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Motivation

● Math is usually written by hand, checked by 
other mathematicians

● Verifying process takes time out of learning

● Computer potentially gives instant feedback



Overview

● Coq – a language that verifies proofs

● Goal
○ Use Coq to help students learn proving, allowing 

them to check their proofs by themselves

● Problem
○ Coq is difficult to learn, and "raw Coq code" looks 

nothing like the original proof



"Raw Coq code" Example



A Brief Intro to Coq

● Fun Fact: Coq means rooster in French!
○ Developed in INRIA, France

● A basic Coq proof consists of:
○ Theorem statements
○ Tactics

● Environment
○ Coq code
○ List of hypotheses
○ List of subgoals



Approach

● Wrote number theory proofs in Coq

Two column proof "Raw" Coq proof

Automate Coq Proof

Look for repetitive, 
messy, trivial parts 

Develop approach to 
eliminate these parts



Approach

Proofs written:
● Well ordering principle for natural numbers
● No natural number between 0 and 1
● Infinitude of primes

○ Fundamental theorem of arithmetic
● Division algorithm
● Extended Euclidean algorithm
● Euclidean algorithm



Two Column "Math" Proof
Theorem: there does not exist a natural number n such that 0 < n < 1

1 Let S be the set of all natural numbers between 0 and 1 Definition

2 Assume that S is non-empty For sake of contradiction

3 Let r be the least element of S Well ordering principle and 2

4 0 < r < 1 r is in S

5 0 * r < r * r < 1 * r 4 and math

6 0 < r2 < r 5 and math

7 r2 < 1 4 and 6

8 r2 is in S 6, 7 and 1

9 r2 < r 6

10 Contradiction 3 and 9

11 Since S has no least element, it is empty, and our theorem is true Definition

12 QED



Ugly Duckling



Theorem no_nat_between_1_and_0 : 
~ exists n : nat, 0 < n < 1.

 
  ============================
   ~ (exists n : nat, 0 < n < 1)

Proving With Coq



Proving With Coq
Theorem no_nat_between_1_and_0 : 
~ exists n : nat, 0 < n < 1.

Proof.
  intro H.

  H : exists n : nat, 0 < n < 1
  ============================
   False



Proving With Coq
Theorem no_nat_between_1_and_0 : 
~ exists n : nat, 0 < n < 1.

Proof.
  intro H.
  destruct (nat_well_ordered _ 
H).

  H : exists n : nat, 0 < n < 1
  x : nat
  H0 : 0 < x < 1 /\ (forall a : 
nat, 0 < a < 1 -> x <= a)
  ============================
   False



Proving With Coq
Theorem no_nat_between_1_and_0 : 
~ exists n : nat, 0 < n < 1.

Proof.
  intro H.
  destruct (nat_well_ordered _ 
H).
  clear H. 

  x : nat
  H0 : 0 < x < 1 /\ (forall a : 
nat, 0 < a < 1 -> x <= a)
  ============================
   False



Proving With Coq
Theorem no_nat_between_1_and_0 : 
~ exists n : nat, 0 < n < 1.

Proof.
  intro H.
  destruct (nat_well_ordered _ 
H).
  clear H. 
  destruct H0.

  x : nat
  H : 0 < x < 1
  H0 : forall a : nat, 0 < a < 1 
-> x <= a
  ============================
   False



Proving With Coq
Theorem no_nat_between_1_and_0 : 
~ exists n : nat, 0 < n < 1.

Proof.
  intro H.
  destruct (nat_well_ordered _ 
H).
  clear H. 
  destruct H0.
  assert (0 * x < x * x < 1 * 
x).

  x : nat
  H : 0 < x < 1
  H0 : forall a : nat, 0 < a < 1 
-> x <= a
  ============================
   0 * x < x * x < 1 * x

subgoal 2 (ID 1226) is:
 False



Proving With Coq
Theorem no_nat_between_1_and_0 : 
~ exists n : nat, 0 < n < 1.

Proof.
  intro H.
  destruct (nat_well_ordered _ 
H).
  clear H. 
  destruct H0.
  assert (0 * x < x * x < 1 * 
x).
  split; apply mult_lt_compat_r; 
apply H.

  x : nat
  H : 0 < x < 1
  H0 : forall a : nat, 0 < a < 1 
-> x <= a
  H1 : 0 * x < x * x < 1 * x
  ============================
   False



Proving With Coq
Theorem no_nat_between_1_and_0 : 
~ exists n : nat, 0 < n < 1.

Proof.
  intro H.
  destruct (nat_well_ordered _ 
H).
  clear H. 
  destruct H0.
  assert (0 * x < x * x < 1 * 
x).
  split; apply mult_lt_compat_r; 
apply H.
  assert (0 < x * x < x).

  x : nat
  H : 0 < x < 1
  H0 : forall a : nat, 0 < a < 1 
-> x <= a
  H1 : 0 * x < x * x < 1 * x
  ============================
   0 < x * x < x

subgoal 2 (ID 1249) is:
 False



Proving With Coq
Theorem no_nat_between_1_and_0 : 
~ exists n : nat, 0 < n < 1.

Proof.
  intro H.
  destruct (nat_well_ordered _ 
H).
  clear H. 
  destruct H0.
  assert (0 * x < x * x < 1 * 
x).
  split; apply mult_lt_compat_r; 
apply H.
  assert (0 < x * x < x).
  replace 0 with (0 * x) by auto 
with arith.
  replace (1 * x) with x in H1 
by auto with arith.

  x : nat
  H : 0 < x < 1
  H0 : forall a : nat, 0 < a < 1 
-> x <= a
  H1 : 0 * x < x * x < x
  ============================
   0 * x < x * x < x

subgoal 2 (ID 1249) is:
 False



Proving With Coq
Theorem no_nat_between_1_and_0 : 
~ exists n : nat, 0 < n < 1.

Proof.
  intro H.
  destruct (nat_well_ordered _ 
H).
  clear H. 
  destruct H0.
  assert (0 * x < x * x < 1 * 
x).
  split; apply mult_lt_compat_r; 
apply H.
  assert (0 < x * x < x).
  replace 0 with (0 * x) by auto 
with arith.
  replace (1 * x) with x in H1 
by auto with arith.
  assumption.

  x : nat
  H : 0 < x < 1
  H0 : forall a : nat, 0 < a < 1 
-> x <= a
  H1 : 0 * x < x * x < 1 * x
  H2 : 0 < x * x < x
  ============================
   False



Proving With Coq
  assumption.
  assert (x * x < 1). 

  x : nat
  H : 0 < x < 1
  H0 : forall a : nat, 0 < a < 1 
-> x <= a
  H1 : 0 * x < x * x < 1 * x
  H2 : 0 < x * x < x
  ============================
   x * x < 1

subgoal 2 (ID 1264) is:
 False



Proving With Coq
  assumption.
  assert (x * x < 1). 
  apply lt_trans with x.

  x : nat
  H : 0 < x < 1
  H0 : forall a : nat, 0 < a < 1 
-> x <= a
  H1 : 0 * x < x * x < 1 * x
  H2 : 0 < x * x < x
  ============================
   x * x < x

subgoal 2 (ID 1266) is:
 x < 1
subgoal 3 (ID 1264) is:
 False



Proving With Coq
  assumption.
  assert (x * x < 1). 
  apply lt_trans with x.
  apply H2.
  apply H.

  x : nat
  H : 0 < x < 1
  H0 : forall a : nat, 0 < a < 1 
-> x <= a
  H1 : 0 * x < x * x < 1 * x
  H2 : 0 < x * x < x
  H3 : x * x < 1
  ============================
   False



Proving With Coq
  assumption.
  assert (x * x < 1). 
  apply lt_trans with x.
  apply H2.
  apply H.
  assert (0 < x * x < 1).

  x : nat
  H : 0 < x < 1
  H0 : forall a : nat, 0 < a < 1 
-> x <= a
  H1 : 0 * x < x * x < 1 * x
  H2 : 0 < x * x < x
  H3 : x * x < 1
  ============================
   0 < x * x < 1

subgoal 2 (ID 1272) is:
 False



Proving With Coq
  assumption.
  assert (x * x < 1). 
  apply lt_trans with x.
  apply H2.
  apply H.
  assert (0 < x * x < 1).
  split.

  x : nat
  H : 0 < x < 1
  H0 : forall a : nat, 0 < a < 1 
-> x <= a
  H1 : 0 * x < x * x < 1 * x
  H2 : 0 < x * x < x
  H3 : x * x < 1
  ============================
   0 < x * x

subgoal 2 (ID 1275) is:
 x * x < 1
subgoal 3 (ID 1272) is:
 False



Proving With Coq
  assumption.
  assert (x * x < 1). 
  apply lt_trans with x.
  apply H2.
  apply H.
  assert (0 < x * x < 1).
  split.
  apply H2.
  assumption.

  x : nat
  H : 0 < x < 1
  H0 : forall a : nat, 0 < a < 1 
-> x <= a
  H1 : 0 * x < x * x < 1 * x
  H2 : 0 < x * x < x
  H3 : x * x < 1
  H4 : 0 < x * x < 1
  ============================
   False



Proving With Coq
  assumption.
  assert (x * x < 1). 
  apply lt_trans with x.
  apply H2.
  apply H.
  assert (0 < x * x < 1).
  split.
  apply H2.
  assumption.
  specialize (H0 _ H4).

  x : nat
  H : 0 < x < 1
  H0 : x <= x * x
  H1 : 0 * x < x * x < 1 * x
  H2 : 0 < x * x < x
  H3 : x * x < 1
  H4 : 0 < x * x < 1
  ============================
   False



Proving With Coq
  assumption.
  assert (x * x < 1). 
  apply lt_trans with x.
  apply H2.
  apply H.
  assert (0 < x * x < 1).
  split.
  apply H2.
  assumption.
  specialize (H0 _ H4).
  apply (le_not_lt _ _ H0).

  x : nat
  H : 0 < x < 1
  H0 : x <= x * x
  H1 : 0 * x < x * x < 1 * x
  H2 : 0 < x * x < x
  H3 : x * x < 1
  H4 : 0 < x * x < 1
  ============================
   x * x < x



Proving With Coq
  assumption.
  assert (x * x < 1). 
  apply lt_trans with x.
  apply H2.
  apply H.
  assert (0 < x * x < 1).
  split.
  apply H2.
  assumption.
  specialize (H0 _ H4).
  apply (le_not_lt _ _ H0).
  apply H2.

No more subgoals.
(dependent evars:)



Proving With Coq
  assumption.
  assert (x * x < 1). 
  apply lt_trans with x.
  apply H2.
  apply H.
  assert (0 < x * x < 1).
  split.
  apply H2.
  assumption.
  specialize (H0 _ H4).
  apply (le_not_lt _ _ H0).
  apply H2.
Qed.

no_nat_between_1_and_0 is 
defined



Proving With Coq



Proof Automation

● Noticed repeated, tedious code

● Goal - less cluttered code, easier to write
● Write tactics that automate trivial steps

● Three tactics written
○ Zwop
○ math
○ simplify



"Zwop" Tactic

● Applies the well-ordering principle (WOP) to 
a set in Coq

● WOP is a key part of many number theory 
proofs



"math" Tactic

● Tries to simplify ring inequalities and uses 
"intuition" tactic



"simplify" Tactic

● Tries many general, useful tactics where 
applicable

● Only uses them if they advance the proof
 



The Power of "simplify"

From this...



The Power of "simplify"

To this...



Lists From Sets

● Synthesizes list of elements from finite set

● Allows us to compute operations on the set



Assertion Technique

● Coq uses backwards proving
● Forward proving is more natural
● Used assert tactic to do so

● Three steps
○ Write out two column proof
○ Convert the left column into assertions in the proof
○ Prove each assertion using the ones before it



Basic Frameworks

Theorem theorem_name : [theorem_statement].
Proof.

intros.
assert([step 1]).

[code used to prove step 1]
assert([step 2]).

[code used to prove step 2]
...

Qed.



Beautiful Swan



Conclusion

● Our findings have educational implications
○ Coq proofs now resemble mathematical 

proofs more
■ More readable

○ Proofs are easier to write
■ Don't have to do everything out

○ Easier for students to use Coq to learn to 
write proofs and validate their proofs



Future

● Interpreter
○ Inputs higher level language, outputs Coq code

● Doing out more Number Theory proofs in 
Coq for more automation
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