Avoidance in (2+2)-Free Posets

Nihal Gowravaram

Acton Boxborough Regional High School

Mentor: Wuttisak Trongsiriwat

PRIMES Annual Conference Massachusetts Institute of Technology May 18-19, 2013

What is a Poset?

lr	nti	O	d	u	ct	io	n

Poset

♦ Hasse Diagrams

Avoidance

Motivation

Results

Conclusion

Partially Ordered Set (P, \prec)

What is a Poset?

Introduction	
✤ Poset	
Hasse Diagrams	
Avoidance	
Motivation	
Results	
Conclusion	

Partially Ordered Set (P, \prec) • Reflexivity $i \prec i$ for all $i \in P$ • Antisymmetry If $i \prec j$ and $j \prec i$, then i = j for $i, j \in P$ • Transitivity If $i \prec j$ and $j \prec k$, then $i \prec k$ for $i, j, k \in P$

What is a Poset?

Introduction	
♦ Poset	
Hasse Diagrams	
Avoidance	
Motivation	
Results	

Conclusion

Partially Ordered Set (P, \prec) • Reflexivity $i \prec i$ for all $i \in P$ • Antisymmetry If $i \prec j$ and $j \prec i$, then i = j for $i, j \in P$ • Transitivity If $i \prec j$ and $j \prec k$, then $i \prec k$ for $i, j, k \in P$

Call $i, j \in P$ comparable if $i \prec j$ or $j \prec i$

Hasse Diagrams

 $\left(\mathcal{P}\left(\left\{x, y, z\right\}\right), \subseteq\right)$

Introduction

Poset

Hasse Diagrams

Avoidance

Motivation

Results

Conclusion

Hasse Diagrams

Introduction

Poset

♦ Hasse Diagrams

Avoidance

Motivation

Results

Conclusion

• $\{\}$ and $\{x, z\}$ are comparable

• $\{y\}$ and $\{x, z\}$ are *incomparable*

Hasse Diagrams

Introduction

Poset

♦ Hasse Diagrams

Avoidance

Motivation

Results

Conclusion

• $\{\}$ and $\{x, z\}$ are comparable

- $\{y\}$ and $\{x, z\}$ are *incomparable*
- {}, {x}, {x, z}, and {x, y, z} form a *chain* of length 4.

Avoidance in Posets

Introduction
✤ Poset
Hasse Diagrams
Avoidance
Motivation
Results
Conclusion

- A poset P is said to *contain* a poset S if there exists some subposet W of P that is isomorphic to S.
- P is said to *avoid* S if P does not contain S.

Avoidance in Posets

|--|

- Poset
- Hasse Diagrams
- Avoidance
- Motivation
- Results
- Conclusion

- A poset P is said to *contain* a poset S if there exists some subposet W of P that is isomorphic to S.
- P is said to *avoid* S if P does not contain S.

Avoidance in Posets

Why (2+2)-Free Posets?

Introduction

Motivation

- ♦ (2+2)-Free Posets
- Previous Results

Results

Conclusion

Interval Orders

- A poset is an interval order if it is isomorphic to some set of intervals on the real line ordered by left-to-right precedence.
- Interval orders are important in mathematics, computer science, and engineering (Ex. task distributions in complex manufacturing processes).
- (Fishburn 1970) (2+2)-Free Posets are precisely interval orders.

Why (2+2)-Free Posets?

Introduction

Motivation

- ♦ (2+2)-Free Posets
- Previous Results

Results

Conclusion

Interval Orders

- A poset is an interval order if it is isomorphic to some set of intervals on the real line ordered by left-to-right precedence.
- Interval orders are important in mathematics, computer science, and engineering (Ex. task distributions in complex manufacturing processes).
- (Fishburn 1970) (2+2)-Free Posets are precisely interval orders.
- Ascent Sequences
 - An ascent sequence is a sequence $x_1x_2 \cdots x_n$ satisfies $x_1 = 0$ and, for all i with $1 < i \le n$, $x_i \le asc(x_1x_2 \cdots x_{i-1}) + 1$.
 - (Bousquet-Mélou et al 2009) The ascent sequences are in bijection with the (2+2)-free posets.

- Motivation
- ♦ (2+2)-Free Posets
- Previous Results
- Results
- Conclusion

- Let $P_n(x)$ refer to the set of posets of size *n* that avoid the poset *x*.
- Define a function a(x) to return the ascent sequence associated with a poset x.
 - Let $A_n(y)$ refer to the set of posets of size n whose ascent sequences avoid the ascent sequence y.

- Motivation
- ♦ (2+2)-Free Posets
- Previous Results
- Results
- Conclusion

- Let $P_n(x)$ refer to the set of posets of size n that avoid the poset x.
- Define a function a(x) to return the ascent sequence associated with a poset x.
 - Let $A_n(y)$ refer to the set of posets of size n whose ascent sequences avoid the ascent sequence y.
- (Stanley 1997) $|P_n(2+2,3+1)| = C_n$. (*Enum. Comb.* 1) $|P_n(2+2,N)| = C_n$.

- Motivation
- ♦ (2+2)-Free Posets
- Previous Results
- Results
- Conclusion

- Let $P_n(x)$ refer to the set of posets of size *n* that avoid the poset *x*.
- Define a function a(x) to return the ascent sequence associated with a poset x.
 - Let $A_n(y)$ refer to the set of posets of size n whose ascent sequences avoid the ascent sequence y.
- (Stanley 1997) $|P_n(2+2,3+1)| = C_n$. (*Enum. Comb.* 1) $|P_n(2+2,N)| = C_n$.
- (Trongsiriwat)
 - $P_n(2+2, N, p_1, \cdots, p_k) = A_n(0101, a(p_1), \cdots, a(p_k)).$

- Motivation
- ♦ (2+2)-Free Posets
- Previous Results
- Results
- Conclusion

- Let $P_n(x)$ refer to the set of posets of size n that avoid the poset x.
- Define a function a(x) to return the ascent sequence associated with a poset x.
 - Let $A_n(y)$ refer to the set of posets of size n whose ascent sequences avoid the ascent sequence y.
- (Stanley 1997) $|P_n(2+2,3+1)| = C_n$. (*Enum. Comb.* 1) $|P_n(2+2,N)| = C_n$.
- (Trongsiriwat) $P_n(2+2, N, p_1, \dots, p_k) = A_n(0101, a(p_1), \dots, a(p_k)).$
- Question 1: Can we explicitly compute $|P_n(2+2,p)|$ for other posets p?

- Motivation
- ♦ (2+2)-Free Posets
- Previous Results
- Results
- Conclusion

- Let $P_n(x)$ refer to the set of posets of size *n* that avoid the poset *x*.
- Define a function a(x) to return the ascent sequence associated with a poset x.
 - Let $A_n(y)$ refer to the set of posets of size n whose ascent sequences avoid the ascent sequence y.
- (Stanley 1997) $|P_n(2+2,3+1)| = C_n$. (*Enum. Comb.* 1) $|P_n(2+2,N)| = C_n$.
- (Trongsiriwat) $P_n(2+2, N, p_1, \dots, p_k) = A_n(0101, a(p_1), \dots, a(p_k)).$
- Question 1: Can we explicitly compute $|P_n(2+2,p)|$ for other posets p?
- Question 2: For what posets p is it true that $P_n(2+2,p) = A_n(a(p))$?

(2+2)-Free Posets and Ascent Sequences

• $ P_n(2+2,\vee) = $

 $|P_n(2+2,\vee)| = |P_n(2+2,\wedge)|$ (Inverting Procedure)

Introduction

Motivation

Results

Posets and Ascent
 Sequences

♦ (2+2, ∨)-Free and (2+2, ∧)-Free

♦ (2+2, 3)-Free

✤ Bijection

♦ (2+2, 4)-Free and (2+2, Y)-Free

Conclusion

• $|P_n(2+2,\vee)| = |P_n(2+2,\wedge)|$ (Inverting Procedure) • $P_n(2+2,\vee)$

Introduction

Motivation

Results

Posets and AscentSequences

♦ (2+2, ∨)-Free and (2+2, ∧)-Free

� (2+2, 3)-Free

✤ Bijection

♦ (2+2, 4)-Free and (2+2, Y)-Free

Conclusion

|P_n(2+2, ∨)| = |P_n(2+2, ∧)| (Inverting Procedure)
 P_n(2+2, ∨)

Add a free node.

Add a maximal node.

Introduction

Motivation

Results

Posets and Ascent
 Sequences

♦ (2+2, ∨)-Free and (2+2, ∧)-Free

� (2+2, 3)-Free

Bijection

♦ (2+2, 4)-Free and (2+2, Y)-Free

Conclusion

 $|P_n(2+2,\vee)| = |P_n(2+2,\wedge)|$ (Inverting Procedure) $P_n(2+2,\vee)$

Add a free node.

Add a maximal node.

• $|P_n(2+2,\vee)| = |P_n(2+2,\wedge)| = 2^{n-1}$

Introduction
Motivation
Results Posets and Ascent
sequences $(2+2, \vee)$ -Free and $(2+2, \wedge)$ -Free
� (2+2, 3)-Free
* Bijection
♦ (2+2, 4)-Free and (2+2, Y)-Free
Conclusion

• $P_n(2+2,3)$ are posets with level at most 2.

Introduction

Motivation

Results

Posets and Ascent
 Sequences

♦ (2+2, ∨)-Free and (2+2, ∧)-Free

� (2+2, 3)-Free

✤ Bijection

♦ (2+2, 4)-Free and (2+2, Y)-Free

Conclusion

 $P_n(2+2,3)$ are posets with level at most 2.

• Level 2:
$$a$$
 nodes: x_1, x_2, \cdots, x_a .

• Level 1: *b* nodes: y_1, y_2, \dots, y_b .

Define
$$S_i = \{y_j | y_j \prec x_i\}.$$

Assign x_1, x_2, \dots, x_a to the *a* nodes such that $|S_1| \ge |S_2| \ge \dots \ge |S_a|$.

Introduction

Motivation

Results

Posets and Ascent Sequences

♦ (2+2, ∨)-Free and (2+2, ∧)-Free

� (2+2, 3)-Free

Bijection

♦ (2+2, 4)-Free and (2+2, Y)-Free

Conclusion

 $P_n(2+2,3)$ are posets with level at most 2.

• Level 2:
$$a$$
 nodes: x_1, x_2, \cdots, x_a .

• Level 1: b nodes: y_1, y_2, \cdots, y_b .

Define
$$S_i = \{y_j | y_j \prec x_i\}.$$

Assign x₁, x₂, ..., x_a to the a nodes such that |S₁| ≥ |S₂| ≥ ... ≥ |S_a|.
S₁ ⊃ S₂ ⊃ ... ⊃ S_a.

•
$$\{|S_1|, |S_2|, \cdots, |S_a|\} \rightarrow \left(\binom{b}{a}\right) = \binom{a+b-1}{a}$$

Introduction

Motivation

Results

Posets and Ascent Sequences

♦ (2+2, ∨)-Free and (2+2, ∧)-Free

� (2+2, 3)-Free

Bijection

♦ (2+2, 4)-Free and (2+2, Y)-Free

Conclusion

 $P_n(2+2,3)$ are posets with level at most 2.

• Level 2:
$$a$$
 nodes: x_1, x_2, \cdots, x_a .

• Level 1: *b* nodes: y_1, y_2, \dots, y_b .

Define
$$S_i = \{y_j | y_j \prec x_i\}.$$

Assign x₁, x₂, ..., x_a to the *a* nodes such that |S₁| ≥ |S₂| ≥ ... ≥ |S_a|.
S₁ ⊃ S₂ ⊃ ... ⊃ S_a.

•
$$\{|S_1|, |S_2|, \cdots, |S_a|\} \to \left(\binom{b}{a}\right) = \binom{a+b-1}{a}.$$

• $|P_n(2+2,3)| = \sum_{a+b=n} \binom{a+b-1}{a} = \sum_{a=0}^{n-1} \binom{n-1}{a} = 2^{n-1}$

Introduction

Motivation

Results

Posets and Ascent
 Sequences

♦ (2+2, ∨)-Free and (2+2, ∧)-Free

� (2+2, 3)-Free

Bijection

♦ (2+2, 4)-Free and (2+2, Y)-Free

Conclusion

• Poset $P \to (A, B)$.

 $\bullet \quad A = \{ \text{Maximal Nodes in } P \}.$

$$\bullet \quad B = P \setminus A.$$

Introduction

Motivation

Results

Posets and Ascent Sequences

♦ (2+2, ∨)-Free and (2+2, ∧)-Free

� (2+2, 3)-Free

Bijection

♦ (2+2, 4)-Free and (2+2, Y)-Free

Conclusion

Poset $P \to (A, B)$.

 $\bullet \quad A = \{ \text{Maximal Nodes in } P \}.$

$$B = P \setminus A.$$

In (2+2, \wedge)-Free, *B* forms a chain.

Introduction

Motivation

Results

Posets and Ascent Sequences

♦ (2+2, ∨)-Free and (2+2, ∧)-Free

� (2+2, 3)-Free

* Bijection

♦ (2+2, 4)-Free and (2+2, Y)-Free

Conclusion

Poset $P \to (A, B)$.

- $A = \{ \text{Maximal Nodes in } P \}.$
- $B = P \setminus A.$
- In (2+2, \wedge)-Free, *B* forms a chain.

• In (2+2, 3)-Free, *B* forms the lower level.

Introduction

Motivation

Results

Posets and Ascent Sequences

♦ (2+2, ∨)-Free and (2+2, ∧)-Free

♦ (2+2, 3)-Free

Bijection

♦ (2+2, 4)-Free and (2+2, Y)-Free

Conclusion

Poset $P \to (A, B)$.

- $A = \{ \text{Maximal Nodes in } P \}.$
- $B = P \setminus A.$
- In (2+2, \wedge)-Free, *B* forms a chain.

• In (2+2, 3)-Free, *B* forms the lower level.

Maintains all order relations between A and B.

(2+2, 4) and (2+2, Y)-Free Posets

Introduction

Motivation

Results

Posets and Ascent
 Sequences

♦ (2+2, ∨)-Free and (2+2, ∧)-Free

� (2+2, 3)-Free

Bijection

♦ (2+2, 4)-Free and(2+2, Y)-Free

Conclusion

$$P_n(2+2,Y) \leftrightarrow P_n(2+2,4).$$

Theorem. $|P_n(2+2,Y)| = |P_n(2+2,4)| = 1 + \sum_{\substack{r+m < n}} \binom{n+mr+1}{n-m-r} - \binom{n+m(r-1)+1}{n-m-r} - \binom{n+r(m-1)}{n-m-r} + \binom{n+(r-1)(m-1)}{n-m-r},$ where $r \ge 0$ and m > 0.

Introduction

Motivation

Results

Conclusion

Future Directions

Acknowledgements

• $P_n(2+2,\vee) \leftrightarrow P_n(2+2,3).$ • $P_n(2+2,Y) \leftrightarrow P_n(2+2,4).$

Introduction

Motivation

- Results
- Conclusion
- Future Directions
- Acknowledgements

• $P_n(2+2,\vee) \leftrightarrow P_n(2+2,3).$ • $P_n(2+2,Y) \leftrightarrow P_n(2+2,4).$

Conjecture. Define a function Y(n), $n \ge 3$ as follows.

- Y(n) is the result of adding a minimal node to Y(n-1).

Then, $P_n(2+2, Y(k)) \leftrightarrow P_n(2+2, k)$ *.*

Introduction

Motivation

Results

Conclusion

- Future Directions
- Acknowledgements

• $P_n(2+2,\vee) \leftrightarrow P_n(2+2,3).$ • $P_n(2+2,Y) \leftrightarrow P_n(2+2,4).$

Conjecture. Define a function Y(n), $n \ge 3$ as follows.

- Y(n) is the result of adding a minimal node to Y(n-1).

Then, $P_n(2+2, Y(k)) \leftrightarrow P_n(2+2, k)$ *.*

•
$$|P_n(2+2,3+1)| = |P_n(2+2,N)|.$$

• $|P_n(2+2,Y)| = |P_n(2+2,4)|$

Introduction

Motivation

Results

Conclusion

- Future Directions
- Acknowledgements

• $P_n(2+2,\vee) \leftrightarrow P_n(2+2,3).$ • $P_n(2+2,Y) \leftrightarrow P_n(2+2,4).$

Conjecture. Define a function Y(n), $n \ge 3$ as follows.

- Y(n) is the result of adding a minimal node to Y(n-1).

Then, $P_n(2+2, Y(k)) \leftrightarrow P_n(2+2, k)$ *.*

•
$$|P_n(2+2,3+1)| = |P_n(2+2,N)|.$$

• $|P_n(2+2,Y)| = |P_n(2+2,4)|$

Query. Do there exist other nontrivial Wilf-Equivalences in (2+2)-Free Posets? What other posets p, q exist such that $|P_n(2+2,p)| = |P_n(2+2,q)|$ for all $n \in \mathbb{N}$?

Acknowledgements

Introduction

Motivation

Results

Conclusion

Future Directions

Acknowledgements

Thanks to

- My mentor Wuttisak Trongsiriwat for his valuable insight and guidance.
- The PRIMES program for making this experience possible.
- My parents for their support.

Thanks to all of you for listening.