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Ascent Seqguences

0 An ascent seguence is a sequence x1xy - - - Ty,

satisfies x1 = 0 and, for all s with 1 < 7 < n,

r; < asc(xixo - xi—1) + 1.
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e P,(2+2,V) & Py(2+42,3).
e FPo(2+42Y) < Py(242,4).

Conjecture. Define a function Y (n), n > 3 as follows.

O Y(3)=V.
0 Y(n) is the result of adding a minimal node to
Y(n—1).

Then, Py(2 4+ 2,Y (k) < Po(2+2, k).

o |Pu(242,3+1) = |Pu(24+2,N)|
e |P(2+2Y)|=|P.,(242,4)]

Query. Do there exist other nontrivial Wilf-Equivalences
In (2+2)-Free Posets? What other posets p, ¢ exist such
that | P, (2 + 2,p)| = |Pn(2 + 2, q)| for all n € N?
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