Avoidance in (2+2)-Free Posets

Nihal Gowravaram

Acton Boxborough Regional High School

Mentor: Wuttisak Trongsiriwat
PRIMES Annual Conference
Massachusetts Institute of Technology
May 18-19, 2013

What is a Poset?

Introduction
$\&$ Poset
Hasse Diagrams
Avoidance
Motivation
Results
Conclusion

Partially Ordered Set (P, \prec)

What is a Poset?

Introduction

\& Poset

* Hasse Diagrams
* Avoidance

Motivation
Results
Conclusion

Partially Ordered Set (P, \prec)

- Reflexivity

$$
i \prec i \text { for all } i \in P
$$

- Antisymmetry

If $i \prec j$ and $j \prec i$, then $i=j$ for $i, j \in P$

- Transitivity

If $i \prec j$ and $j \prec k$, then $i \prec k$ for $i, j, k \in P$

What is a Poset?

Introduction

\& Poset

* Hasse Diagrams
* Avoidance

Motivation
Results
Conclusion

Partially Ordered Set (P, \prec)

- Reflexivity

$$
i \prec i \text { for all } i \in P
$$

- Antisymmetry

$$
\text { If } i \prec j \text { and } j \prec i \text {, then } i=j \text { for } i, j \in P
$$

- Transitivity

If $i \prec j$ and $j \prec k$, then $i \prec k$ for $i, j, k \in P$

Call $i, j \in P$ comparable if $i \prec j$ or $j \prec i$

Hasse Diagrams

Hasse Diagrams

Introduction
 * Poset
 * Hasse Diagrams

* Avoidance

Motivation
Results
Conclusion
$(\mathcal{P}(\{x, y, z\}), \subseteq)$

- $\}$ and $\{x, z\}$ are comparable
- $\{y\}$ and $\{x, z\}$ are incomparable

Hasse Diagrams

Introduction
 * Poset
 * Hasse Diagrams

* Avoidance

Motivation
Results
Conclusion
$(\mathcal{P}(\{x, y, z\}), \subseteq)$

- $\}$ and $\{x, z\}$ are comparable
- $\{y\}$ and $\{x, z\}$ are incomparable
- $\},\{x\},\{x, z\}$, and $\{x, y, z\}$ form a chain of length 4.

Avoidance in Posets

Introduction
Poset
Hasse Diagrams
Motivation
Results
Conclusion

- A poset P is said to contain a poset S if there exists some subposet W of P that is isomorphic to S.
- $\quad P$ is said to avoid S if P does not contain S.

Avoidance in Posets

Introduction
Poset
Hasse Diagrams
Mvoidance
Motivation
Results
Conclusion

- A poset P is said to contain a poset S if there exists some subposet W of P that is isomorphic to S.
- $\quad P$ is said to avoid S if P does not contain S.

Avoidance in Posets

```
Introduction
* Poset
* Hasse Diagrams
*Avoidance
Motivation
```

Results

Conclusion

- A poset P is said to contain a poset S if there exists some subposet W of P that is isomorphic to S.
- $\quad P$ is said to avoid S if P does not contain S.

Contains (3+1)

Avoids (2+2)

Why (2+2)-Free Posets?

Introduction
Motivation

* (2+2)-Free Posets
* Previous Results

Results
Conclusion

- Interval Orders
- A poset is an interval order if it is isomorphic to some set of intervals on the real line ordered by left-to-right precedence.
- Interval orders are important in mathematics, computer science, and engineering (Ex. task distributions in complex manufacturing processes).
- (Fishburn 1970) (2+2)-Free Posets are precisely interval orders.

Why (2+2)-Free Posets?

- Interval Orders
- A poset is an interval order if it is isomorphic to some set of intervals on the real line ordered by left-to-right precedence.
- Interval orders are important in mathematics, computer science, and engineering (Ex. task distributions in complex manufacturing processes).
- (Fishburn 1970) (2+2)-Free Posets are precisely interval orders.
- Ascent Sequences
- An ascent sequence is a sequence $x_{1} x_{2} \cdots x_{n}$ satisfies $x_{1}=0$ and, for all i with $1<i \leq n$, $x_{i} \leq \operatorname{asc}\left(x_{1} x_{2} \cdots x_{i-1}\right)+1$.
- (Bousquet-Mélou et al 2009) The ascent sequences are in bijection with the (2+2)-free posets.

Previous Results with (2+2)-Free posets

Results
Conclusion

- Let $P_{n}(x)$ refer to the set of posets of size n that avoid the poset x.
- Define a function $a(x)$ to return the ascent sequence associated with a poset x.
- Let $A_{n}(y)$ refer to the set of posets of size n whose ascent sequences avoid the ascent sequence y.

Previous Results with (2+2)-Free posets

Results
Conclusion

- Let $P_{n}(x)$ refer to the set of posets of size n that avoid the poset x.
- Define a function $a(x)$ to return the ascent sequence associated with a poset x.
- Let $A_{n}(y)$ refer to the set of posets of size n whose ascent sequences avoid the ascent sequence y.
- (Stanley 1997) $\left|P_{n}(2+2,3+1)\right|=C_{n}$. (Enum. Comb. 1) $\left|P_{n}(2+2, N)\right|=C_{n}$.

Previous Results with (2+2)-Free posets

Motivation

* (2+2)-Free Posets *Previous Results

Results
Conclusion

- Let $P_{n}(x)$ refer to the set of posets of size n that avoid the poset x.
- Define a function $a(x)$ to return the ascent sequence associated with a poset x.
- Let $A_{n}(y)$ refer to the set of posets of size n whose ascent sequences avoid the ascent sequence y.
- (Stanley 1997) $\left|P_{n}(2+2,3+1)\right|=C_{n}$. (Enum. Comb. 1) $\left|P_{n}(2+2, N)\right|=C_{n}$.
- (Trongsiriwat)
$P_{n}\left(2+2, N, p_{1}, \cdots, p_{k}\right)=A_{n}\left(0101, a\left(p_{1}\right), \cdots, a\left(p_{k}\right)\right)$.

Previous Results with (2+2)-Free posets

Motivation

* (2+2)-Free Posets *Previous Results

Results
Conclusion

- Let $P_{n}(x)$ refer to the set of posets of size n that avoid the poset x.
- Define a function $a(x)$ to return the ascent sequence associated with a poset x.
- Let $A_{n}(y)$ refer to the set of posets of size n whose ascent sequences avoid the ascent sequence y.
- (Stanley 1997) $\left|P_{n}(2+2,3+1)\right|=C_{n}$. (Enum. Comb. 1) $\left|P_{n}(2+2, N)\right|=C_{n}$.
- (Trongsiriwat) $P_{n}\left(2+2, N, p_{1}, \cdots, p_{k}\right)=A_{n}\left(0101, a\left(p_{1}\right), \cdots, a\left(p_{k}\right)\right)$.
- Question 1: Can we explicitly compute $\left|P_{n}(2+2, p)\right|$ for other posets p ?

Previous Results with (2+2)-Free posets

Motivation

* (2+2)-Free Posets * Previous Results

Results
Conclusion

- Let $P_{n}(x)$ refer to the set of posets of size n that avoid the poset x.
- Define a function $a(x)$ to return the ascent sequence associated with a poset x.
- Let $A_{n}(y)$ refer to the set of posets of size n whose ascent sequences avoid the ascent sequence y.
- (Stanley 1997) $\left|P_{n}(2+2,3+1)\right|=C_{n}$. (Enum. Comb. 1) $\left|P_{n}(2+2, N)\right|=C_{n}$.
- (Trongsiriwat)
$P_{n}\left(2+2, N, p_{1}, \cdots, p_{k}\right)=A_{n}\left(0101, a\left(p_{1}\right), \cdots, a\left(p_{k}\right)\right)$.
- Question 1: Can we explicitly compute $\left|P_{n}(2+2, p)\right|$ for other posets p ?
- Question 2: For what posets p is it true that $P_{n}(2+2, p)=A_{n}(a(p))$?

(2+2)-Free Posets and Ascent Sequences

Motivation
Results
Posets and Ascent
Sequences
$(2+2, \vee)$-Free and
$(2+2, \wedge)$-Free
$(2+2,3)$-Free
Bijection
$(2+2,4)$-Free and
$(2+2, Y)$-Free
Conclusion

(2+2)-Free Poset p	Ascent Sequence $a(p)$	$\left\|P_{n}(2+2, p)\right\|$
0	012	2^{n-1}
	010	2^{n-1}
\curlywedge	001	2^{n-1}
	011	2^{n-1}

$(2+2, \vee)$-Free and $(2+2, \wedge)$-Free Posets

```
Introduction
- }|\mp@subsup{P}{n}{}(2+2,\vee)|=|\mp@subsup{P}{n}{}(2+2,\wedge)|(Inverting Procedure
Motivation
Results
* Posets and Ascent
Sequences
* (2+2, V)-Free and
(2+2, ^)-Free
* (2+2, 3)-Free
* Bijection
* (2+2, 4)-Free and
(2+2, Y)-Free
```

Conclusion

$(2+2, \vee)$-Free and $(2+2, \wedge)$-Free Posets

```
Introduction
```

Introduction
Motivation
Motivation
Results
Results

* Posets and Ascent
* Posets and Ascent
Sequences
Sequences
* (2+2, V)-Free and
* (2+2, V)-Free and
(2+2,^)-Free
(2+2,^)-Free
* (2+2, 3)-Free
* (2+2, 3)-Free
* Bijection
* Bijection
* (2+2, 4)-Free and
* (2+2, 4)-Free and
(2+2, Y)-Free

```
(2+2, Y)-Free
```

Conclusion

- $\left|P_{n}(2+2, \vee)\right|=\left|P_{n}(2+2, \wedge)\right|$ (Inverting Procedure)
- $\quad P_{n}(2+2, \mathrm{~V})$

$(2+2, \vee)$-Free and $(2+2, \wedge)$-Free Posets

```
Introduction
Motivation
Results
* Posets and Ascent
Sequences
* (2+2, V)-Free and
(2+2, ^)-Free
* (2+2, 3)-Free
* Bijection
* (2+2, 4)-Free and
(2+2, Y)-Free
```

Conclusion

- $\left|P_{n}(2+2, \vee)\right|=\left|P_{n}(2+2, \wedge)\right|$ (Inverting Procedure)
- $\quad P_{n}(2+2, \mathrm{~V})$
- Add a free node.
- Add a maximal node.

$(2+2, \vee)$-Free and $(2+2, \wedge)$-Free Posets

```
Introduction
Motivation
Results
* Posets and Ascent
Sequences
* (2+2, V)-Free and
(2+2, ^)-Free
* (2+2, 3)-Free
* Bijection
* (2+2, 4)-Free and
(2+2, Y)-Free
```

Conclusion

- $\left|P_{n}(2+2, \vee)\right|=\left|P_{n}(2+2, \wedge)\right|$ (Inverting Procedure)
- $P_{n}(2+2, \vee)$
- Add a free node.
- Add a maximal node.

x_{1}

- $\left|P_{n}(2+2, \vee)\right|=\left|P_{n}(2+2, \wedge)\right|=2^{n-1}$

(2+2, 3)-Free Posets

Introduction
Motivation
Results
* Posets and Ascent Sequences
* (2+2, \vee)-Free and
$(2+2, \wedge)$-Free
* (2+2, 3)-Free
* Bijection
* (2+2, 4)-Free and (2+2, Y)-Free
Conclusion

- $\quad P_{n}(2+2,3)$ are posets with level at most 2 .

(2+2, 3)-Free Posets

```
Introduction
Motivation
Results
    * Posets and Ascent
Sequences
* (2+2, V)-Free and
(2+2, ^)-Free
* (2+2, 3)-Free
* Bijection
* (2+2, 4)-Free and
(2+2, Y)-Free
```

Conclusion

- $\quad P_{n}(2+2,3)$ are posets with level at most 2 .
- Level 2: a nodes: $x_{1}, x_{2}, \cdots, x_{a}$.
- Level 1: b nodes: $y_{1}, y_{2}, \cdots, y_{b}$.
- Define $S_{i}=\left\{y_{j} \mid y_{j} \prec x_{i}\right\}$.
- Assign $x_{1}, x_{2}, \cdots, x_{a}$ to the a nodes such that $\left|S_{1}\right| \geq\left|S_{2}\right| \geq \cdots \geq\left|S_{a}\right|$.

(2+2, 3)-Free Posets

Introduction

Motivation
Results

* Posets and Ascent Sequences
* $(2+2, \vee)$-Free and
$(2+2, \wedge)$-Free

* (2+2, 3)-Free

* Bijection
* (2+2, 4)-Free and (2+2, Y)-Free

Conclusion

- $\quad P_{n}(2+2,3)$ are posets with level at most 2 .
- Level 2: a nodes: $x_{1}, x_{2}, \cdots, x_{a}$.
- Level 1: b nodes: $y_{1}, y_{2}, \cdots, y_{b}$.
- Define $S_{i}=\left\{y_{j} \mid y_{j} \prec x_{i}\right\}$.
- Assign $x_{1}, x_{2}, \cdots, x_{a}$ to the a nodes such that $\left|S_{1}\right| \geq\left|S_{2}\right| \geq \cdots \geq\left|S_{a}\right|$.
- $\quad S_{1} \supseteq S_{2} \supseteq \cdots \supseteq S_{a}$.

- $\left\{\left|S_{1}\right|,\left|S_{2}\right|, \cdots,\left|S_{a}\right|\right\} \rightarrow\left(\binom{b}{a}\right)=\binom{a+b-1}{a}$.

(2+2, 3)-Free Posets

* Posets and Ascent Sequences
* (2+2, V)-Free and
$(2+2, \wedge)$-Free

* (2+2, 3)-Free

* Bijection
* (2+2, 4)-Free and (2+2, Y)-Free

Conclusion

- $\quad P_{n}(2+2,3)$ are posets with level at most 2 .
- Level 2: a nodes: $x_{1}, x_{2}, \cdots, x_{a}$.
- Level 1: b nodes: $y_{1}, y_{2}, \cdots, y_{b}$.
- Define $S_{i}=\left\{y_{j} \mid y_{j} \prec x_{i}\right\}$.
- Assign $x_{1}, x_{2}, \cdots, x_{a}$ to the a nodes such that $\left|S_{1}\right| \geq\left|S_{2}\right| \geq \cdots \geq\left|S_{a}\right|$.
- $S_{1} \supseteq S_{2} \supseteq \cdots \supseteq S_{a}$.

- $\left\{\left|S_{1}\right|,\left|S_{2}\right|, \cdots,\left|S_{a}\right|\right\} \rightarrow\left(\binom{b}{a}\right)=\binom{a+b-1}{a}$.
- $\left|P_{n}(2+2,3)\right|=\sum_{a+b=n}\binom{a+b-1}{a}=\sum_{a=0}^{n-1}\binom{n-1}{a}=2^{n-1}$

Bijection between $(2+2,3)$ and $(2+2, \wedge)$-Free Posets

```
Introduction
Motivation
Results
* Posets and Ascent
Sequences
* (2+2, \vee)-Free and
(2+2, ^)-Free
* (2+2, 3)-Free
* Bijection
* (2+2, 4)-Free and
(2+2, Y)-Free
- Poset \(P \rightarrow(A, B)\).
- \(A=\{\) Maximal Nodes in \(P\}\).
- \(B=P \backslash A\).
```

Conclusion

Bijection between $(2+2,3)$ and $(2+2, \wedge)$-Free Posets

 Sequences* (2+2, \vee)-Free and
$(2+2, \wedge)$-Free
* (2+2, 3)-Free

```
* Bjection
```

* Bjection
* (2+2, 4)-Free and (2+2, Y)-Free

```

Conclusion
- Poset \(P \rightarrow(A, B)\).
- \(A=\{\) Maximal Nodes in \(P\}\).
- \(B=P \backslash A\).
- In \((2+2, \wedge)\)-Free, \(B\) forms a chain.

\section*{Bijection between \((2+2,3)\) and \((2+2, \wedge)\)-Free Posets}

\author{
Introduction \\ Motivation \\ Results \\ * Posets and Ascent \\ Sequences \\ * (2+2, \(\vee\) )-Free and \\ \((2+2, \wedge)\)-Free \\ (2+2, 3)-Free \\ ```
* Bjection \\ * (2+2, 4)-Free and \\ (2+2, Y)-Free
``` \\ Conclusion
}
- Poset \(P \rightarrow(A, B)\).
- \(A=\{\) Maximal Nodes in \(P\}\).
- \(B=P \backslash A\).
- In \((2+2, \wedge)\)-Free, \(B\) forms a chain.
- In (2+2, 3)-Free, \(B\) forms the lower level.

\section*{Bijection between \((2+2,3)\) and \((2+2, \wedge)\)-Free Posets}

\author{
Introduction \\ Motivation \\ Results \\ Sequences \\ * (2+2, \(\vee)\)-Free and \\ \((2+2, \wedge)\)-Free \\ - (2+2, 3)-Free \\ ```
* Bijection \\ (2+2, 4)-Free and \\ (2+2, Y)-Free
``` \\ Conclusion
}
- Poset \(P \rightarrow(A, B)\).
- \(A=\{\) Maximal Nodes in \(P\}\).
- \(B=P \backslash A\).
- In \((2+2, \wedge)\)-Free, \(B\) forms a chain.
- In (2+2, 3)-Free, \(B\) forms the lower level.

- Maintains all order relations between \(A\) and \(B\).

\section*{\((2+2,4)\) and \((2+2, Y)\)-Free Posets}
```

Introduction
Motivation
Results
* Posets and Ascent
Sequences

* (2+2, \vee)-Free and
(2+2, ^)-Free
* (2+2, 3)-Free
* Bijection
* (2+2, 4)-Free and
(2+2, Y)-Free

```

Conclusion
- \(\quad P_{n}(2+2, Y) \leftrightarrow P_{n}(2+2,4)\).

Theorem. \(\left|P_{n}(2+2, Y)\right|=\left|P_{n}(2+2,4)\right|=1+\) \(\sum_{r+m<n}\binom{n+m r+1}{n-m-r}-\binom{n+m(r-1)+1}{n-m-r}-\binom{n+r(m-1)}{n-m-r}+\binom{n+(r-1)(m-1)}{n-m-r}\), where \(r \geq 0\) and \(m>0\).

\section*{Future Directions of Research}
\begin{tabular}{lll} 
Introduction & \(\quad P_{n}(2+2, \vee) \leftrightarrow P_{n}(2+2,3)\). \\
Motivation & \(\bullet\) & \(P_{n}(2+2, Y) \leftrightarrow P_{n}(2+2,4)\).
\end{tabular}

Results
Conclusion
\(\otimes\) Future Directions
* Acknowledgements

\section*{Future Directions of Research}
\begin{tabular}{l} 
Introduction \\
\hline Motivation \\
\hline Results \\
\hline Conclusion \\
\(\&\) Future Directions \\
\(\&\) Acknowledgements
\end{tabular}
- \(\quad P_{n}(2+2, \vee) \leftrightarrow P_{n}(2+2,3)\).
- \(P_{n}(2+2, Y) \leftrightarrow P_{n}(2+2,4)\).

Conjecture. Define a function \(Y(n), n \geq 3\) as follows.
- \(Y(3)=\vee\).
- \(Y(n)\) is the result of adding a minimal node to \(Y(n-1)\).
Then, \(P_{n}(2+2, Y(k)) \leftrightarrow P_{n}(2+2, k)\).

\section*{Future Directions of Research}

Motivation

\section*{Results}

Conclusion

* Acknowledgements
- \(\quad P_{n}(2+2, \vee) \leftrightarrow P_{n}(2+2,3)\).
- \(P_{n}(2+2, Y) \leftrightarrow P_{n}(2+2,4)\).

Conjecture. Define a function \(Y(n), n \geq 3\) as follows.
- \(Y(3)=\vee\).
- \(Y(n)\) is the result of adding a minimal node to \(Y(n-1)\).
Then, \(P_{n}(2+2, Y(k)) \leftrightarrow P_{n}(2+2, k)\).
- \(\left|P_{n}(2+2,3+1)\right|=\left|P_{n}(2+2, N)\right|\).
- \(\left|P_{n}(2+2, Y)\right|=\left|P_{n}(2+2,4)\right|\)

\section*{Future Directions of Research}

\section*{Results}

Conclusion
* Acknowledgements
- \(\quad P_{n}(2+2, \vee) \leftrightarrow P_{n}(2+2,3)\).
- \(P_{n}(2+2, Y) \leftrightarrow P_{n}(2+2,4)\).

Conjecture. Define a function \(Y(n), n \geq 3\) as follows.
- \(Y(3)=\vee\).
- \(Y(n)\) is the result of adding a minimal node to \(Y(n-1)\).
Then, \(P_{n}(2+2, Y(k)) \leftrightarrow P_{n}(2+2, k)\).
- \(\left|P_{n}(2+2,3+1)\right|=\left|P_{n}(2+2, N)\right|\).
- \(\left|P_{n}(2+2, Y)\right|=\left|P_{n}(2+2,4)\right|\)

Query. Do there exist other nontrivial Wilf-Equivalences in (2+2)-Free Posets? What other posets \(p, q\) exist such that \(\left|P_{n}(2+2, p)\right|=\left|P_{n}(2+2, q)\right|\) for all \(n \in \mathbb{N}\) ?

\section*{Acknowledgements}

Introduction
Motivation
Results
Conclusion
* Future Directions
\& Acknowledgements

Thanks to
- My mentor Wuttisak Trongsiriwat for his valuable insight and guidance.
- The PRIMES program for making this experience possible.
- My parents for their support.

Thanks to all of you for listening.```

