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Abstract

Potential theory has powerful implications in physics such as in studies of nat-

ural phenomena such as gravitation, electro-statics, and fluid dynamics. It is also

important in mathematics and has deep connections to differential geometry and

holomorphic functions in the complex plane. The study of discrete harmonic func-

tions is one interesting aspect of potential theory that has important applications

such as image processing and stochastic processes.

In this paper, we explore a new class of harmonic functions defined on a tiling

T , a square tiling of a region D, in C. Consider the set of functions F(T ) such that

the energy of a tiling is minimized, with energy given by:

ET (u) =
∑
t∈T

(max
p

u(p)−min
p
u(p))2.

We define these functions as tiling harmonic functions. We develop an efficient

algorithm for computing interior values of tiling harmonic functions and graph har-

monic functions in a tiling. Using our algorithm, we find that in general tiling

harmonic functions are not generally equivalent to graph harmonic functions. In

addition, we prove some theoretical results on the structure of tiling harmonic func-

tions and classify one type of tiling harmonic function.
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Introduction

Potential theory, the study of Laplace’s equation, is a significant field in both mathemat-

ics and physics. It has direct application in physical potential fields such as gravitation

and electro-statics, as well as velocity potential fields in fluid dynamics [2]. Solutions to

Laplace’s equations, harmonic functions, are the coincidentally the real and imaginary

parts of holomorphic functions in C, and Laplace’s equation solutions have impacts in

many fields of mathematics such as differential geometry [2]. In addition, methods used

in potential theory have applications in mathematical physics and differential equations

[2].

Functions that satisfy Laplace’s equation are called harmonic functions. For a func-

tion on the 2D coordinate plane that satisfies Laplace’s equation, the value of the func-

tion at a point is found to be the average of the function’s values on the points of a circle

of radius r around the particular point. Thus, one way to define a discrete harmonic

function on a graph is to define each vertex as the average of the connected vertices.

These functions, called graph harmonic functions have many applications such as in im-

age processing and many probabilistic counterparts [3]. We explore discrete harmonic

functions on square tiling T .

Suppose that T is a square tiling of a region D in C, i.e., T is a finite collection of

squares with edges parallel to the x and y axes, that have mutually disjoint interiors and

their union is all of D. Figure 1 shows some pictures of tilings. A standard tiling is a

tiling where every square has side-length 1 and the vertices are of the form (m,n) ∈ Z2.

Figure 1: Standard tiling and non-standard tilings

Denote with F(T ) the set of all real valued functions defined on the set of vertices

of T . For such a function u, define the energy of u on T to be the non-negative number

ET (u) =
∑
t∈T

(max
p
u(p)−min

p
u(p))2,
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where t is a square in T and p runs over all vertices of T that lie on t. We call (maxp u(p)−

minp u(p))2 for each tiling the oscillation of F(T ) on the tile. A function u ∈ F(T ) is

called T -harmonic (or tiling-harmonic) if for every subtiling T ′ (i.e., a subset of T )

and every function u′ ∈ F(T ) such that u′ ≡ u on the boundary vertices of T ′, we have

Eu(T ′) ≤ Eu′(T ′).

In addition we call a function u ∈ F(T ) graph-harmonic on a tiling if for every

interior vertex p of T , the value u(p) is equal to the average of u on the neighbor

vertices of p. This graph harmonic function definition on square tiling is analogous to the

definition of a graph harmonic function on a graph. An interesting connection between

tiling and graph harmonic functions is that if we were to define the oscillation of a grid

as the square of all adjacent vertices in a square, then the function that minimizes the

energy given the boundaries would be the graph harmonic function. This is because for

the energy of each interior vertex to be maximized with respect to neighboring vertices,

then the vertex must be equal to average of all values of neighboring vertices. We

construct an algorithm to calculate both tiling and graph harmonic functions on tilings

given boundary conditions and compare the values of interior points of both functions.

1 Computer Algorithm

We developed algorithms to calculate values of interior points in graph and tiling har-

monic functions efficiently given boundary points through an iterative process that

looped through all interior points. We ran all our algorithms through C++ while all

graphical images were generated through Mathematica.

1.1 Algorithm for a tiling harmonic function on a 2× 2 tiling

Suppose that T is a 2 × 2 standard tiling consisting of 4 squares S1, . . . , S4 and u is

defined on the boundary vertices of T . We want to find a value of u in the interior

vertex so that the energy is as small as possible.

ET (u) = (M1 −m1)
2 + (M2 −m2)

2 + (M3 −m3)
2 + (M4 −m4)

2,

where Mi, mi are the maximum, minimum respectively, of u on Si.

Let X be the value of u on the interior vertex that gives the smallest energy. Con-
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sidering only one square Si, the most ideal value of X is in the interval [mi,Mi], so that

X does not affect the energy of Si. We sort the values m1,M1, . . . ,m4,M4 from smallest

to largest and generate 7 intervals from those sorted numbers. If, for example,

m1 < m2 < M1 < m4 < M2 < m3 < M3 < M4,

then the 7 intervals will be I1 = [m1,m2], I2 = [m2,M1], . . . , I7 = [M3,M4].

In each interval Ik, the algorithm generates a value Xk as the candidate for the

central value as follows. Suppose that [a, b] is the interval Ik. For each square Si we

compare a, b with mi,Mi.

• If b ≤ mi then let Ei(x) = (Mi − x)2, αi = 1 and ci = Mi.

• If mi ≤ a ≤ b ≤Mi then let Ei(x) = (Mi −mi)
2, αi = 0 and ci = 0.

• If Mi ≤ a then let Ei(x) = (x−mi)
2, αi = 1 and ci = mi.

If α1 + · · ·+ α4 = 0 then let Xi = a. If α1 + · · ·+ α4 6= 0, then define

c =
c1 + c2 + c3 + c4
α1 + α2 + α3 + α4

,

and E(x) = E1(x) +E2(x) +E3(x) +E4(x). If c is not between a and b then Xk is the

one of a, b that minimizes E, or a if both have the same energy. If c is between a and b

then Xk equals c.

Let X be the Xk, k = 1, . . . , 7 which gives the smallest energy, or, if more than one,

the smallest Xk that gives the smallest energy.

1.2 Algorithm of Tiling Harmonic Functions for a n×m tiling

Consider a n ×m tiling, with (n + 1)(m + 1) vertices. We denote these as (i, j), with

0 ≤ i ≤ n and 0 ≤ j ≤ m. We are given the value of u on (0, i), (j, 0), (n, i), (m, j)

with 0 ≤ i ≤ n and 0 ≤ j ≤ m, and the goal is to find the values of u for (i, j) with

1 ≤ i ≤ n− 1 and 1 ≤ j ≤ m− 1 so that the energy is minimal.

We first set up initial values for the interior vertices. We usually set the initial values

as the values of the graph harmonic functions (algorithm below) defined by boundary

points. We then apply the 2× 2 algorithm to replace the initial value of (1, 1) with one
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that gives the smallest energy. Then we apply the 2× 2 algorithm to replace the initial

value of (2, 1) with one that gives the smallest energy. We repeat this procedure until we

replace all nm initial values of the interior vertices with new values. In step 3, we return

to point (1, 1) and apply again the 2 × 2 algorithm and we keep the same procedure.

The algorithm terminates when the difference of the energy after N − 1 steps minus the

energy after N steps is less than a prescribed error.

Figure 2-6 show our algorithm running through randomly generated interior values

with given specified boundary points u(i, 0) = 0, u(i, 10) = 10, u(0, j) = j, u(10, j) = j

to determine the minimal energy grid.

Figure 2: Grid After 5 Iterations Figure 3: Grid After 10 Iterations

Figure 4: Grid After 15 Iterations

Figure 5: Grid After 25 Iterations
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Figure 6: Grid After 35 Iterations Figure 7: Grid After 45 Iterations

1.3 Algorithm for generalized square tilings

We first initialize each point to be the value of the average of all boundary points. We

apply an analog of our algorithm for 2×2 tiles on each interior vertices so that it chooses

the value of the vertices that minimizes the energy of the tiles that contain the interior

point. We then iterate through all interior points from left to right and then from top

to bottom continuously until our energy converges.

1.4 Algorithm for calculating graph harmonic functions

Suppose that T is a standard tiling with given boundary conditions. We initialize the

value of each interior vertices as the value of the average of all the boundary points. We

then loop through all the points systematically, from left to right and top to bottom,

assigning each interior point as the average of the four adjacent neighboring points until

an equilibrium is reached.

2 Algorithmic Proofs

We first prove that both of our algorithms for tiling harmonic and graph harmonic

functions converge.

Theorem 2.1. Our algorithm for computing tiling harmonic functions is globally con-

vergent.

Proof. Each time we minimize a point in our algorithm, we decrease the total energy

of the whole grid. Since there is some minimum in the total energy of the grid, our

algorithm must converge. Furthermore, at the point of convergence, we must have that
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each interior point is the average of a certain number of neighboring points as defined

in our algorithm.

Theorem 2.2. Our algorithm for computing graph harmonic functions is globally con-

vergent and converges to the unique graph harmonic solution for a set of boundary points.

Proof. An alternative definition of a graph harmonic function is a function that

minimizes the sum of the squares of the difference between all neighboring vertices (see

introduction). Each time our algorithm takes a point as the average of its neighboring

point, the sum of the squares of the difference between all neighboring vertices decreases.

Therefore, our algorithm must eventually converge. Furthermore, this algorithm must

converge to the unique solution since the only time our algorithm will stop modifying

a point is if the average of the points next to it is equal to its value defining a graph

harmonic function which is unique given a set of boundary conditions.

An interesting question is whether our algorithm for computing tiling harmonic func-

tions also appears to converge to the tiling harmonic solution with minimal energy. Un-

fortunately, it appears that for randomly generated boundary conditions, the function

does not necessarily converge to a function where the overall energy is minimized (see

qualitative description of tiling harmonic functions). Instead, our algorithm converges

to a point such that each point is locally minimized in energy with respect to the neigh-

boring 2 by 2 block. However, there is only a finite number of different energies that

our algorithm will eventually converge to.

Theorem 2.3. There are only a finite number of different energies our algorithm can

converge to, given a certain set of boundary values.

Proof. We have that for our algorithm to converge, each point has to be the average of

a certain set of neighbors. Therefore, each tiling that gives an energy that our algorithm

converges to can be mapped to some type of graph harmonic function on a graph G. For

example, if we have that a point is the average of two of its neighbors, its corresponding

vertex on the graph would be connected to the two vertices of its neighbors. Each

corresponding graph must have some unique energy E, since graph harmonic functions

are unique given specified boundary conditions. Since we can only make a finite number

of these graphs, we can only have a finite number of different energy values for our

algorithm.
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3 Qualitative Properties of Tiling Harmonic Functions

Using our algorithm, we explored many of the properties of tiling harmonic functions.

We found that given a function u defined on the boundary vertices of T , there may be

more than one tiling-harmonic extension U ∈ F(T ) of u. Figure 8 and 9 two different

tiling harmonic functions on the same boundary conditions. In this example, any number

in the middle vertex between 1 and 2 would give you the same minimal energy.

Figure 8: Tiling Harmonic Function 1 Figure 9: Tiling Harmonic Function 2

We compare the behavior of tiling harmonic functions and graph harmonic func-

tions on several different boundary values in the following diagrams. In each of the

following three examples, given the specified boundary values, we calculate both the

graph-harmonic function and tiling-harmonic function. We then calculate the difference

of the two functions. In the following figures, we present the tiling-harmonic function,

graph-harmonic function and the difference, respectively.

• Example 1: u(0, j) = j, u(20, j) = j, u(0, i) = 0, u(20, i) = 20.

Notice that both the tiling-harmonic and the graph-harmonic lie on a plane and
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are equal.

• Example 2: u(0, j) = (10− j)2, u(20, j) = (10− j)2, u(0, i) = (10− i)2, u(20, i) =

(10− i)2.

The tiling-harmonic and graph-harmonic functions have similar shapes. The dif-

ferences between functions are relatively large on the corners of the function but

soon approach the zero at the center. Notice, however, that the graph-harmonic

function is much smoother than tiling harmonic function, especially at the edges.

• Example 3: u(0, j) = j, u(20, j) = 20− j, u(0, i) = i, u(20, i) = 20− i.

The graphs of the two functions are also very close. However, the surface of tiling-

harmonic around the diagonal lines is not smooth while that of the graph-harmonic

function is. The tiling-harmonic function in this case is the union of four triangles

and is piecewise linear.

In the above diagram and in additional computations, we found that when boundary

points lie on a plane P , the tiling harmonic is equal to the graph harmonic function.

Moreover, both lie on the plane P . Given some boundary values, the graph-harmonic

function and the tiling-harmonic function are not equal. For example, when our func-

tion is piecewise smooth, such as shown in Example 3, our graph harmonic function

appears to be smooth, while the tiling harmonic function is composed of 4 triangles that

converge at a point. However, in many smooth functions such as those seen in Example
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3, we find that the functions are pretty close to each other near the center. In general,

we find that both graph and tiling harmonic functions are fairly similar to each other in

terms of graphical shape. However, we find that tiling harmonic functions, unlike graph

harmonic functions, often tend to be piecewise smooth, especially near the edges.

3.1 Multiple Energies Given by Algorithm

Usually when our boundaries are relatively smooth functions, our program converges

to one final grid, regardless of the initialization of interior points. Unfortunately, when

boundary points are randomly generated, there appears to be multiple different func-

tions that our algorithm converges to, depending on the initialization of interior points.

Furthermore, it appears that these local minima have different energy. Usually, we ini-

tialize the interior points as the corresponding graph harmonic function, and the final

output grid that results appears to always have the minimal energy compared to other

grids generated from different internal initialized points. Following are two tables of two

outputs from our program, one initialized from the graph harmonic function, and the

other one where the interior points were all initialized to the minima of the boundary

points. Figure 10 shows a graphical display of values of Table 1 and Figure 11 shows a

graphical display of the values of Table 2. On both tables, we see that each interior point

is minimized relative to all the neighboring points. Table 1 was initialized by setting

all points as the minimal element of the boundary value while Table 2 was initialized

from the graph harmonic function defined by the boundaries. The one initialized by the

minimal value on the boundary appears to have much lower values on the interior. Table

2 had the lowest energy out of all different initializations while Table 1 had significantly

higher energy.

Table 1
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Table 2

Figure 10: Graph Corresponding to Table 1

Figure 11: Graph Corresponding to Table 2

We have several proposed solutions to this problem. One possible solution that

could solve this problem is to continuously perturb the points until we reach the global
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minimum. Another possible method would to be randomly generate many different

interior values, and see which one gives us the lowest energy. In addition, it appears

that as long as interior points are generated from the values of the graph harmonic

function, we appear to always get the minimal possible energy of the tiling harmonic

function with our algorithm.

4 Theoretical Properties of Tiling Harmonic Functions

We also explored some of the theoretical structures of tiling harmonic functions.

Theorem 4.1. The function f(x,y)=cy is tiling harmonic for a real number c.

Proof. It suffices to show that f(x, y) = y is tiling harmonic. Consider any subtiling

of any arbitrary square tiling. We define energy of a tile in terms of an area. Let us say

we have a square with total energy of E. Consider splitting a square into two halves.

We have then that each halve has energy E
2 .

Now consider a narrow vertical strip of our subtiling, such that no two portions of

two horizontally adjacent tiles are contained in the vertical strip (so we would have a

vertical stack of portions of tiles in our strip). Consider the top and bottom tiles that

are contained in our vertical strip or if the vertical strip goes through the subtitling

more than once, consider the top and bottom portions of each separate portion. Let the

boundary values of the subtiling be given by f(x, y) = y.

Let the top tile have a boundary vertex with value x and bottom tile have a boundary

vertex with value of y, where the boundary vertices are not necessarily in the vertical

strip. We have that the height of the part of subtitling we cut with the pair of vertical

lines as x − y. In addition, for each portion of a tile except for the portion of the top

tile, we have that the top pair of one tile’s set of vertices must be on the same horizontal

line as bottom vertices of the above tile (none of these vertices are necessarily inside our

vertical strip). So there exists a set of vertices going down through the tiles, such that

each tile contains two adjacent vertices in the set (where the vertex with largest value

would be x and the vertex with least value would be y). Call the differences between

two adjacent vertices di. Then we have that the sum of the di is x − y. In addition,

note that the total energy of each tile included in our vertical strip is at least d2i (since

the vertices that make di are located in the ith square). We define the width of the
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vertical strip be W1, and the width of the ith tile we are considering as wi, so we have

the fraction of the tile inside our vertical strip as ri = W1
wi

. Therefore the energy of the

tiles in our vertical strip is ri ∗ d2i . Finally, we have that the total energy of all the tiles

in that vertical strip is going to be at most (r0d
2
0 + . . . + rnd

2
n). By Cauchy-Schwartz,

we have that (r0d
2
0 + . . .+ rnd

2
n)( 1

r0
+ . . .+ 1

rn
) ≥ (d0 + . . .+ dn)2 = (x− y)2. Note also

that ( 1
r0

+ . . .+ 1
rn

) = (x− y)/(W1).

Thus we have that the minimal energy of that vertical strip is greater than or equal

(x− y) ∗W1 which is just the area of the part of the square subtiling inside our vertical

strip. We can take arbitrarily many vertical strips until we have the whole subtiling,

so the energy of whole subtiling must be at least the area of the subtiling, but the

function f(x, y) = y gets you a tiling with energy equal to the area of the subtitling

and satisfies the boundary condition. Therefore, we have that the function f(x, y) = y

is tiling harmonic. By scaling f(x, y) = y by a real number c, we have f(x, y) = cy is

tiling harmonic for all real numbers c.

Theorem 4.2. Tiling harmonic functions satisfy the maximal principle; i.e. that the

global maximum or minimum values can not occur in an isolated point in the interior.

Proof. Assume by contradiction that the maximum or minimum occurred in an

isolated interior point. Consider the leftmost and lowest maximal or minimal point in

the grid. We then consider the neighboring squares contain it. Using the algorithm

tiling harmonic functions above, we can find a point that minimizes the energy of the

squares containing the points better than the original point, so then this new interior

numbering of our subtiling would have lower energy, negating the fact that the function

is tiling harmonic.

Another analog we would like to prove about tiling harmonic functions is that they

satisfy an analog of Louiville’s Theorem, that any bounded tiling harmonic function

must necessarily be constant. To this goal, we have gotten the following lemma.

Lemma 4.3. A tiling harmonic function which is bounded by a certain maximum and

minimum value on a infinite standard square tiling will have an average energy of zero

on each tile.

For a function to be harmonic on a tilling, it must be harmonic on all subtilings.
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Consider an n times n standard subtiling. Let the average value of the function on the

boundary be A with global maximum of the harmonic function as M and the global

minimum as m. We then have the total energy of the subtiling will be at most (4n −

2)(M−m)2, since if we set all interior points neighboring the exterior points in a subtiling

as A then the standard tiling will have energy of at most (4n−2)(M−m)2, as the energy

of an exterior tiles must necessarily be less than (M−m)2 and there are a total of 4n−2

tiles, with the interior tiles having an energy of zero. We then have the average energy

of each tile as at most (4n−2)∗(M−m)2

n2 which approaches zero as we take the limit as n

approaches infinity.

We eventually hope to prove, using the above lemma, that a bounded tiling harmonic

function on a infinite set of tiles must be a constant.

Conclusions and Further Work

In our project, we have generated an algorithm that can calculate interior points for both

graph and tiling harmonic functions on tilings. We have found that tiling harmonic

functions have startling differences with graph harmonic functions, such as a lack of

smoothness even in larger tilings and a lack of uniqueness. At the same time, we

have found that tiling harmonic functions have many characteristics of typical harmonic

functions both in shape and in properties such as the maximal principle. We also

believe that tiling harmonic functions posses many additional characteristics found in

other general harmonic functions such as an analog of Louiville’s Theorem; i.e. that

a infinite tiling harmonic functions with bounded values must necessarily be constant.

One conjecture that would immediately lead to this result is the conjecture that the

maximum oscillation tile on each grid must be a border tile. Initial exploration through

our algorithm very strongly supports this hypothesis.

In addition, we also hope to prove that the tiling harmonic functions posses some

analog of Harnack’s inequality, which could lead to the proof of another conjecture that

if T is a general square grid tiling of the upper half plane, then the only non-negative

T -harmonic functions u that vanish on the real vertices have the form u(x, y) = cy,

where c ≥ 0 is a constant. Initial testing with our algorithm provides a positive result

for this question. A positive proof would lead to a parallel result on carpet harmonic
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functions which would lead to a simple proof of the quasisymmetric rigidity of Sierpinski

Carpets [1].

In the future, we also hope to find all different possible tiling harmonic functions.

In this paper, we have shown that u(x, y) = cy is a tiling harmonic function, and

algorithmical analysis indicates that all planes are tiling harmonic functions. We would

eventually like to either prove that planes are the only tiling harmonic functions or to

classify all other possible tiling harmonic functions.
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