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Abstract

A geodesic in the hypercube is the shortest possible path between two vertices.
Leader and Long (2013) conjectured that, in every antipodal 2-coloring of the edges of
the hypercube, there exists a monochromatic geodesic between antipodal vertices. For
this and an equivalent conjecture, we prove the cases n = 2, 3, 4, 5. We also examine the
maximum number of monochromatic geodesics of length k in an antipodal 2-coloring
and find it to be 2n−1(n − k + 1)

(
n−1
k−1
)
(k − 1)!. In this case, we classify all colorings

in which this maximum occurs. Furthermore, we explore the maximum number of
antipodal geodesics in a subgraph of the hypercube with a fixed proportion of edges,
providing a conjectured optimal configuration as a lower bound, which, interestingly,
contains a constant proportion of geodesics with respect to n. Finally, we present a
series of smaller results that could be of use in finding an upper bound on the maximum
number of antipodal geodesics in such a subgraph of the hypercube.

1. Introduction

d

Graph theory is a burgeoning field of mathematics centered on the study of mathemat-
ical structures called graphs, and is intimately related to Ramsey Theory, another field of
mathematics concerned with showing that patterns must emerge in sufficiently large systems.
Often, such determinations are made by coloring the elements of these systems, in our case
the edges or vertices of graphs.

Within graph and Ramsey theory, we consider 2-colorings of the edges of the hypercube
Qn with vertices {0, 1}n, where edges connect vertices that differ only in a single coordinate.
We call a path on this hypercube a geodesic if it is the shortest possible path between two
points.

We also define the antipodal vertex xa of x to be the unique vertex on Qn that is farthest
from x. In other words, given x = (e1, e2, . . . , en), where each of e1, e2, . . . , en is either 0 or 1,
xa = (1− e1, 1− e2, . . . , 1− en). Furthermore, given an edge xy, its antipodal edge is defined
to be xaya. We call a coloring of Qn antipodal if antipodal edges are colored different colors.

A classic result of Dirac [1] states that in a graph of average degree d, there must exist
some path of length d. As of late, this kind of result has been expanded to the specific case
of Qn; Long recently showed that every subgraph G of the hypercube with average degree
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d contains some path of length 2d/2 − 1 [2], and Leader and Long complemented this result
by showing a similar statement for geodesics: that every subgraph G with average degree d
must contain some geodesic of length d [3].

A natural Ramsey-theoretical question to ask of all of this research is whether, given these
geodesics in the hypercube, we can also guarantee that in some 2-coloring of the edges of the
hypercube, there exists some geodesic with all of its edges the same color, or monochromatic.
Specifically, we examine the following conjectures, proposed by Leader and Long and based
off of those of Norine, Feder, and Subi [4] [3].

Conjecture 1.1. Given an antipodal 2-coloring of Qn, there exists a monochromatic geodesic
between some pair of antipodal vertices.

Conjecture 1.2. Given a 2-coloring of Qn, there exists a geodesic between antipodal vertices
that changes color at most once.

As it turns out, these two conjectures are equivalent. We present a proof below, similar
to that of Leader and Long.

Proof. We must prove it in both directions. If Conjecture 1.1 is true, consider some 2-
coloring of the cube Qn, and in particular consider the larger hypercube Qn+1, which Qn is
a subcube of where xn+1 = 0: we color the remaining edges of Qn+1 such that the overall
coloring in the (n + 1)-dimensional hypercube is antipodal. Now, consider the path GGa,
where G is a monochromatic, say red, geodesic on Qn+1 (therefore Ga is also monochromatic,
say blue). Now let GGa = x1x2x3 . . . x2n+3, where x2n+3 = x1 and xn+2 = xa1. Note that
G = x1x2x3 . . . xn+2 contains all red edges and Ga = xn+2 . . . x2n+3 contains all blue edges.
Now, we know that between exactly two pairs of vertices connected by an edge in this path,
the (n+ 1)st coordinate changes: that is, the edge goes between vertices (e1, e2, e3, . . . , en, 0)
and (e1, e2, e3, . . . , en, 1) or vice versa. Without loss of generality let this occur on the edge
xixi+1 where 1 ≤ i ≤ n+1. Then we also know that the edge xn+1+ixn+2+i also traverses that
direction, since Ga is antipodal to G. Now, consider the path in the cube xi+1 . . . xn+1+i. This
path has length n, and, noting that we have excluded both edges on GGa that traverse in
the (n+1)st direction, it is on the subcube Qn. Moreover, xi+1 . . . xn+2 is a red geodesic, and
xn+2 . . . xn+1+i is a blue geodesic traversing exactly the remaining directions, so xi+1 . . . xn+1+i

is a geodesic between antipodal vertices that changes color at most once.

Alternatively, if Conjecture 1.2 is true, consider some antipodal 2-coloring of Qn. We
know that there exists some geodesic G that changes color at most once, say at x: denote
the red section as R and the blue section as B: G, thus, is equivalent to RB. Let the two
end vertices be v and va, where R starts at v and ends at x and B starts at x and ends at va.
But then we know that Ra is a geodesic with endpoints at va and xa, traversing the same
directions as R, and is blue. Therefore BRa is a monochromatic geodesic between x and xa,
antipodal vertices, so we are done.

In this paper, we prove Conjecture 1.1, and thereby Conjecture 1.2, for n = 2, 3, 4, 5.

We also consider the opposite question, which has particular significance in extremal
graph theory. Specifically, in addition to looking into this minimization of the number

2



of geodesics on the hypercube, we also explore the maximum number of monochromatic
geodesics of length k in an antipodal 2-coloring, showing that this is 2n−1(n−k+1)

(
n−1
k−1

)
(k−

1)! in Qn. In addition to showing this maximum, we classify all of the colorings in which
the maximum occurs, calling such colorings subcube colorings because of the nature of the
construction.

Finally, we generalize this idea and look at the maximum number of geodesics in a
subgraph of the hypercube with some constant proportion of edges, deriving a conjectured
optimal configuration for this maximum (and thereby obtaining a lower bound) and comput-
ing the number of edges in this so-called middle-layer subgraph. We also obtain the trivial
upper bound of p · 2n−1n!.

2. Minimum Number of Geodesics in an Antipodal Coloring of Qn

In this section, we prove Conjectures 1.1 and 1.2 for n = 2, 3, 4, 5. We have also proved the
conjectures for n = 6, 7 using a computer, but have not been able to develop a general proof
strategy.

Our first lemma shows the existence of a monochromatic geodesic of length a given one
of length a− 1 in Qa, and thereby facilitates the casework that will occur later.

Lemma 2.1. If there is a monochromatic geodesic G of length a− 1 in Qa, then there also
exists a monochromatic geodesic of length a.

Proof. Let G be a red geodesic between vertices x1 and x2. Consider the edge e incident to
x2 in the coordinate direction not already traversed by G, connecting x2 to another vertex,
say x3. If e is red, then we are done. If e is blue, then consider the antipodal red edge xa3x

a
2.

Because we are considering Qa, x
a
3 = x1, so the edge x1x

a
2 is red. Therefore, concatenating

this edge to G, the resulting geodesic between x2 is xa2 is monochromatic red and of length
a.

This lemma established, we can begin our cases.

Lemma 2.2. Conjecture 1 is true for n = 2

Proof. We evidently have a monochromatic geodesic of length 1 (considering any edge).
Therefore, by Lemma 2.1, we have a monochromatic geodesic of length 2.

Lemma 2.3. Conjecture 1 is true for n = 3

Proof. Consider any vertex of Qn. Two of its three incident edges must have the same color,
and thus we have a monochromatic geodesic of length 2. Therefore, by Lemma 2.1, we have
a monochromatic geodesic of length 3.

Lemma 2.4. Conjecture 1 is true for n = 4
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Proof. First, consider any vertex of Qn. Two of its three incident edges must have the same
color, and thus we have a monochromatic geodesic of length 2.

Without loss of generality, assume that this is the geodesic (1, 0, 0, 0) − (0, 0, 0, 0) −
(0, 1, 0, 0). Let this geodesic be colored red. Because we are considering an antipodal coloring,
the antipodal geodesic (0, 1, 1, 1) − (1, 1, 1, 1) − (1, 0, 1, 1) is also monochromatic, but blue
instead of red. Now, let us consider the edges (1, 0, 0, 0)−(1, 0, 1, 0) and (1, 0, 0, 0)−(1, 0, 0, 1).
If either is red, we can add that edge to our original geodesic and have a monochromatic
geodesic of length 3, and, therefore, by Lemma 2.1, we would be done. Otherwise, both
are blue. Now, consider the antipodal version of this: the edges (1, 0, 1, 1) − (1, 0, 1, 0) and
(1, 0, 1, 1) − (1, 0, 0, 1). Again, if either is blue, we have a monochromatic blue geodesic of
length 3 and, by Lemma 2.1, are done. Therefore, we consider the case when both are red.

Now, consider the square ABCD where A = (1, 0, 0, 0), B = (1, 0, 1, 0), C = (1, 0, 1, 1)
and D = (1, 0, 0, 1). We know that AB and AD are red, and BC and CD are blue. Therefore,
B is the endpoint of both a monochromatic red geodesic of length 2 and a monochromatic
blue geodesic of length 2. Considering any incident edge to B in a direction not already
covered by these geodesics, no matter its color, we have a monochromatic geodesic of length
3 by concatenation to one or the other geodesic, and therefore have one of length 4 by Lemma
2.1, so are done.

Lemma 2.5. Conjecture 1 is true for n = 5

Proof. First, consider any vertex. Two of its three incident edges must have the same color,
and thus we have a monochromatic geodesic of length 2. We first want to show that there
exists a monochromatic geodesic of length 3.

Without loss of generality, assume that our monochromatic geodesic of length 2 is
(1, 0, 0, 0, 0)−(0, 0, 0, 0, 0)−(0, 1, 0, 0, 0). Let this geodesic be colored red. As before, because
we are considering an antipodal coloring, the antipodal geodesic (0, 1, 1, 1, 1)−(1, 1, 1, 1, 1)−
(1, 0, 1, 1, 1) is also monochromatic, but blue instead of red. Now, let us consider the edges
(1, 0, 0, 0, 0)− (1, 0, 1, 0, 0), (1, 0, 0, 0, 0)− (1, 0, 0, 1, 0), and (1, 0, 0, 0, 0)− (1, 0, 0, 0, 1). If any
of these are red, we can add that edge to our original geodesic and have a monochromatic
geodesic of length 3. Therefore, we consider the case where all three of these are blue. By
a similar argument, the edges (1, 0, 1, 1, 1) − (1, 0, 1, 1, 0), (1, 0, 1, 1, 1) − (1, 0, 1, 0, 1), and
(1, 0, 1, 1, 1)− (1, 0, 0, 1, 1) are all red, or else we have a monochromatic geodesic of length 3.
Now, let us consider the edge (1, 0, 1, 0, 0)− (1, 0, 1, 1, 0). If it is blue, we have the monochro-
matic geodesic of length 3: (1, 0, 0, 0, 1)−(1, 0, 0, 0, 0)−(1, 0, 1, 0, 0)−(1, 0, 1, 1, 0). Otherwise,
if it is red, we have the monochromatic geodesic of length 3: (1, 0, 0, 1, 1) − (1, 0, 1, 1, 1) −
(1, 0, 1, 1, 0)− (1, 0, 1, 0, 0).

Therefore, we can assume we have a monochromatic geodesic of length 3 in any (an-
tipodal) coloring. Let this geodesic be, without loss of generality, red and the geodesic
(1, 0, 0, 0, 0)− (0, 0, 0, 0, 0)− (0, 1, 0, 0, 0)− (0, 1, 1, 0, 0). Because this is an antipodal color-
ing, we also know that this is a monochromatic blue geodesic: (0, 1, 1, 1, 1)− (1, 1, 1, 1, 1)−
(1, 0, 1, 1, 1) − (1, 0, 0, 1, 1) Now, consider the two edges: (1, 0, 0, 0, 0) − (1, 0, 0, 0, 1) and
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(1, 0, 0, 1, 0. If either is red, then we have a monochromatic geodesic of length 4 so are done
by Lemma 2.1. Therefore, we consider the case where both are blue. By similar logic, we
are done unless the two edges (1, 0, 0, 1, 1)− (1, 0, 0, 0, 1) and (1, 0, 0, 1, 1)− (1, 0, 0, 1, 0) are
blue.

Now, consider the geodesic Gs = (1, 0, 0, 1, 0) − (1, 0, 0, 0, 0) − (1, 0, 0, 0, 1). There are
three edges incident to (1, 0, 0, 0, 1) and three edges incident to (1, 0, 0, 1, 0) that would each
form a geodesic of length three with this geodesic. I claim that all of the edges incident
to (1, 0, 0, 0, 1) must be the same color (and the same for (1, 0, 0, 1, 0)) or else we have a
monochromatic geodesic of length 4. For the sake of contradiction, consider the case where,
without loss of generality, two of the edges incident to (1, 0, 0, 0, 1) are blue and the other is
red. Consider the red edge. There are two edges incident to (1, 0, 0, 1, 0) that, along with
the red edge, would form a geodesic of length 4 if added onto Gs. If either is red, we have a
monochromatic geodesic of length 4, contradiction. Otherwise, they must be blue. However,
in turn, one of these edges could form a geodesic of length 4 when added to Gs along with one
of the other edges incident to (1, 0, 0, 0, 1), which we know to blue: this is a contradiction,
however, since this is monochromatic, and therefore the claim is true, or else we are done by
Lemma 2.1.

Without loss of generality let those edges incident to (1, 0, 0, 0, 1) be red and those incident
to (1, 0, 0, 1, 0) be blue. Because this is an antipodal coloring, we know the three edges
incident in the directions at hand to (0, 1, 1, 0, 1) are themselves red. Note that these edges
occupy the same cube as those incident to (1, 0, 0, 0, 1). We know that the remaining edges
of this cube must themselves be blue, as otherwise we can form a monochromatic geodesic
of length 4 with them, one of the edges incident to (1, 0, 0, 0, 1) and Gs. But now consider
some vertex on this cube that is both incident to one of the incident edges to (1, 0, 0, 0, 1)
and incident to a blue geodesic of length 3 on the cube, in the direction that both is not
present on the cube and is not in the direction between (1, 0, 0, 0, 1) and (1, 0, 0, 0, 0). If this
is blue, we have a blue geodesic of length 4 so are done by Lemma 2.1. Otherwise, if it is
red, concatenating it with one of the incident edges to (1, 0, 0, 0, 1), the edge connecting this
to (1, 0, 0, 0, 0), and edge between this and (0, 0, 0, 0, 0), we have a red geodesic of length 4
so are done by Lemma 2.1. Thus, we are done.

3. Maximum Number of Geodesics in an Antipodal Coloring of
Qn

In this section, we wish to find the maximum number of monochromatic geodesics between
antipodal vertices in an antipodal 2-coloring on the hypercube Qn = {0, 1}n, which has 2n

vertices. We will denote this maximum as Mn. Note that all of our lemmas and theorems
assume an antipodal edge coloring with two colors of Qn, unless stated otherwise.

Lemma 3.1. The number of geodesics on Qn between antipodal vertices is 2n−1n!.

Proof. There are 2n−1 pairs of antipodal vertices. Between these vertices, we have n direc-
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tions to traverse (or, if we think about this in the sense of coordinates, n coordinates to
change). Thus, there are evidently n! different orders in which we can traverse these direc-
tions, and thus n! geodesics between each pair of antipodal vertices, so 2n−1n! in total.

Now, we define a cycle on Qn to be the path GGa, where G is some geodesic.

Lemma 3.2. There are at maximum 2 monochromatic geodesics in each cycle.

Proof. Consider some cycle C = x1x2 . . . xnxn+1 . . . x2n+1, with x1 = x2n+1 and xn+1 = xa1,
which contains 2n + 1 − 1 = 2n distinct vertices. Now consider all of the shifts of these
cycle xk . . . x2n+1x1 . . . xk−1. There are two possibilities. First, none of xk . . . xn+k = xak
are monochromatic for 1 ≤ k < n + 1, which implies that none of their antipodal versions
xn+k . . . x2n+1x1 . . . xk are either.

Otherwise, consider the case where there exists some k such that that geodesic is monochro-
matic. Then we know that each of the edges xkxk+1, xk+1xk+2, . . . xn+k−1xn+k are the same
color, say red, and because the coloring is antipodal, each of the edges xn+kxn+k+1 . . . xk−1xk
are the other color, say blue. Thus, we know we have two monochromatic geodesics within
our cycle C, call them G and Ga. But now consider any other geodesic xj . . . xn+j = xaj
for 1 ≤ j < n + 1, j 6= k. If j < k, then xjxj+1 is contained within Ga so is blue. How-
ever, xn+j−1xn+j is contained within G, as k − 1 < n + j − 1 < n + k − 1 and thus is
red. Therefore, this geodesic cannot be monochromatic. Oppositely, if j > k, then xjxj+1

is contained within G, as k < j < n + k, so is blue. But xn+j−1xn+j is contained within
Ga, as n + k − 1 < n + j − 1 < 2n + 1, so is red. Therefore, this geodesic also cannot be
monochromatic.

Thus, in each cycle C, there are at maximum 2 monochromatic ones, so we are done.

Lemma 3.3. Given some two coloring of the edges of Qn where n > 2, a monochromatic red
geodesic between x and xa on Qn and that each geodesic between x and xa is monochromatic,
all of the edges of Qn must be red.

Proof. Let G be our original red geodesic, and consider the final edge of this geodesic:
between some vertex y and xa. Without loss of generality, assume that this edge traverses the
nth direction: that is, it is located between two points (0, e1, e2, . . . , en) and (1, e1, e2, . . . , en).
Consider all geodesics between x and xa ending with this edge: we know that there exists
some geodesic whose first edge is in every direction except for the nth (since no geodesic
can traverse the same direction twice) that contains this edge. Since this edge is red, and
these geodesics must be monochromatic, we know every edge emitting from x except for the
one in the nth direction must be red. And, of course, considering the second-to-last edge
of G, there exists some geodesic between x and xa both containing this edge and our nth
direction edge emitting from x, and therefore all edges emitting from x are the same color.
This implies that every geodesic between x and xa is monochromatic red, as each contains
some edge emitting from x (since they start at x), and, since every edge of the hypercube is
in one of these geodesics, all of the edges of Qn are red.

Theorem 3.4. Mn = 2n−1(n− 1)!
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Proof. First, we show that Mn ≤ 2n−1(n − 1)!. By Lemma 3.2, we know that each cy-
cle contains at maximum two geodesics. Now, notice that, clearly, each cycle is self-
repeating/containing: that is, there are no two cycles that contain the same geodesic. This
means that we can partition the 2n−1n! overall geodesics into subsets containing 2n geodesics
where the number of monochromatic geodesics is at maximum 2. Thus,

Mn ≤
2

2n
· 2n−1(n)! = 2n−1(n− 1)!

Thus, it suffices to present a case where Mn = 2n−1(n− 1)!: where every cycle contains 2
monochromatic geodesics. To do this, consider two subcubes of Qn, G0 = (0, {0, 1}n−1) and
G1 = (1, {0, 1}n−1). Let us color each edge of G0 red; because the edges of G1 are antipodal
to those of G0, it follows that each edge of G1 is colored blue.

All that remains are the 2n−1 edges connecting G0 to G1. Consider some arbitrary
coloring of E1, E2, . . . , E2n−1 that satisfies the antipodal coloring. Now, consider the (n− 1)-
dimensional G0 as its own separate hypercube. Between each pair of antipodal vertices
on G0 (the antipodal definition as it applies to the cube G0), there are (n − 1)! geodesics,
which are all monochromatic since all of the edges of G0 are colored the same color. In
particular, there are (n − 1)! geodesics ending at a particular endpoint, let’s say x. The
edge Ex that connects to this endpoint is either red or blue. If is red, then we have (n− 1)!
monochromatic geodesic by attaching it to the geodesics on G0 ending at x. Otherwise, if
Ex is blue, if x = (0, e1, e2, . . . , en), we consider x′ = (1, e1, e2, . . . , en) on G1. There are,
by the same argument, (n − 1)! blue geodesics ending at x′ on G1, and therefore (n − 1)!
monochromatic geodesics on Qn if we attach Ei to those geodesics.

Thus, for each pair of vertices onG0 andG1 y = (0, f1, f2, . . . , fn) and y′ = (1, f1, f2, . . . , fn),
we have (n − 1)! monochromatic geodesics on Qn. This accounts for all geodesics (no
monochromatic geodesic can have edges on both G0 and G1 for obvious reasons, so this
covers all the bases), and, as there are 2n−1 such pairs of vertices, we have 2n−1(n − 1)!
monochromatic geodesics on such a coloring of Qn.

To make the proof tight, it remains to show that this monochromatic coloring of subcubes
is the unique set of colorings that maximizes the number of geodesics. Call this type of 2-
coloring a subcube coloring.

We’ve already shown that these colorings works; it remains to show that there are no other
colorings that work. Now, for n > 4, assume that there is some non-subcube coloring for
contradiction. Note that, by Lemma 3.2, there are at maximum 2 monochromatic geodesics
in each cycle: our maximum, thus, occurs when each cycle contains two monochromatic
geodesics. Now, consider some cycle GGa, where G is a monochromatic (say red) geodesic
between antipodal vertices. Without loss of generality assume that the endpoints of G are
(0, 0, . . . , 0) and (1, 1, . . . , 1) and that the first edge in this geodesic is from (0, 0, . . . , 0) to
(1, 0, . . . , 0) and the last is from (1, 1, . . . , 0) to (1, 1, . . . , 1) (or, to be more concise, the first
edge is in the 1st direction and the last edge is in the nth direction). Note that both of these
edges are red: consider all geodesics (and thus cycles) containing these two edges. In other
words, consider all of the possible geodesics between (1, 0, . . . , 0) and (1, 1, . . . , 0) on the
(n − 2)-dimensional hypercube J (1, {0, 1}n−2, 0). Note that, because our two outer edges
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surround this hypercube, for each cycle containing these edges to have a monochromatic
geodesic, each geodesic on this (n − 2)-dimensional hypercube between the two points at
hand. must be monochromatic. This, in turn, by Lemma 3.3, implies that all edges on our
(n− 2)-dimensional hypercube are red.

Note further that this in turn implies that the hypercube Ja (0, {0, 1}n−2, 1) is blue.

Now, consider some other monochromatic cycle not already covered with C = HHa,
where H and Ha are monochromatic and their endpoints are v = (e1, e2, . . . , en) and va =
(1 − e1, 1 − e2, . . . , 1 − en). Without loss of generality assume H is red. Now, we claim
that either the first edge or the last edge of H must traverse either the 1st direction or the
nth direction. Assume that this is not true for contradiction. Then we have the two inner
vertices x and y, where v − x is an edge on H with x = (e1, e2, . . . , (ei + 1) mod 2, . . . , en)
and va− y is an edge on H with y = (1− e1, 1− e2, 1− e3, . . . (2− ej) mod 2, . . . , 1− en) for
i 6= j. But this means, by the same logic as before, that the hypercube K in Qn with the ith
and jth coordinates set is monochromatic red. But note that, clearly, this hypercube shares
edges with Ja (by setting the four coordinates that are fixed in one or the other hypercube
and then varying the remainder), so we have a contradiction (as all of the edges of Ja are
blue).

This means that for each such cycle, one of the end edges must traverse one of the original
cycle’s end directions (in our case the 1st and nth directions). Note that it cannot always be
both directions, as that would not cover all of our cycles. For the first cycle Ca such that it
cannot consist of both directions, without loss of generality let the direction of them that is
traversed be the nth direction. From then on, for every cycle, one of the directions must be
the nth direction (as otherwise we can intersect the (n− 2)-dimensional hypercube created
with the hypercube produced by Ca or our original cycle-produced hypercube).

Therefore, for every cycle, without loss of generality, if our coloring preserves maximality,
one of the end edges must be the nth direction. Now, let us retreat to our original cycle
GGa. We now know that each geodesic ending in the edge from (1, 1, . . . , 0) to (1, 1, . . . , 1)
must be monochromatic. That is, each geodesic in the hypercube ({0, 1}n−1, 0) must be
monochromatic. However, evidently, because we have once such geodesic red, it follows
easily by Lemma 3.3 that all of the edges of the hypercube ({0, 1}n−1, 0) must be red, and,
because this is an antipodal coloring, we have that the hypercube ({0, 1}n−1, 1) is blue. But
this is a subcube coloring, a contradiction.

Thus, we have that no coloring that is not a subcube coloring can achieve our maximum,
so we are done. Note that for our small cases n = 2, 3, 4, our proof does not necessarily
function because of the limitations of Lemma 3.3. We leave these cases as exercises for the
reader, noting that each of them can either be proved through casework, which is fairly easy
in such small cases, or through slightly tweaking the above logic.

Theorem 3.5. The maximum number of monochromatic geodesics of length k where k ∈
Z+, k > 1 in an antipodal 2-coloring is 2n−1(n− k + 1)

(
n−1
k−1

)
(k − 1)!. This maximum occurs

only in a subcube coloring.
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Proof. It is clear that in a cycle, the maximum number of monochromatic geodesics of
length k occurs when the cycle consists of two monochromatic antipodal geodesics. Thus
our maximum occurs when every cycle satisfies this property, which we already know, by
Theorem 3.4, only happens in subcube colorings.

Now, note that in such a cycle, there are 2(n − k + 1) monochromatic geodesics, and
that each of these geodesics of length k is part of (n− k + 1)! larger geodesics. These larger
geodesics can be separated into groups of n − k + 1 which are all part of the same cycle;
therefore we are overcounting each geodesic (n − k)! times. From there, since there are 2n
geodesics in each cycle, the total number of geodesics of length k is:

2n−1(n)! · 1

2n
· 2(n− k + 1) · 1

(n− k)!
=

2n−1(n− 1)! · (n− k + 1)

(n− k)!

Note that (n−1)!
(n−k)! =

(
n−1
k−1

)
(k − 1)!, so our expression is equivalent to:

2n−1(n− k + 1)

(
n− 1

k − 1

)
(k − 1)!.

4. Maximum Number of Geodesics in a Subgraph of Qn

In this section, we seek the maximum number of geodesics in a subgraph of the hypercube
with some constant proportion of edges. In particular, we conjecture an optimal asymp-
totic configuration, which we call a middle-layer subgraph, and then compute the number of
geodesics in such a subgraph. After providing this lower bound, we then provide a trivial
upper bound.

To begin, we must define the concept of hamming weight.

Definition 4.1. The hamming weight w(v) of a vertex v ∈ Qn is the number of 1’s in the
binary representation of v.

From this, we define the middle layer of the hypercube. From here on, when defining
our subgraph, we will only be considering hypercubes of even dimension, or of the form Q2n.
The construction is similar for odd dimension but introduces some unnecessary technicalities
for our discussion, since we are mainly discussing the asymptotic case.

Definition 4.2. The middle layer of the hypercube Q2n is the set of vertices with hamming
weight n.

Using this, we formally define our middle-layer subgraph.

Definition 4.3. A k-middle layer subgraph of Q2n is the induced subgraph consisting of all
vertices v for which n− k

√
n/2 ≤ w(v) ≤ n+ k

√
n/2.
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Lemma 4.4. Given the k-middle layer subgraph H of Q2n with p22n vertices, let e is the
number of edges incident to the vertices in our subgraph. Then limn→∞

e
n22n

= p.

Proof. Given that this is a middle-layer subgraph, we know that for each vertex, our subset
contains all n edges incident to it except for vertices at the edge of the subset. There are
2
( 2n

n−k
√
n/2

)
such vertices. This gives us that the number of edges is greater than or equal to

np22n − 2n
( 2n

n−k
√
n/2

)
. So our limit is at least

lim
n→∞

np22n − 2n
( 2n

n−k
√
n/2

)
n22n

= p− lim
n→∞

( 2n

n−k
√
n/2

)
22n−1

From the normal approximation to the binomial distribution, we have that( 2n

n−k
√
n/2

)
22n

=
e−k

2/2

√
πn

Thus, given that k is a positive integer, we have that e−k
2/2 < 1, so our expression is less

than or equal to 1√
n
, and thus our overall limit is equivalent to

p− lim
n→∞

1√
n

= p

Notice that, even though we bounded the number of edges from above, the limit would
remain the same with any constant less than

( 2n

n−k
√
n/2

)
because the right side of the limit

ended up going to 0.

Note that the converse is also clearly true. From this lemma, we can establish the
proportion of edges in a k-middle layer subgraph.

Lemma 4.5. A k-middle layer subgraph of Q2n contains (
∫ k
−k

e−x2/2
√
nπ

+ o(1))2n22n−1 edges.

Proof. Notice that the proportion of vertices for which n− k
√
n/2 < w(v) < n+ k

√
n/2 is

asymptotically equal to
i=n+k

√
n/2∑

i=n−k
√
n/2

(
2n

n− i

)
22n

=

∫ k

−k

e−x
2/2

√
πn

from the normal approximation to the binomial distribution. From Lemma 4.4, this is
asymptotically the same as the proportion of edges involved, so the lemma follows.

With this established, we can compute the number of antipodal geodesics in a middle-
layer subgraph with a fixed proportion p of edges. The entire computation is not detailed
here; the important aspect is that the antipodal geodesic must follow a path of edges that
stays within the subgraph, and thus can be modeled as a random walk. Each value of j in
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the summation corresponds to a starting vertex of weight n+j or n−j: the summation then
calculates the probability that a random geodesic starting at that vertex will stay within the
middle-layer. The major technique used in the calculation is the reflection principle, which
allows us to equate the distribution of a given walk to one that is not constrained by the
boundaries of the middle layer, a much simpler calculation.

Theorem 4.6. The proportion of geodesics in a middle-layer subgraph of Q2n with 2pn22n−1

edges for p =
∫ k
−k

e−x2/2
√
πn

edges is equal to:

1−

(2k
√

n
2

+ 1)
∑
j∈Z

(
2n

n+ (2j − 1)k
√

n
2

)
22n

There are two important aspects of this result that are worth noting. First, it is constant
with respect to n, which is what leads us to believe that this coloring is optimal or at least
close to an optimal lower bound. Second, interestingly, the proportion itself is equivalent to

the area under the normal curve shown below, given, as before, p =
∫ k
−k

e−x2/2
√
2π

.

−k k−3k 3k 5k−5k

Conjecture 4.7. For large n and a given proportion of edges p, a k-middle layer subgraph
for appropriate k yields the maximum number of antipodal geodesics.

Note that our result only establishes a lower bound on the proportion of geodesics and
is conjectured to be optimal. The only upper bound, however, is the following trivial result:

Theorem 4.8. A subgraph of the hypercube Qn with pn2n−1 edges contains at most p2n−1n!
geodesics.

Proof. Any given edge can be in n! geodesics in a subgraph of Qn: in particular, there are n
places for the edge in the sequence of directions of the geodesic and (n−1)! possible orderings
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of the remaining directions, so n! geodesics in total. Thus, given that each geodesic contains
n edges, a subgraph with pn2n−1 edges has at most pn2n−1·n!

n
= p2n−1n! geodesics.

5. Expected Number of Geodesics in Subgraphs of Qn

In this section, we present some results on the expected number of geodesics of length k in
the hypercube. We include them here because they may be important in finding an upper
bound on the proportion of geodesics in a subgraph discussed in the previous section.

Lemma 5.1. The number of geodesics of length k in Qn is 2n−1
(
n
k

)
(k)!.

Proof. There are 2n ways to choose a starting vertex, and
(
n
k

)
ways to choose an ending

vertex, since there are n possible coordinates to change. From there, there are k! ways to
arrange the directions traversed in the geodesic. Multiplying these and dividing by 2, since
we double count each geodesic, gives us 2n−1

(
n
k

)
(k)! geodesics of length k in total.

Proposition 5.2. The expected number of monochromatic geodesics of length k in an an-
tipodal 2-coloring is 2n−k

(
n
k

)
(k)!.

Proof. Note here that there are 2n2
n−2

ways to color the cube antipodally. Given one
monochromatic geodesic (and its antipodal pair), there are 2n2

n−2−k ways to color the rest of
the cube antipodally. Thus, we have that the expected number of monochromatic geodesics
of length k is, using Lemma 5.1, is, as we are counting two monochromatic geodesics in this
case (he original and its antipodal pair),

2

(
2n2

n−2−k

2n2n−2 · 2n−1
(
n

k

)
(k)!

)
= 2n−k

(
n

k

)
(k)!.

Proposition 5.3. The expected number of monochromatic geodesics of length k in an an-

tipodal subgraph of the hypercube with p edges is
(n2n−2−k

p−k )·2n−k−1(n
k)(k)!

(n2n−2

p )
.

Proof. First, let us compute the total number of antipodal subgraphs with p edges. Note
that we can split all edges into antipodal pairs, of which we can only have 1: there are n2n−2

such antipodal pairs. This gives us
(
n2n−2

p

)
2p possible subgraphs;

(
n2n−2

p

)
possible antipodal

pairs chosen and 2p ways to choose the edges from there. Furthermore, by similar logic, once
one geodesic of length k is chosen, we have just n2n−2−k antipodal pairs left, so the number
of possible subgraphs is

(
n2n−2

p−k

)
2p−k. Therefore, the expected value, using Lemma 5.1 again

for the number of total geodesics, is(
n2n−2

p−k

)
2p−k(

n2n−2

p

)
2p
· 2n−1

(
n

k

)
(k)! =

(
n2n−2−k
p−k

)
· 2n−k−1

(
n
k

)
(k)!(

n2n−2

p

) .
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Proposition 5.4. The expected number of geodesics of length k in a subgraph of the hypercube

with p edges is
(n2n−1−k

p−k )·2n−1(n
k)(k)!

(n2n−1

p )
.

Proof. Note that the total number of subgraphs is simply
(
n2n−1

p

)
, as we are choosing p edges

from the entire hypercube. By contrast, the total number of subgraphs with a particular
geodesic is

(
n2n−1−k
p−k

)
. Thus, by Lemma 5.1, we get that the expected number of geodesics of

length k is (
n2n−1−k
p−k

)(
n2n−1

p

) · 2n−1(n
k

)
(k)!.

Proposition 5.5. The expected number of monochromatic geodesics of length k in a coloring

of the cube with p red edges and n2n−1 − p blue edges is
2n−1(n

k)(k)!·
(
(n2n−1−k

p−k )+(n2n−1−k
p )

)
(n2n−1

p )
.

Proof. Here, we can simply use Proposition 5.4 twice to achieve this expected value, as each
of the colors can be thought of as a subgraph of the cube. This gives us that the expected
number of monochromatic geodesics of length k is(

n2n−1−k
p−k

)
· 2n−1

(
n
k

)
(k)!(

n2n−1

p

) +

(
n2n−1−k
n2n−1−p−k

)
· 2n−1

(
n
k

)
(k)!(

n2n−1

n2n−1−p

)
Since

(
n2n−1−k
n2n−1−p−k

)
=
(
n2n−1−k

p

)
and

(
n2n−1

n2n−1−p

)
=
(
n2n−1

p

)
, this is the same as, after some

combining and simplification,

2n−1
(
n
k

)
(k)! ·

((
n2n−1−k
p−k

)
+
(
n2n−1−k

p

))
(
n2n−1

p

) .

Proposition 5.6. There exists a partition of the edges of the hypercube into disjoint antipodal
geodesics.

Proof. We prove a stronger statement: there exists a partition into disjoint antipodal geodesics
whose order of directions traversed is exactly the same. Note that this is evidently true for
n = 2, we prove the general statement by induction.

Now, assume we know that it is true for n. Consider Qn+1. Within it, we can consider the
n-dimensional hypercube ({0, 1}n, 0), which we know can be partitioned into such antipodal
geodesics. Note that each of these geodesics must end at a different point, since the order of
directions traversed is exactly the same and thus the same ending vertex would imply that
the geodesics were the same, contradicting their being disjoint. Thus, from here, we can
attach an edge in the n+ 1st direction to the end of each of these geodesics; these edges are
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distinct since the end vertices are distinct, and this addition creates antipodal geodesics, so
therefore we have a partition of the edges of Qn+1 into disjoint antipodal geodesics.

Thus, our induction is complete, so we are done.

6. Future Work

There are two major unresolved questions. First, the original conjectures on the existence of
a monochromatic geodesic in any antipodal coloring of Qn still remain open; we have shown
their validity for n = 2-7, but the general case is still unresolved. Second, with regard to
the question of the maximum number of antipodal geodesics in a subgraph of Qn with a
fixed proportion of edges, we have presented a conjectured optimal configuration as a lower
bound, but the upper bound has yet to be lowered from the trivial p · 2n−1n!. Resolving
this question is of interest, as well as extending any such results to the maximum number
of geodesics of a particular length k (other than n) in a subgraph with a fixed proportion of
edges.
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