat between 1 and 0 : H : exists n : nat, 0 < n < 1

X : nat
HO : 0 < x < 1 /\ (forall a
nat, 0 < a < 1 -> x <= a)

Proving With Coq

Theorem no nat between 1 and 0
~ exists n : nat, 0 < n < 1. HO : 0 < x < 1 /\ (forall a

Proof. —===========================
intro H. False
destruct (nat well ordered
H) .
clear H.

Proving With Coq

Theorem no_nat_between_l_and_O : X : nat
~ exists n : nat, 0 < n < 1. H: 0 < x <1

HO : forall a : nat, 0 < a < 1
Proof. -> x <= a
intro H. ============================
destruct (nat well ordered False
H) .
clear H.

destruct HO.

Proving With Coq

Proof.
intro H.

H) .
clear H.

destruct HO.

X) .

Theorem no nat between 1 and 0
~ exists n : nat,

destruct (nat well ordered

assert (0 * x < x * x < 1 *

X : nat
H: 0 < x <1
HO : forall a : nat, 0 < a < 1

0 * x < x * x < 1 * x

subgoal 2 (ID 1226) is:
False

Proving With Coq

Theorem no nat between 1 and 0
~ exists n nat,

Proof.

intro H.

destruct (nat well ordered
H) .

clear H.

destruct HO.

assert (0 * x < x * x < 1 *
X) .
split; apply mult 1t compat r;

apply H.

X : nat

H: 0 < x <1

HO : forall a
-> X <= a

HI : 0 * x < x * x < 1 * x

nat, 0 < a <1

Proving With Coq

Theorem no nat between 1 and 0
~ exists n nat,

Proof.

intro H.

destruct (nat well ordered
H) .

clear H.

destruct HO.

assert (0 * x < x * x < 1 *
X) .
split; apply mult 1t compat r;
apply H.

assert (0 < x * x < xX).

X : nat

H: 0 < x <1

HO : forall a
-> X <= a

HI : 0 * x < x * x < 1 * x

nat, 0 < a <1

subgoal 2 (ID 1249) is:

False

Proving With Coq

Theorem no nat between 1 and 0
~ exists n nat,

Proof.

intro H.

destruct (nat well ordered
H) .

clear H.

destruct HO.

assert (0 * x < x * x < 1 *
X) .
split; apply mult 1t compat r;
apply H.
assert
replace 0 with
with arith.
replace (1 * x) with x in HI1
by auto with arith.

(0 < x * x < X).

(0O * x) by auto

X : nat

H: 0 < x <1

HO forall a nat, 0 < a <1
-> X <= a

H1 0 * x < x * x < X

0 * x < x * x < X

subgoal 2 (ID 1249) is:

False

Proving With Coq

Theorem no nat between 1 and 0

~ exlists n nat, 0 < n < 1
Proof.

intro H.

destruct (nat well ordered
H) .

clear H.

destruct HO.

assert (0 * x < x * x < 1 *
X) .

split; apply mult 1t compat r;
apply H.

assert (0 < x * x < x).

replace 0 with (0 * x) by auto
with arith.

replace (1 * x) with x in HI1
by auto with arith.

assumption.

X : nat
H: 0 < x <1
HO forall a nat, 0 < a <1
-> X <= a
H1 0 * x < x * x <1 * x
H2 0 < X * x < X
False

Proving With Coq

assumption. X : nat
assert (x * x < 1). H: 0 < x<1
HO : forall a : nat, 0 < a < 1

Hl : 0 * x < x * x < 1 * x
H?2 : 0 < x * x < X

subgoal 2 (ID 1264) is:
False

Proving With Coq

assumption. X : nat

assert (x * x < 1). H: 0 < x<1

apply 1t trans with x. HO : forall a : nat, 0 < a < 1
-> X <=

Hl : 0 * x < x * x < 1 * x
H?2 : 0 < x * x < X

subgoal 2 (ID 1266) is:
x < 1

subgoal 3 (ID 1264) is:
False

Proving With Coq

assumption. : nat

assert (x * x < 1). : 0 < x <1
apply 1t trans with x. : forall a
apply H2.
apply H.

Proving With Coq

assumption. X : nat
assert (x * x < 1). H: 0 < x<1
apply 1t trans with x. HO : forall a : nat, 0 < a < 1
apply H2. -> x <= a
apply H. H1 0 * x < x * x <1 * x
assert (0 < x * x < 1). H2 : 0 < x * x < x

H3 X * x <1

subgoal 2 (ID 1272) 1is:
False

Proving With Coq

assumption. X : nat

assert (x * x < 1). H: 0 < x<1

apply 1t trans with x. HO : forall a : nat, 0 < a < 1
apply H2. -> x <=

apply H. Hl : 0 * x < x * x < 1 * x
assert (0 < x * x < 1). H2 : 0 < x * x < X

split. H3 : x * x < 1

subgoal 2 (ID 1275) 1is:
X * x < 1

subgoal 3 (ID 1272) 1is:
False

Proving With Coq

assumption. X : nat

assert (x * x < 1). H: 0 < x<1

apply 1t trans with x. HO : forall a : nat, 0 < a < 1
apply H2. -> x <= a

apply H. Hl : 0 * x < x * x < 1 * x
assert (0 < x * x < 1). H2 : 0 < x * x < X

split. H3 : x * x < 1

apply H2. H4 0 < x * x <1

Proving With Coq

assumption.
assert (x * x < 1).

apply 1t trans with x.

apply H2.
apply H.

assert (0 < x * x < 1).

split.

apply H2.

assumption.
specialize (HO H4) .

HO X <= X * x
H1 0 * x < x * x <1 * x
H2 0 < X * x < X
H3 X * x < 1
H4 0 < x * x <1
False

Proving With Coq

assumption.
assert (x * x < 1).
apply 1t trans with x.
apply H2.

apply H.

assert (0 < x * x < 1).
split.

apply H2.

assumption.

specialize (HO H4) .

apply (le not 1t HO) .

HO X <= X * x

H1 0 * x < x * x <1 * x
H2 0 < X * x < X

H3 X * x < 1

H4 0 < x * x <1

Proving With Coq

assumption.
assert (x * x < 1).
apply 1t trans with x.
apply H2.

apply H.

assert (0 < x * x < 1).
split.

apply H2.

assumption.

specialize (HO H4) .

apply (le not 1t HO) .

apply HZ2.

No more subgoals.
(dependent evars:)

Proving With Coq

assumption.

assert (x * x < 1).
apply 1t trans with x.
apply H2.

apply H.

assert (0 < x * x < 1).
split.

apply H2.

assumption.

specilalize (HO H4) .

apply (le not 1t HO) .

apply H2.
Qed.

no nat between 1 and 0 1is
defined

Proving With Coq

06 no_nat_between_0_and_1.v
RO T 4P Y NPFE O S0P

Theorem no_nat_between_1_and_© : ~ exists n : nat, @ < n < 1.

Proof.
intro H.
destruct (nat_well_ordered _ H).
Clear H.
destruct HO.
assert (0 * X <X *x <1 * x).
split; apply mult_lt_compat_r; apply H.
assert (0 < X * X < x).
replace @ with (@ * x) by auto with arith.
replace (1 * x) with x in H1 by auto with arith.
assumption.
assert (x * x < 1).
apply lt_trans with x.
apply H2.
apply H.
assert (0 < X * X < 1).
split.
apply H2.
assumption.
specialize (HO _ H4). -:%¥%- *goals* All L1 (Coq Goals)
apply (le_not_lt _ _ H@). no_nat_between_1_and_0 is defined
apply H2.
Qed.
U:**- no_nat_between_@_and_1.v 57% L1066 (Coq Script(@-) Holes -:%¥%- *response* All L1 (Coq Response)

Proof Automation

e Noticed repeated, tedious code

e Goal - less cluttered code, easier to write
e Write tactics that automate trivial steps

e Three tactics written
o ZWwWop
o math
o simplify

"Zwop" Tactic

e Applies the well-ordering principle (WOP) to
a set in Coq

e WOP is a key part of many number theory
proofs

Ltac Zwop A Adef :=
pose(A := Adef);
destruct (bounded_Z_well_ordered A).

"math" Tactic

e Tries to simplify ring inequalities and uses
"Intuition" tactic

Ltac math :=
intuition;
repeat match goal with
Il [H:?2T, H" : ?2T" |- _] =
match type of T with
| Prop => match type of T' with
| Prop => assert (T /\ T') by tauto; clear H H'
end
end
end;
repeat match goal with
| [H: context[?a < ?b] |- _] => progress ring_simplify a b in H;
progress apply lt_trans with a in H; progress apply lt_trans with b in H
end;

intuition.

"simplify" Tactic

e Tries many general, useful tactics where
applicable
e Only uses them if they advance the proof

Ltac simplify_step v :=
repeat (try match goal with

I L 1- _ /\ _] => split

Il [H: _/_ |- _71] = destruct H
|l [1- _=_] = ring

I

[H: exists |- _] => let v' := fresh v in destruct H as [v']

-y =
| [I- exists _, _] => eauto with arith
end;

intuition;

simpl in *;

unfold Z.divide in *).

Ltac simplify' v :=
simplify_step v;
/ now (subst; simplify_step v).

Tactic Notation "simplify" := let v := fresh "v" in simplify' v.

Tactic Notation "simplify" ident(v) := simplify' v.

The Power of "simplify"

From this...

Lemma remainder_not_@ : forall a b, remainder ab =0 ->a < 0 -> b < 0.

Proof.

intros.

apply NNPP; intro.

assert (b = ©); intuition.

subst.

unfold remainder in H; intuition.
Qed.

The Power of "simplify"

To this...

Proof.
simplify.
Qed.

[ists From Sets

e Synthesizes list of elements from finite set
e Allows us to compute operations on the set

Lemma finite_set_list : forall T (E : Ensemble T), Finite T E ->
exists L : 1list T, forall t : T, List.In t L <-> Ensembles.In _ E t.

Fixpoint product_of_list (1 : 1ist 2Z2) : Z :=
match 1 with
| nil = 1
| cons a 1" => Zmult a (product_of_list 1')
end.

Assertion Technique

e Coq uses backwards proving
e Forward proving is more natural
e Used assert tactictodo so

e Three steps
o Write out two column proof
o Convert the left column into assertions in the proof
o Prove each assertion using the ones before it

Basic Frameworks

Theorem theorem name : [theorem statement].
Proof.
intros.
assert([step 1]).
[code used to prove step 1]
assert([step 2]).
[code used to prove step 2]

Qed.

Beautiful Swan

Theorem no_nat_between_1 and 0 : ~ exists n : nat, @ < n < 1.
Proof.
intro.
pose (U := (fun n =>0 <n < 1)).
destruct (nat_well_ordered U) as [r]; [auto |].
unfold U in HO.
assert (0*r < r*r < 1*r) by (apply mult_double_ 1t _compat _r; math).
assert (0 < r*r < r) by math.
assert (r*r < 1) by (apply lt_trans with r; math).
assert (r*r € U) by (unfold U; math).
assert (r*r < r) by math.
assert (r <= r*r) by math.
omega.
Qed.

Conclusion

e Our findings have educational implications

o Coq proofs now resemble mathematical
proofs more
m More readable

o Proofs are easier to write
m Don't have to do everything out

o Easier for students to use Coq to learn to
write proofs and validate their proofs

Future

e Interpreter
o Inputs higher level language, outputs Coq code

e Doing out more Number Theory proofs in
Coq for more automation

Acknowledgements

Our mentor Drew Haven
Our overseeing professor Dr. Adam Chlipala
PRIMES

Our parents

