
Automating Interactive
Theorem Proving with Coq

and Ltac

by Oron Propp and Alex Sekula
Mentored by Drew Haven

PRIMES

Motivation

● Math is usually written by hand, checked by
other mathematicians

● Verifying process takes time out of learning

● Computer potentially gives instant feedback

Overview

● Coq – a language that verifies proofs

● Goal
○ Use Coq to help students learn proving, allowing

them to check their proofs by themselves

● Problem
○ Coq is difficult to learn, and "raw Coq code" looks

nothing like the original proof

"Raw Coq code" Example

A Brief Intro to Coq

● Fun Fact: Coq means rooster in French!
○ Developed in INRIA, France

● A basic Coq proof consists of:
○ Theorem statements
○ Tactics

● Environment
○ Coq code
○ List of hypotheses
○ List of subgoals

Approach

● Wrote number theory proofs in Coq

Two column proof "Raw" Coq proof

Automate Coq Proof

Look for repetitive,
messy, trivial parts

Develop approach to
eliminate these parts

Approach

Proofs written:
● Well ordering principle for natural numbers
● No natural number between 0 and 1
● Infinitude of primes

○ Fundamental theorem of arithmetic
● Division algorithm
● Extended Euclidean algorithm
● Euclidean algorithm

Two Column "Math" Proof
Theorem: there does not exist a natural number n such that 0 < n < 1

1 Let S be the set of all natural numbers between 0 and 1 Definition

2 Assume that S is non-empty For sake of contradiction

3 Let r be the least element of S Well ordering principle and 2

4 0 < r < 1 r is in S

5 0 * r < r * r < 1 * r 4 and math

6 0 < r2 < r 5 and math

7 r2 < 1 4 and 6

8 r2 is in S 6, 7 and 1

9 r2 < r 6

10 Contradiction 3 and 9

11 Since S has no least element, it is empty, and our theorem is true Definition

12 QED

Ugly Duckling

Theorem no_nat_between_1_and_0 :
~ exists n : nat, 0 < n < 1.

 ============================
 ~ (exists n : nat, 0 < n < 1)

Proving With Coq

Proving With Coq
Theorem no_nat_between_1_and_0 :
~ exists n : nat, 0 < n < 1.

Proof.
 intro H.

 H : exists n : nat, 0 < n < 1
 ============================
 False

Proving With Coq
Theorem no_nat_between_1_and_0 :
~ exists n : nat, 0 < n < 1.

Proof.
 intro H.
 destruct (nat_well_ordered _
H).

 H : exists n : nat, 0 < n < 1
 x : nat
 H0 : 0 < x < 1 /\ (forall a :
nat, 0 < a < 1 -> x <= a)
 ============================
 False

Proving With Coq
Theorem no_nat_between_1_and_0 :
~ exists n : nat, 0 < n < 1.

Proof.
 intro H.
 destruct (nat_well_ordered _
H).
 clear H.

 x : nat
 H0 : 0 < x < 1 /\ (forall a :
nat, 0 < a < 1 -> x <= a)
 ============================
 False

Proving With Coq
Theorem no_nat_between_1_and_0 :
~ exists n : nat, 0 < n < 1.

Proof.
 intro H.
 destruct (nat_well_ordered _
H).
 clear H.
 destruct H0.

 x : nat
 H : 0 < x < 1
 H0 : forall a : nat, 0 < a < 1
-> x <= a
 ============================
 False

Proving With Coq
Theorem no_nat_between_1_and_0 :
~ exists n : nat, 0 < n < 1.

Proof.
 intro H.
 destruct (nat_well_ordered _
H).
 clear H.
 destruct H0.
 assert (0 * x < x * x < 1 *
x).

 x : nat
 H : 0 < x < 1
 H0 : forall a : nat, 0 < a < 1
-> x <= a
 ============================
 0 * x < x * x < 1 * x

subgoal 2 (ID 1226) is:
 False

Proving With Coq
Theorem no_nat_between_1_and_0 :
~ exists n : nat, 0 < n < 1.

Proof.
 intro H.
 destruct (nat_well_ordered _
H).
 clear H.
 destruct H0.
 assert (0 * x < x * x < 1 *
x).
 split; apply mult_lt_compat_r;
apply H.

 x : nat
 H : 0 < x < 1
 H0 : forall a : nat, 0 < a < 1
-> x <= a
 H1 : 0 * x < x * x < 1 * x
 ============================
 False

Proving With Coq
Theorem no_nat_between_1_and_0 :
~ exists n : nat, 0 < n < 1.

Proof.
 intro H.
 destruct (nat_well_ordered _
H).
 clear H.
 destruct H0.
 assert (0 * x < x * x < 1 *
x).
 split; apply mult_lt_compat_r;
apply H.
 assert (0 < x * x < x).

 x : nat
 H : 0 < x < 1
 H0 : forall a : nat, 0 < a < 1
-> x <= a
 H1 : 0 * x < x * x < 1 * x
 ============================
 0 < x * x < x

subgoal 2 (ID 1249) is:
 False

Proving With Coq
Theorem no_nat_between_1_and_0 :
~ exists n : nat, 0 < n < 1.

Proof.
 intro H.
 destruct (nat_well_ordered _
H).
 clear H.
 destruct H0.
 assert (0 * x < x * x < 1 *
x).
 split; apply mult_lt_compat_r;
apply H.
 assert (0 < x * x < x).
 replace 0 with (0 * x) by auto
with arith.
 replace (1 * x) with x in H1
by auto with arith.

 x : nat
 H : 0 < x < 1
 H0 : forall a : nat, 0 < a < 1
-> x <= a
 H1 : 0 * x < x * x < x
 ============================
 0 * x < x * x < x

subgoal 2 (ID 1249) is:
 False

Proving With Coq
Theorem no_nat_between_1_and_0 :
~ exists n : nat, 0 < n < 1.

Proof.
 intro H.
 destruct (nat_well_ordered _
H).
 clear H.
 destruct H0.
 assert (0 * x < x * x < 1 *
x).
 split; apply mult_lt_compat_r;
apply H.
 assert (0 < x * x < x).
 replace 0 with (0 * x) by auto
with arith.
 replace (1 * x) with x in H1
by auto with arith.
 assumption.

 x : nat
 H : 0 < x < 1
 H0 : forall a : nat, 0 < a < 1
-> x <= a
 H1 : 0 * x < x * x < 1 * x
 H2 : 0 < x * x < x
 ============================
 False

Proving With Coq
 assumption.
 assert (x * x < 1).

 x : nat
 H : 0 < x < 1
 H0 : forall a : nat, 0 < a < 1
-> x <= a
 H1 : 0 * x < x * x < 1 * x
 H2 : 0 < x * x < x
 ============================
 x * x < 1

subgoal 2 (ID 1264) is:
 False

Proving With Coq
 assumption.
 assert (x * x < 1).
 apply lt_trans with x.

 x : nat
 H : 0 < x < 1
 H0 : forall a : nat, 0 < a < 1
-> x <= a
 H1 : 0 * x < x * x < 1 * x
 H2 : 0 < x * x < x
 ============================
 x * x < x

subgoal 2 (ID 1266) is:
 x < 1
subgoal 3 (ID 1264) is:
 False

Proving With Coq
 assumption.
 assert (x * x < 1).
 apply lt_trans with x.
 apply H2.
 apply H.

 x : nat
 H : 0 < x < 1
 H0 : forall a : nat, 0 < a < 1
-> x <= a
 H1 : 0 * x < x * x < 1 * x
 H2 : 0 < x * x < x
 H3 : x * x < 1
 ============================
 False

Proving With Coq
 assumption.
 assert (x * x < 1).
 apply lt_trans with x.
 apply H2.
 apply H.
 assert (0 < x * x < 1).

 x : nat
 H : 0 < x < 1
 H0 : forall a : nat, 0 < a < 1
-> x <= a
 H1 : 0 * x < x * x < 1 * x
 H2 : 0 < x * x < x
 H3 : x * x < 1
 ============================
 0 < x * x < 1

subgoal 2 (ID 1272) is:
 False

Proving With Coq
 assumption.
 assert (x * x < 1).
 apply lt_trans with x.
 apply H2.
 apply H.
 assert (0 < x * x < 1).
 split.

 x : nat
 H : 0 < x < 1
 H0 : forall a : nat, 0 < a < 1
-> x <= a
 H1 : 0 * x < x * x < 1 * x
 H2 : 0 < x * x < x
 H3 : x * x < 1
 ============================
 0 < x * x

subgoal 2 (ID 1275) is:
 x * x < 1
subgoal 3 (ID 1272) is:
 False

Proving With Coq
 assumption.
 assert (x * x < 1).
 apply lt_trans with x.
 apply H2.
 apply H.
 assert (0 < x * x < 1).
 split.
 apply H2.
 assumption.

 x : nat
 H : 0 < x < 1
 H0 : forall a : nat, 0 < a < 1
-> x <= a
 H1 : 0 * x < x * x < 1 * x
 H2 : 0 < x * x < x
 H3 : x * x < 1
 H4 : 0 < x * x < 1
 ============================
 False

Proving With Coq
 assumption.
 assert (x * x < 1).
 apply lt_trans with x.
 apply H2.
 apply H.
 assert (0 < x * x < 1).
 split.
 apply H2.
 assumption.
 specialize (H0 _ H4).

 x : nat
 H : 0 < x < 1
 H0 : x <= x * x
 H1 : 0 * x < x * x < 1 * x
 H2 : 0 < x * x < x
 H3 : x * x < 1
 H4 : 0 < x * x < 1
 ============================
 False

Proving With Coq
 assumption.
 assert (x * x < 1).
 apply lt_trans with x.
 apply H2.
 apply H.
 assert (0 < x * x < 1).
 split.
 apply H2.
 assumption.
 specialize (H0 _ H4).
 apply (le_not_lt _ _ H0).

 x : nat
 H : 0 < x < 1
 H0 : x <= x * x
 H1 : 0 * x < x * x < 1 * x
 H2 : 0 < x * x < x
 H3 : x * x < 1
 H4 : 0 < x * x < 1
 ============================
 x * x < x

Proving With Coq
 assumption.
 assert (x * x < 1).
 apply lt_trans with x.
 apply H2.
 apply H.
 assert (0 < x * x < 1).
 split.
 apply H2.
 assumption.
 specialize (H0 _ H4).
 apply (le_not_lt _ _ H0).
 apply H2.

No more subgoals.
(dependent evars:)

Proving With Coq
 assumption.
 assert (x * x < 1).
 apply lt_trans with x.
 apply H2.
 apply H.
 assert (0 < x * x < 1).
 split.
 apply H2.
 assumption.
 specialize (H0 _ H4).
 apply (le_not_lt _ _ H0).
 apply H2.
Qed.

no_nat_between_1_and_0 is
defined

Proving With Coq

Proof Automation

● Noticed repeated, tedious code

● Goal - less cluttered code, easier to write
● Write tactics that automate trivial steps

● Three tactics written
○ Zwop
○ math
○ simplify

"Zwop" Tactic

● Applies the well-ordering principle (WOP) to
a set in Coq

● WOP is a key part of many number theory
proofs

"math" Tactic

● Tries to simplify ring inequalities and uses
"intuition" tactic

"simplify" Tactic

● Tries many general, useful tactics where
applicable

● Only uses them if they advance the proof

The Power of "simplify"

From this...

The Power of "simplify"

To this...

Lists From Sets

● Synthesizes list of elements from finite set

● Allows us to compute operations on the set

Assertion Technique

● Coq uses backwards proving
● Forward proving is more natural
● Used assert tactic to do so

● Three steps
○ Write out two column proof
○ Convert the left column into assertions in the proof
○ Prove each assertion using the ones before it

Basic Frameworks

Theorem theorem_name : [theorem_statement].
Proof.

intros.
assert([step 1]).

[code used to prove step 1]
assert([step 2]).

[code used to prove step 2]
...

Qed.

Beautiful Swan

Conclusion

● Our findings have educational implications
○ Coq proofs now resemble mathematical

proofs more
■ More readable

○ Proofs are easier to write
■ Don't have to do everything out

○ Easier for students to use Coq to learn to
write proofs and validate their proofs

Future

● Interpreter
○ Inputs higher level language, outputs Coq code

● Doing out more Number Theory proofs in
Coq for more automation

Acknowledgements

● Our mentor Drew Haven
● Our overseeing professor Dr. Adam Chlipala
● PRIMES
● Our parents

