Automating Interactive Theorem Proving with Coq and Ltac

by Oron Propp and Alex Sekula Mentored by Drew Haven PRIMES

Motivation

- Math is usually written by hand, checked by other mathematicians
- Verifying process takes time out of learning
- Computer potentially gives instant feedback

Overview

- Coq - a language that verifies proofs
- Goal
- Use Coq to help students learn proving, allowing them to check their proofs by themselves
- Problem
- Coq is difficult to learn, and "raw Coq code" looks nothing like the original proof

"Raw Coq code" Example

specialize(H1 _ H9).
intuition.
intuition.
rewrite H4 in H3.
destruct H 2 as [t].
destruct H 2 as [j].
assert(Z.divide x a).
unfold Z.divide.
exists q.
intuition.
rewrite H5.
ring.

A Brief Intro to Coq

- Fun Fact: Coq means rooster in French!
- Developed in INRIA, France
- A basic Coq proof consists of:
- Theorem statements
- Tactics
- Environment
- Coq code
- List of hypotheses
- List of subgoals

Approach

- Wrote number theory proofs in Coq

Two column proof \longrightarrow "Raw" Coq proof
I
Look for repetitive, messy, trivial parts

Automate Coq Proof \longleftarrow Develop approach to eliminate these parts

Approach

Proofs written:

- Well ordering principle for natural numbers
- No natural number between 0 and 1
- Infinitude of primes
- Fundamental theorem of arithmetic
- Division algorithm
- Extended Euclidean algorithm
- Euclidean algorithm

Two Column "Math" Proof

	Theorem: there does not exist a natural number n such that $0<n<1$	
1	Let S be the set of all natural numbers between 0 and 1	Definition
2	Assume that S is non-empty	For sake of contradiction
3	Let r be the least element of S	Well ordering principle and 2
4	$0<r<1$	r is in S
5	$0{ }^{*} r<r^{*} r<1^{*} r$	4 and math
6	$0<r^{2}<r$	5 and math
7	$r^{2}<1$	4 and 6
8	r^{2} is in S	6,7 and 1
9	$r^{2}<r$	6
10	Since S has no least element, it is empty, and our theorem is true	Definition
11	Contradiction	3 and 9
12		QED

Ugly Duckling

Theorem no_nat_between_1_and_0 : ~ exists n : nat, $0<n<1$.
Proof.
intro H .
destruct (nat_well_ordered _ H).
clear H.
destruct H0.
assert (0 ${ }^{*} \mathrm{x}<\mathrm{x}^{*} \mathrm{x}<1^{*} \mathrm{x}$).
split; apply mult_lt_compat_r; apply H.
assert (0 $<\mathrm{x}^{*} \mathrm{x}<\mathrm{x}$).
replace 0 with ($0^{*} \mathrm{x}$) by auto with arith.
replace ($1^{*} \mathrm{x}$) with x in H 1 by auto with arith.
assumption.
assert ($\mathrm{x}^{*} \mathrm{x}<1$).
apply lt_trans with x .
apply H 2 .
apply H.
assert ($0<\mathrm{x}^{*} \mathrm{x}<1$).
split.
apply H2.
assumption.
specialize (H0 _ H4).
apply (le_not_lt _ _ H0).
apply H 2 .
Qed.

Proving With Coq

Theorem no_nat_between_1_and_0 :
\sim exists n : nat, $0<n<1$.
=============================
~ (exists n : nat, $0<n<1$)

Proving With Coq

Theorem no_nat_between_1_and_0 \sim exists n : nāt, $0<\bar{n}<1$.

Proof.
intro H.

```
H : exists n : nat, 0 < n < 1
```


False

Proving With Coq

Theorem no_nat_between_1_and_0 ~ exists n : nat, $0<\mathrm{n}<1$.

Proof.
intro H . destruct (nat_well_ordered _ H) .

```
    H : exists n : nat, 0 < n < 1
    x : nat
    H0 : 0 < x < 1 /\ (forall a :
nat, 0 < a < 1 -> x <= a)
==============================
False
```


Proving With Coq

Theorem no_nat_between_1_and_0 \sim exists n : nat, $0<n<1$.

Proof.
intro H .
destruct (nat_well_ordered _ H) .
clear H.
$x:$ nat
H0 $: 0<x<1 /$ (forall a :
nat, $0<a<1->x<=a)$
$==========================$

False

Proving With Coq

Theorem no_nat_between_1_and_0 ~ exists n : nat, $0<\mathrm{n}<1$.

Proof.
intro H .
destruct (nat_well_ordered _ H) .
clear H. destruct HO.

```
    x : nat
    H : \(0<x<1\)
    HO : forall a : nat, \(0<a<1\)
-> \(x\) <= a
```



```
    False
```


Proving With Coq

Theorem no_nat_between_1_and_0 \sim exists n : nat, $0<n<1$.

Proof.
intro H .
destruct (nat_well_ordered _ H) .
clear H .
destruct HO. assert (0 * $\mathrm{x}<\mathrm{x}$ * $\mathrm{x}<1$ * x).

```
    x : nat
    H : 0 < x < 1
    HO : forall a : nat, 0 < a < 1
-> x <= a
    ==============================
    0 * x < x * x < 1 * x
```

subgoal 2 (ID 1226) is:
False

Proving With Coq

```
Theorem no_nat_between_1_and_0 :
~ exists n : nat, 0 < n < 1.
```

Proof.
intro H.
destruct (nat_well_ordered _
H) .
clear H.
destruct HO.
assert (0 * x < x * x < 1 *
x).
split; apply mult_lt_compat_r;
apply H .

```
    x : nat
    H : 0 < x < 1
    H0 : forall a : nat, 0< a < 1
-> x <= a
    H1 : 0 * x < x * x < 1 * x
    ===========================
    False
```


Proving With Coq

Theorem no_nat_between_1_and_0 : ~ exists n : nat, $0<n<1$.

Proof.
intro H .
destruct (nat_well_ordered _ H) .
clear H.
destruct HO.
assert (0 * $\mathrm{x}<\mathrm{x}$ * $\mathrm{x}<1$ * x).
split; apply mult_lt_compat_r; apply H. assert $(0<x * x<x)$.

```
    x : nat
    H : 0 < x < 1
    H0 : forall a : nat, 0 < a < 1
-> x <= a
    H1 : 0 * x < x * x < 1 * x
```



```
    0<x * x<x
```

subgoal 2 (ID 1249) is:
False

Proving With Coq

Theorem no_nat_between_1_and_0 : \sim exists n : nat, $0<n<1$.

Proof.
intro H .
destruct (nat_well_ordered _ H) .
clear H.
destruct HO.
assert (0 * $\mathrm{x}<\mathrm{x}$ * $\mathrm{x}<1$ * x).
split; apply mult_lt_compat_r; apply H. assert ($0<x$ * $x<x$). replace 0 with (0 * x) by auto with arith.
replace (1 * x) with x in H1 by auto with arith.

```
    x : nat
    H : 0 < x < 1
    H0 : forall a : nat, 0 < a < 1
-> x <= a
    H1 : 0 * x < x * x < x
    ===========================
    0 * x < x * x < x
```

subgoal 2 (ID 1249) is:
False

Proving With Coq

Theorem no_nat_between_1_and_0 : ~ exists n : nat, $0<n<1$.

Proof.
intro H .
destruct (nat_well_ordered _ H) .
clear H. destruct HO. assert (0 * x < x * x < 1 * x) .
split; apply mult_lt_compat_r; apply H.
assert ($0<x$ * $x<x)$.
replace 0 with (0 * x) by auto with arith.
replace (1 * x) with x in H1 by auto with arith.
assumption.

```
    x : nat
    H : 0 < x < 1
    H0 : forall a : nat, 0 < a < 1
-> x <= a
H1 : 0 * x < x * x < 1 * x
H2 : 0 < x * x < x
```

False

Proving With Coq

assumption. assert $(x * x<1)$.

$$
\begin{aligned}
& x: n a t \\
& H: 0<x<1 \\
& H 0: \text { forall a nat, } 0<a<1 \\
&->x<=a \\
& H 1: 0 \star x<x \star x<1 * x \\
& H 2: 0<x \star x<x \\
&============================== \\
& x \star x<1
\end{aligned}
$$

sulbgoal 2 (ID 1264) is:
False

Proving With Coq

assumption.
assert (x * $\mathrm{x}<1$). apply lt_trans with x.

$$
\begin{aligned}
& x: \text { nat } \\
& \text { H }: 0<x<1 \\
& \text { H0 : forall } a \text { nat, } 0<a<1 \\
& ->x<=a \\
& \text { H1 }: 0 * x<x * x<1 * x \\
& \text { H2 }: 0<x * x<x \\
& ============================ \\
& x * x<x
\end{aligned}
$$

$$
\begin{aligned}
& \text { subgoal } 2 \text { (ID 1266) is: } \\
& x<1 \\
& \text { subgoal } 3 \text { (ID 1264) is: } \\
& \text { False }
\end{aligned}
$$

Proving With Coq

assumption.
assert (x * $\mathrm{x}<1$). apply lt_trans with x. apply H2.
apply H .

$$
\begin{aligned}
& x: \text { nat } \\
& \text { H }: 0<x<1 \\
& \text { H0 }: \text { forall a }: \text { nat, } 0<a<1 \\
& ->x<=a \\
& \text { H1 }: 0 * x<x * x<1 * x \\
& \text { H2 }: 0<x * x<x \\
& \text { H3 }: x * x<1
\end{aligned}
$$

False

Proving With Coq

assumption.
assert (x * $\mathrm{x}<1$). apply lt_trans with x. apply H2.
apply H .
assert $(0<x * x<1)$.

$$
\begin{aligned}
& x: \text { nat } \\
& H: 0<x<1 \\
& \text { H0 : forall } a: \text { nat, } 0<a<1 \\
& ->x<=a \\
& \text { H1 }: 0 * x<x * x<1 * x \\
& \text { H2 }: 0<x * x<x \\
& \text { H3 }: x * x<1 \\
& ============================== \\
& 0<x * x<1
\end{aligned}
$$

$$
\begin{aligned}
& \text { subgoal } 2 \text { (ID 1272) is: } \\
& \text { False }
\end{aligned}
$$

Proving With Coq

assumption.
assert (x * $\mathrm{x}<1$). apply lt_trans with x. apply H2.
apply H .
assert ($0<x$ * $\mathrm{x}<1$). split.

$$
\begin{aligned}
& x: \text { nat } \\
& \text { H : } 0<x<1 \\
& \text { H0 : forall } a: \text { nat, } 0<a<1 \\
& ->x<=a \\
& \text { H1 }: 0 * x<x * x<1 * x \\
& \text { H2 }: 0<x * x<x \\
& \text { H3 }: x * x<1 \\
& ============================== \\
& 0<x * x
\end{aligned}
$$

```
subgoal 2 (ID 1275) is:
x * x < 1
subgoal 3 (ID 1272) is:
    False
```


Proving With Coq

assumption.
assert $(x * x<1)$.
apply lt_trans with x.
apply H2.
apply H.
assert $(0<x * x<1)$. split.
apply H2.
assumption.

Proving With Coq

assumption.
assert $(x * x<1)$.
apply lt_trans with x.
apply H2.
apply H.
assert $(0<x * x<1)$.
split.
apply H2.
assumption.
specialize (H0 _ H4).

$$
==1
$$

False

Proving With Coq

assumption.
assert $(x * x<1)$.
apply lt_trans with x.
apply H2.
apply H.
assert $(0<x * x<1)$.
split.
apply H2.
assumption.
specialize (H0 H4).
apply (le_not_lt__ HO).

```
x : nat
\(\mathrm{H}: 0<\mathrm{x}<1\)
HO : \(\mathrm{x}<=\mathrm{x} \star \mathrm{x}\)
H1 : \(0 \star x<x * x<1 * x\)
H2 : \(0<x * x<x\)
H3 : x * \(x<1\)
H4 : \(0<x * x<1\)
```



```
    \(\mathrm{X} * \mathrm{x}<\mathrm{X}\)
```


Proving With Coq

assumption.
assert (x * $\mathrm{x}<1$).
apply lt_trans with x.
apply H2.
apply H .
assert ($0<\mathrm{x}$ * $\mathrm{x}<1$).
split.
apply H2.
assumption.
specialize (HO _H4).
apply (le_not_lt _ _ HO). apply H2.

No more subgoals. (dependent evars:)

Proving With Coq

assumption.
assert (x * $\mathrm{x}<1$).
apply lt_trans with x.
apply H2.
apply H .
assert ($0<\mathrm{x}$ * $\mathrm{x}<1$).
split.
apply H2.
assumption.
specialize (HO _H4).
apply (le_not_lt _ _ HO).
apply H 2 .
Qed.
no_nat_between_1_and_0 is de \bar{f} ine \bar{d}

Proving With Coq

Proof Automation

- Noticed repeated, tedious code
- Goal - less cluttered code, easier to write
- Write tactics that automate trivial steps
- Three tactics written
- Zwop
- math
- simplify

"Zwop" Tactic

- Applies the well-ordering principle (WOP) to a set in Coq
- WOP is a key part of many number theory proofs

Ltac Zwop A Adef := pose(A := Adef); destruct (bounded_Z_well_ordered A).

"math" Tactic

- Tries to simplify ring inequalities and uses "intuition" tactic

Ltac math := intuition;
repeat match goal with
| [H : ?T, H' : ?T' I- _] \Rightarrow match type of T with

I Prop \Rightarrow match type of T^{\prime} with
I Prop \Rightarrow assert ($\mathrm{T} \wedge \mathrm{T}^{\prime}$) by tauto; clear $\mathrm{H} \mathrm{H}^{\prime}$ end
end;
repeat match goal with
| [H : context[?a < ?b] I_{-}_] \Rightarrow progress ring_simplify a b in H ;
progress apply lt_trans with a in H ; progress apply lt_trans with b in H end;
intuition.

"simplify" Tactic

- Tries many general, useful tactics where applicable
- Only uses them if they advance the proof

```
Ltac simplify_step v :=
    repeat (try match goal with
            | [ I- _ ^ _] => split
            | [ H : _ \_ I- _ ] => destruct H
            | [ I- _ = _] => ring
    intuition;
    simpl in *;
    unfold Z.divide in *).
Ltac simplify' v :=
    simplify_step v;
    try now (subst; simplify_step v).
```

 | [H : exists _, _ \(\left.1-{ }_{-}\right] \Rightarrow\) let \(\mathrm{v}^{\prime}:=\) fresh v in destruct \(H\) as [v']
 I [I- exists _, _] end eauto with arith
 Tactic Notation "simplify" := let v := fresh "v" in simplify' v.
Tactic Notation "simplify" ident(v) := simplify' v.

The Power of "simplify"

From this...

Lemma remainder_not_0 : forall $a b$, remainder $a b=0->a<0->b<0$.
Proof.
intros.
apply NNPP; intro.
assert (b = 0); intuition.
subst.
unfold remainder in H ; intuition.
Qed.

The Power of "simplify"

To this...

Proof.

 simplify. Qed.
Lists From Sets

- Synthesizes list of elements from finite set
- Allows us to compute operations on the set

Lemma finite_set_list : forall T (E : Ensemble T), Finite T E -> exists L : list T, forall t : T, List. In t L <-> Ensembles.In _ E t.

Fixpoint product_of_list (l : list Z) : Z := match l with
| nil => 1
I cons a l' => Zmult a (product_of_list l') end.

Assertion Technique

- Coq uses backwards proving
- Forward proving is more natural
- Used assert tactic to do so
- Three steps
- Write out two column proof
- Convert the left column into assertions in the proof
- Prove each assertion using the ones before it

Basic Frameworks

Theorem theorem_name : [theorem_statement]. Proof.
intros.
assert([step 1]).
[code used to prove step 1]
assert([step 2]).
[code used to prove step 2]

Qed.

Beautiful Swan

Theorem no_nat_between_1_and_0 : ~ exists n : nat, 0 < $n<1$.
Proof.
intro.
pose (U := (fun $n=>0<n<1$)).
destruct (nat_well_ordered U) as [r]; [auto |].
unfold U in H0.
assert (0*r < r*r < 1*r) by (apply mult_double_lt_compat_r; math).
assert (0 < r*r < r) by math.
assert (r*r < 1) by (apply lt_trans with r; math).
assert (r*r Є U) by (unfold U; math).
assert (r*r < r) by math.
assert (r <= r*r) by math.
omega.
Qed.

Conclusion

- Our findings have educational implications
- Coq proofs now resemble mathematical proofs more
- More readable
- Proofs are easier to write - Don't have to do everything out
- Easier for students to use Coq to learn to write proofs and validate their proofs

Future

- Interpreter
- Inputs higher level language, outputs Coq code
- Doing out more Number Theory proofs in Coq for more automation

Acknowledgements

- Our mentor Drew Haven
- Our overseeing professor Dr. Adam Chlipala
- PRIMES
- Our parents

