Cylindric Young Tableaux and their Properties

Eric Neyman
Montgomery Blair High School
Silver Spring, Maryland, USA

Mentor: Darij Grinberg

Massachusetts Institute of Technology
Cambridge, Massachusetts, USA

Contents

(L. Introductionl

(2. Preliminary Definitions|

3 F I I . BYmis orl
[3.1. Forward Insertion Algorithms and Examples|
[3.2. The Cylindric Row-Bumping Lemma and its Various Corollaries|

R | . R M| onl
[4.1. Reverse Insertion Algorithms and Examples|
[4.2. Relating Reverse Insertion to Forward Insertion|

6. The Cylindric RSK Correspondence]
[>.1. The Correspondence]
[5.2. Consequences of the Cylindric RSK Correspondence|
[5.3. The Symmetry Property of CRSK|.

6. A Marble-Game Interpretation of Cylindric Tableaux|

(7. Applying Results Concerning Cylindric Tableaux to Skew Tableaux|

8. A Note on Knuth Equivalence for Cylindric Tableaux|
[8.1. Words and Knuth Equivalence|
[8.2. Cyclic Knuth Equivalence,

Cylindric Young Tableaux and their Properties

ABSTRACT. Cylindric Young tableaux are combinatorial objects that first
appeared in the 1990s. A natural extension of the classical notion of a Young
tableau, they have since been used several times, most notably by Gessel
and Krattenthaler [GesKra] and by Alexander Postnikov [Postl §3]. Despite
this, relatively little is known about cylindric Young tableaux. This paper
is an investigation of the properties of this object. In this paper, we extend
the Robinson-Schensted-Knuth Correspondence, a well-known and very useful
bijection concerning regular Young tableaux, to be a correspondence between
pairs of cylindric tableaux. We use this correspondence to reach further results
about cylindric tableaux. We then establish an interpretation of cylindric
tableaux in terms of a game involving marble-passing. Next, we demonstrate
a generic method to use results concerning cylindric tableaux in order to
prove results about skew Young tableaux. We finish with a note on Knuth
equivalence and its analog for cylindric tableaux.

Keywords: Young tableau, cylindric tableau, skew tableau, partition, insertion, RSK
Correspondence, Schur polynomial, Knuth equivalence.

1. Introduction

In 1997, Gessel and Krattenthaler introduced cylindric semistandard Young tableaux
as a modification of the concept of semistandard Young tableaux |[GesKra|. They are
essentially semistandard Young tableaux on a cylinder (the precise structure will be
discussed in the following section). Hence, cylindric Young tableaux do not have a top
row or a bottom row and, in general, are more “symmetric” than regular Young tableaux.

Being a natural extension of the notion of Young tableaux, cylindric tableaux have
been studied by mathematicians during the last two decades. Among these are Alexander
Postnikov [Post, §3] and Peter McNamara [McN], as well as Jennifer Morse and Anne
Schilling [MorSchl, §3.1]. The purpose of this paper is to expand this field through new
results and applications.

In this paper, we begin by defining multi-insertion and reverse multi-insertion for cylin-
dric tableaux, processes analogous to row-insertion and row-deletion for regular tableaux.
We then prove a cylindric analog of the row-bumping lemma, a useful fact in tableau
theory. We proceed to describe and prove an analog of the Robinson-Schensted-Knuth
(RSK) correspondence for cylindric tableaux. This is the principal result of the paper,
as the RSK correspondence for regular tableaux, which is a bijection between pairs of
tableaux and matrices, has a variety of combinatorial applications [Ful, §4.3]. We adapt
one of these applications — the Cauchy identity — to cylindric Schur polynomials (de-
fined in the following section). We proceed to prove a surprising symmetry property of
our cylindric RSK correspondence.

We then demonstrate an interpretation of cylindric tableaux in terms of people passing
marbles in circles. We note a possible application of this interpretation to information
theory. Next, we show how results concerning cylindric tableaux may be used to prove
analogous results concerning regular tableaux (including skew Young tableaux).

Finally, we define a natural variation on Knuth equivalence for words that represent
cylindric tableaux, which we call cyclic Knuth equivalence. We demonstrate that, despite
the naturality of this extension, cyclic Knuth equivalence is not a useful construct for
cylindric tableaux, as all tableaux of the same weight are cyclic Knuth equivalent under
our definition. We believe that finding a variation on Knuth equivalence that does not
place all cylindric tableaux of the same content in the same equivalence class would be
an important development in cylindric tableau theory.

2. Preliminary Definitions

Definition 2.1. Fix positive integers k and n, with n > k, for the rest of this paper,
excluding the examples given in the paper. The cylinder Cy, is the quotient Z*/(—k,n —
k)Z. In other words, Cy, is the set of equivalence classes of points modulo a shift by the
Z vector (—k,n — k) [Postl, §3].1

Definition 2.2. A cylindric partition A on Cy,, is a weakly decreasing sequence of integers
.3 A1, A0s Ap, - - -, infinite in both directions, such that for any integer m, \,, = A\pax +
n—k.

In this paper, we will think of cylindric partitions in terms of their pictures in the plane
— analogues of Young diagrams. Drawn below is a cylindric partition; here, k = 7 and

IThe fact that the shift is described as —k and n — k, instead of —k and m for some m, is a standard
in cylindric tableau theory [Postl §3]; the reason for this is not in the scope of this paper.

n = 12, and the part of the sequence of the partition that is shown below is 6, 4, 2, 2, 2,
2,1,1, -1, =3, =3, =3, =3, —4.

AAAAAAAAAAA

-4-3-2-10123456

Definition 2.3. The set of cylindric partitions will be denoted Cylpar.

In this paper, the term “partition” will be used to refer to cylindric partitions, unless
stated otherwise. The term “regular” will be used as the negation of “cylindric” (e.g.
non-cylindric partitions will be called regular partitions).

Definition 2.4. A point is a pair of integers (x,y). In the diagrams in this paper, a
point (x,y) is represented on the Cartesian plane by a square of side length 1. Note that
the positive x-axis points downward and the positive y-axis points to the right, as usual
in the theory of Young diagrams. We say that a point P = (x,y) is in a partition A
(denoted P € A) if y < A,. Visually, P is in \ if it lies inside (i.e. to the left of the right
boundary of) A when A is drawn on the plane as above.

Definition 2.5. A plane row is a set of all points with the same z-coordinate. We say
that the point (z,y) is in plane row . A row is the projection of a plane row onto Cy .
Thus, row z (i.e. the projection of plane row x onto the cylinder) is the same as row
x + mk for any integer m.

Definition 2.6. A plane column is a set of all points with the same y-coordinate. We say
that the point (z,y) is in plane column y. A column is the projection of a plane column
onto Cg . Thus, column y (i.e. the projection of plane column y onto the cylinder) is the
same as column y + m(n — k) for any integer m.

Definition 2.7. A boz is the projection of a point (x,y) onto Cy,. Thus, the box with
coordinates (z,y) is the same as the box with coordinates (x — mk,y + m(n — k)), for
any m € Z.

Definition 2.8. For any point P, w(P) is the projection of P onto Cy,. For any box B
in Cy.,, 7 1(B) is the set of all points P such that 7(P) = B. For any plane row r, 7(r)
is the projection of r onto Cy . For any row s in C,, 7 *(s) is the set of all plane rows
r such that 7(r) = s.

Definition 2.9. A box B is in a partition A (denoted B € A) if P € X\ for some P €
7~1(B). Note that, because of the periodicity of cylindric partitions, if P € X for some
P e n Y(B), then P € \ for all P € 7 !(B).

Definition 2.10. Let A and p be two cylindric partitions. We say that p C A if, for all
integers m, we have i, < A,.

Definition 2.11. For any cylindric partitions A and p such that ¢ C A\, a box B is in
A/p (denoted B € A\/p) if B € A, but B & u. (Note that the set of boxes in \/u is finite,
since there are k rows and in each row the i’th row has \; — p; boxes in A\/p.) Similarly,
point P isin A/u (also denoted P € A/u) if P € A, but P & p.

Definition 2.12. Given two cylindric partitions A and p such that p C A, a semistandard
cylindric tableau with outer shape A and inner shape p is a map R from the set of all
boxes in A/u to a totally ordered set A such that

(a) R(ﬂ'(($,y1))) S R(W((ZE?yQ))) for any r, yi, and Y2 such that (37,91) and (QZ',QQ) are
in A\/p, and y; < yo; and

(b) R(m((z1,9))) < R(m((xe,y))) for any xq, x5, and y such that (x1,y) and (x9,y) are
in A\/p, and 1 < 5.

The inner and outer shapes of a semistandard cylindric tableau are regarded as part of the
tableau’s data; that is, the tableau “remembers” its A\ and p. A semistandard cylindric
tableau can be drawn on the plane, with each square (z,y) holding the entry that the
corresponding box 7((xz,y)) maps to under the tableau (see the diagram below). Visually,
a semistandard cylindric tableau’s entries increase weakly from left to right along its rows
and increase strictly from top to bottom along its columns. We say that R is bounded
by A and p, and that the shape of R is \/u.2 We call A the alphabet of R. Frequently,
alphabets of semistandard cylindric tableaux are Z* or Z. For the rest of this paper, the
alphabets of all tableaux will be implicit. The elements of an alphabet are referred to as
letters. For any particular semistandard cylindric tableau, the image of a box under the
tableau is referred to as the entry in the box; the images of the boxes of \/u under the
tableau are collectively called the entries of the tableau.

Note that, if 4 Z A, then there are no semistandard cylindric tableaux of shape A/p.

For the rest of this paper, unless stated otherwise, the word “tableau” will be used to
refer to semistandard cylindric tableaux.

Below is an example of a cylindric tableau. In this example, & = 3 (i.e. the vertical
period of the tableau is 3) and n = 6 (which means that the horizontal period of the
tableau is 6 — 3 = 3). The entry in a given box of a cylindric tableau in the diagram
is the image of the box under the tableau map. In such diagrams, the top row that is
drawn is row 0 of the tableau.

2While it is often convenient to think of a tableau’s shape as the set of boxes between two partitions
(hence the notation), A/ here is a notation for the pair (A, p); the pair of partitions may carry more
information than simply the set of boxes between them.

Notice that the top row that we draw is repeated at the bottom of the diagram. In this
paper, we will draw tableaux as they are drawn above: the top row will be repeated at
the bottom, separated by a dashed line. This convention allows us to distinguish, for

example, between the following two tableaux, the first of which has £ = 1 and the second
of which has k = 2.

Definition 2.13. The set of semistandard cylindric tableaux of shape A/u, for A\, pu €
Cylpar, will be denoted SSCT(A/p).

Definition 2.14. Given R € SSCT(\/u), a box B is in R (denoted B € R) if B € A\/p.

Definition 2.15. Let R be a cylindric tableau with alphabet A. The weight of R (also
known as the content of R) is the map wt(R) : A — N, where wt(R)(7) is the size of the
preimage of ¢ under R (that is, it is the number of boxes that, in R, contain 7). Here, we
use N to represent the set of natural numbers, including 0.
When A = {1,2,3, ...}, the weight of R is written as the sequence (wt(R)(1), wt(R)(2),
..), and can be truncated at a place where all following terms are zero. For example,
the cylindric tableau shown below has weight (1,3,1,0,1).

T2

Definition 2.16. Given an alphabet A, for every a € A, let z, be a variable. For any
two a, b € A, z, and z; are distinct variables. We will denote the family (z,).ea by x; it
will be called a wvariable set.

Definition 2.17. Given a tableau R, we will define the weight monomial of R with

variable set x, denoted x"*"¥) as follows:
th(R) — H xawt(R)(a) — H R(B)
a€A B, box in R

We use R(B) above to denote the entry of R in B.
For example, if R is the tableau that is shown as an example in Definition [2.15] then

x"tH) = 232575

Definition 2.18. Given two cylindric partitions g and A such that ¢ C A, the Schur
polynomial of \/p with variable set x, denoted s),,(x), is a power series of bounded
degree, defined as follows:

Sx/u(x) = Z XM,

RESSCT (/1)

Definition 2.19. A horizontal strip is a pair A/ of partitions g and A, with u C A,
such that none of the boxes in \/p are in the same column. We say that a set S of boxes

forms a horizontal strip if there exists a horizontal strip h such that S is the set of boxes
in h.3

3. Forward Internal Insertion and Multi-Insertion

3.1. Forward Insertion Algorithms and Examples

Definition 3.1. Given R € SSCT(\/u), a box B = 7((i,J)) is an inside cocorner of R
if B¢ p, but 7((i —1,7)) € pand 7((4,5 — 1)) € p. Visually, B is an inside cocorner of
R if it is to the right of (outside) p, but the boxes to the left of and above B are inside
. Note that B is not necessarily a box of R, as it is possible that B is outside A as well.

Given a cylindric tableau R and an inside cocorner B of R, we can internally insert B
into R, in a process that is similar to regular row-insertion, using the algorithm below,
which takes a cylindric tableau and an inside cocorner of the tableau as input and outputs
a new tableau (we will later prove that the output is indeed a valid semistandard tableau).
This algorithm is inspired by the internal row insertion for skew tableaux described by
Bruce Sagan and Richard Stanley [SagStan| §2].

Algorithm 3.2 (Internal Row-Insertion).

Function Insert(tableau R, box B) > B must be an inside cocorner of R.

1: p := inner shape of R.

2: A := outer shape of R.

3: if B € R then:

4: x := entry of R that is in B.

5: end if.

6: Expand p to include B and remove B from R.

7. if B ¢ X then: > This happens only when B was not in R to begin with.
8: Expand A to include B.

9: else:

10: while = # null do:

11: r := row of B.

12: if x is greater than or equal to every entry in R in row r + 1 then:

13: B := leftmost box of row r + 1 that is not in A.

14: Put z in B and expand A to include B. > We say that x lands in B.
15: x := null.

16: else:

17: B := box of the leftmost entry of R in row r 4+ 1 that is greater than z.
18: x' := entry of R in B.

19: In R, replace 2’ in B with x.
20: x:=ux.
21: end if.
22: end while.
23: end if.

31t is worth noting that A/u is a horizontal strip if and only if A\; > u; > Aj41.

24: return R.

Note that, although we use the phrase, “internally insert B into R,” the result of the
process is that B, which was previously in R, is no longer in R.

Example 3.3. Suppose we want to apply Algorithmto (R, B), where R is the tableau
shown below and B is the box that contains 1 in R. We say that we bump the 1 from B
(or that the 1 is bumped from B).

We then replace the leftmost entry greater than 1 in the following row (which is 2) with
1. We say that the 2 is bumped by the 1.

In the final step, there is no entry greater than 7 in the following row, and the 7 lands at
the end of the following row, to the right of the 3. The insertion process is now complete.

Remark 3.4. Consider any box C of R. Since on line[19 of Algorithm[3.3 an entry only
replaces an entry greater than it, it follows that the entry in box C' can only decrease (or
disappear) throughout the row-insertion process, and does decrease if and when an entry
s bumped out of C' and a new entry takes its place.

We now draw the final tableau above, this time with more repeating rows in the
diagram.

Above in green and red are two bumping routes, defined as follows.

Definition 3.5. Consider a point P such that 7(P) is internally inserted into a tableau
R. Construct the bumping route of P, a list of points, as follows:

e Add P to the bumping route when 7(P) is internally inserted into R.

e Say that a point @@ = (r,y) is added to the bumping route when an element z is
bumped out of 7(Q). When z is inserted into a box B € m(r + 1), add the point in
7~ Y(B) that is in plane row 7 + 1 to the bumping route.*

Later, we will prove two important results: that Algorithm necessarily outputs a
valid semistandard tableau and that each box in a bumping route (except the first one)
is weakly left of the box before it (we say that bumping routes trend weakly left).

Remark 3.6. Algorithm[3.9 always ends after a finite number of steps.

Proof. Let M be the largest entry of R. Every iteration of the loop beginning on line [10},
x increases; however, x cannot be greater than M. Thus, the loop must terminate and
the algorithm must end. O]

It is also possible to internally row-insert multiple entries at the same time. The
algorithm below is the algorithm for one-step multi-insertion. It takes a tableau and a
regular insertion queue (defined below).

Definition 3.7. A queue is a data structure that operates on a “first-in-first-out” basis:
when elements are added to a queue, they are added to the end of the queue, but when
elements are removed from a queue, they are removed from the beginning of the queue.
An insertion queue is a queue of pairs, such that the first element of each pair is a letter
(element of the (implicit) alphabet) and the second element of each pair is a row.

4Since bumping routes are lists of points and not lists of boxes, the bumping routes in green and red
in the diagram above are different bumping routes.

10

Definition 3.8. An insertion queue is regular if, for any two elements of the queue (x4,)
and (xg,7), where x; < , (71,7) comes before (x5, 7) in the queue.’

The algorithm below (the subroutine to our multi-insertion algorithm) outputs a pair,
whose first element is a map from a subset of Cy,, to the alphabet of the tableau taken
as input (though the map itself is not necessarily a valid semistandard tableau), and
whose second element is an insertion queue corresponding to the entries bumped from
the tableau via insertion of the entries in the insertion queue that is taken as a parameter.

Algorithm 3.9 (One-Step Multi-Insertion).

Function OneStepMulti(tableau R, insertion queue q) > q must be regular.
1: A\ := outer shape of R.
2: q' := empty insertion queue.
3: while q is not empty do:
4: Remove the first element from q. Let it be (x,r).
5: if x is greater than or equal to every entry in R in row r then:
6: B := leftmost box of row r that is not in A.
7: Put x in B and expand A to include B. > A is not necessarily a valid
partition anymore.
8: else:
9: B := box of the leftmost entry of R in row r that is greater than z.
10: x' := entry of R in B.
11: In R, replace 2’ in B with x.
12: Add (z/;r+1) to q'.
13: end if.
14: end while.
15: return (R, q’). > R is not necessarily a tableau.

Remark 3.10. The insertion queue returned by Algorithm is reqular.

Proof. Let (R',q') = OneStepMulti(R, q) for a tableau R and a regular insertion queue
q. Suppose, for contradiction, that q’ is not regular. Then there exist two elements of ¢,
(y1,7) and (y2,7), such that y; < ys, but (y2,7) comes before (y;,r) in q'. Let 2, and x,
be the entries that bumped out y; and ys, respectively. Then (zq9,r — 1) and (x1,r — 1)
were in ¢, with (29,7 — 1) coming first. Since q is regular, it follows that zo < z;. We
also know that x; < y;, since xy bumps out y;. It follows that xy < 7 < y; < yo. Since
Y1 < Y2, y1 is to the left of yo in R, and y; > x5. It follows that ys is not the leftmost
entry of R in its row that is greater than z5 at the time that x5 is to be inserted, which
is a contradiction, because then x5 does not bump out y,. Thus, q' is a regular insertion
queue.]

Remark 3.11. Let R be a cylindric tableau and let q; and qo be two regular insertion
queues that are permutations of each other. Let (Ry,q)) = OneStepMulti(R,q;) and
(R2,q5) = OneStepMulti(R, q2). Then Ry = Ry and q} is a permutation of 5.

5The fact that the second element of a pair in an insertion queue is a row should be kept in mind. For
example, if k = 3, (3,5) cannot come before (2,2) in a regular insertion queue, since 2 and 5 would
refer to the same row.

11

Proof. Consider a particular row r and all of the pairs of q; and gy to be placed in r
(in other words, all pairs whose second element is 7). These are the same pairs, because
qi1 is a permutation of qo. Furthermore, regularity defines an ordering (least to greatest)
among these pairs based on their first elements, so these pairs are also in the same order.
Since insertion into row 7 is only affected by the entry being inserted into row r and the
entries already in row r, it follows that row r is the same in Ry and Ry after the two
insertion queues have been processed. Since this is true for all r, it follows that Ry = Rs.

Since R; = Ry, the same entries were bumped out of R to produce R; and Rs (though
not necessarily in the same order). These bumped-out entries, along with the row numbers
of the rows immediately below the ones from which they were bumped out, constitute
the pairs in ¢} and qj, respectively. These pairs being the same, it follows that ¢} is a
permutation of g. O

Finally, using Algorithm [3.9] we can internally row-insert multiple boxes into a tableau
simultaneously. The following algorithm does this, taking a tableau and a set of boxes
that forms a horizontal strip as input (with the precondition that, when the inner shape of
the tableau is expanded to include these boxes, it remains a valid partition) and outputs
a tableau (we will prove later that the output is indeed a valid semistandard tableau).

Algorithm 3.12 (Full Multi-Insertion).

Function FullMulti(tableau R, set S of boxes) > The inner shape of R plus the
boxes in S must be a valid partition; no box in S is in the inner shape of R. Also, S
must form a horizontal strip.

1: p := inner shape of R.
2: A\ := outer shape of R.
3: (o := empty insertion queue.
4: Choose any integer 7. > We prove later that the choice of r is immaterial.
5 h:=r.
6: while h # r + k do: > k is the vertical period of R.
7: L := list of boxes in row r in .S, from left to right.
8: while L is not empty do:
9: B := first element of L.
10: Remove B from L.
11: if B € R then:
12: x := entry of R in B.
13: Put (z,h + 1) into qq.
14: Expand p to include B and remove B from R.
15: else:
16: Expand p and A to include B and remove B from R.
17: end if.
18: end while.
19: h:=h+1.
20: end while.
21: RQ = R.
22: 1 := 0.
23: while g; is not empty do:

o
e

(Rit1,qit+1) := OneStepMulti (R;,q;). > This line inserts all elements of ¢; into
R; and denotes the resulting tableau and queue as R;.; and ¢;.1, respectively.

12

25: 1: =1+ 1.
26: end while.
27: R:= R;.

28: return R.

Example 3.13. Let R, drawn below, be the input tableau into Algorithm [3.12] and let
the red boxes in the diagram below constitute S.

“““““ 77375
o |2 6]
Y
123y

Suppose that we pick row 0 (the top row) to be our starting row r. We expand u to
include the red boxes, deleting those boxes from R and putting corresponding entries
into qo. The 2 is deleted from row 1, and it is to be inserted into the following row, so
we add (2,2) to qo. We then add (1,0) (the same as (1, 3), since the vertical period of R
is 3) and (2,0) into qo. We let Ry be our current tableau.

Jo = (27 2)’ (170)7 (270) Ry =

We now enter the One-Step Multi-Insertion subroutine. For this subroutine, set q = q,
and let g’ be the empty queue. We remove (2, 2) from q and insert 2 into row 2, bumping
out the 4 and adding (4,0) to q'. We remove (1,0) from q and insert 1 into row 0,
bumping out the 2 and adding (2,1) to q'. We remove (2,0) from q and insert 2 into
row 0, bumping out the 3 and adding (3,1) to ¢’. Finally, with q empty, we exit the
subroutine. We let q; and R; be the returned insertion queue and the returned tableau,
respectively; they are shown below:

q1 = (4,0),(2,1),(3,1) Ry =

After another run through the subroutine, we have:

13

Notice that a box got added to R,. This happened because, when (3,1) was removed

from ¢ in the subroutine, the largest entry of row 1 was 2, so 3 was added at the end of

row 1 and nothing was bumped out. For the same reason, g, now has only two elements.
After a third iteration of the subroutine, we have:

q3 is empty R3 =

Now that q3 is empty, we exit out of the loop, let R equal R3, and return R.

If S consists of only one box, then Algorithm functions as Algorithm [3.2] This
means that when we prove certain properties of full multi-insertion (such as the fact that
it returns a valid semistandard tableau), we will be showing the analogous properties to
be true of single insertion as well.

Remark 3.14. Algorithm [3.19 always ends after a finite number of steps.

Proof. Consider any entry that is originally bumped out of R. This entry will bump
out a larger entry, and that entry will bump out a larger entry, and so on. However,
the bumped-out entry can only be as large as the largest entry that was originally in R.
Therefore, any chain of bumps will eventually end with a landing; when this happens to
every chain, the queue becomes empty and Algorithm terminates. O

The concept of a bumping route is defined for multi-insertion as well. At the beginning,
an entry is taken out of a box and is put into an insertion queue. When the corresponding
pair of the insertion queue is processed, the entry bumps out an entry from a box in the
following row; this entry then becomes part of a pair that is added to an insertion queue
and later bumps out another entry. This continues until an entry is placed at the end of
a row. A list of points corresponding to the list of boxes involved in this process (for a
fixed initial box) forms a bumping route.

Proposition 3.15. For any R and S satisfying the preconditions of Algorithm|[3.13, after
every bump that occurs during the execution of Algorithm[3.13 with inputs R and S, R is
a valid semistandard tableau. Also, for every bumping route created through the insertions
caused by Algorithm each point of the bumping route (except the first) is weakly left
of the point before it — that is, all thus generated bumping routes trend weakly left.

14

Proof. Let A be the alphabet of R. Define QuA = AU {—o00,00}. We compare —oc and
oo to all elements of QuA as such: —oo < a < oo for all @ € QuA (including a = —oc0
and a = 00). That is, we have a quasiorder on QuA: in addition to the ordering of A, we
have —oo < a < oo for all a € A, as well as —o0 < —00, —00 < 00, and 0o < 0.

In this proof, we will think of a tableau as a map from Cy, (not just a part of Cy,,) to
QuA, where the images of all boxes in the inner shape of the tableau are —oo and the
images of all boxes not in the outer shape of the tableau are co. A similar technique was
used by Donald Knuth in his studies of regular tableaux [Knu, §3]. If R is a tableau by
our regular definition, then we will denote R to be the corresponding tableau by our new
definition. Note that, by looking at R, we know R and the two partitions that bound R.

For this proof, we will modify line[]of Algorithm [3.9as such: “B := box of the leftmost
entry of R in row r that is not less-than-or-equal-to x” (note that “greater than” and
“less than or equal to” are not opposites in our quasiorder). This will allow us to think
of an element of S being bumped out as —oo being inserted into the corresponding row,
and it will allow us to think of a box landing in a square as bumping out oo and the oo
being inserted “infinitely far to the right” in the following row.

Definition 3.16. Given a tableau R by our new definition, define the inner shape of R
to be the partition containing exactly the —oco’s in R. Define the outer shape of R to be
the partition that does not contain exactly the oo’s in R.

Our definition above is consistent with the partitions of R during the execution of
Algorithm “ by looking at the placement of —oo and oo in R we can determine R’s
inner and outer shape. This consistency includes line[16of Algorithm [3.12} —o0 is placed
into B, and thus B becomes part of both the inner and outer shapes of both R and R.

Suppose that we know that, at some point during the execution of Algorithm [3.12]
the entries of R increase weakly from left to right and strictly from top to bottom (that
is, Ris semistandard). Then it follows that R is bounded by two partitions (otherwise,
the columns would not be strictly increasing, or the rows would fail to have the form
(infinitely many —oo’s, some elements of A, infinitely many oc’s)). Thus, for the first
part of our_proposition, it suffices to show that, at every point during the execution of
Algorithm , the entries of R increase weakly from left to right and strictly from top
to bottom. R

We will prove our proposition by induction. We know that R (and therefore R) is a
valid semistandard tableau to start with and that all bumping routes (all with 0 boxes
thus far) trend weakly left. Suppose that R (and ﬁ) is a valid semistandard tableau after
every bump up to but not including the insertion of an entry x into a box B (in the case
that B € S, we have x = —oo for the purposes of insertion into ﬁ) Suppose further
that all bumping routes created up to this point in the execution of Algorithm have
trended weakly left. We will show that, after the insertion of x into B, R remains a
valid semistandard tableau, and the bumping route that B becomes a part of after this
insertion still trends weakly left.

Just before the insertion of x into B, R is semistandard. Let r be the row containing
box B. Since x is put into the leftmost box containing an entry not less-than-or-equal-to
x, all boxes directly to the left of B (that is, all boxes in the row of B to the left of B)
have entries that are less than or equal to x; furthermore, since x is less than the entry
previously in B, we have that z is less than or equal to all entries directly to the right
of B. Similarly, we have that x is less than all entries directly below B (in the column
of B below B). To show that R continues to be a valid semistandard tableau after the

15

insertion of z into B, it thus remains only to show that x is greater than all entries
directly above B when it is inserted into B. .

Suppose that x is inserted into B during the formation of R;, for some j > 0 (that is,
on the j’th call of Algorithm or, if j = 0, before line 21| of Algorithm .

Case 1: j = 0. In this case, the bumping route containing B only has B, so clearly it
trends weakly left. Also, by the horizontal strip restriction on S, we have that all entries
above B are —oo, as desired.

Case 2: j > 0. In this case, let B’ be the box that is immediately above B (in row
r—1), let C’ be the box in row r —1 from which the x that is inserted into B was bumped

(during the formation of ﬁj_\l), and let C' be the box immediately below C’ (in row 7).
First we show that the bumping route that includes B after the insertion of = into B
trends weakly left after B is added to it — that is, that B is weakly to the left of C.
To show this, it suffices to show that the entry in C' in ﬁj,\l is not less-than-or-equal-to
x (because of how B is chosen). (Note that the entry in C' in R/J: is the entry in C'

just before z is inserted into B. This is because during the formation of R;, pairs of the
insertion queue with second element r are processed based on the first elements’ boxes in
row r — 1 from left to right; since x was in C’, all entries thus far processed came from
boxes in » — 1 to the left of C’, and thus landed in boxes in r to the left of C, by our
inductive hypothesis about bumping routes.)

Suppose, for contradiction, that the entry in C in ﬁj: — call it y — is less than or

equal to x. Then]?J_\g (or R, in the case of j = 1), which contains z in C’, cannot contain
y in C. Since y is in C'in R;_;, but is not in C' in R;_,, we have that y is inserted into C

during the formation of ﬁj,\l We know that C' ¢ S, because C' is below C” (and S is a
horizontal strip). This means that y is bumped out of row r—1. In fact, since y is inserted
into row 7 during the formation of R;_;, it follows that y is bumped out of row r — 1

during the formation of ﬁj_\g — a nonsensical concept and, therefore, a contradiction if
j =1. If j > 1, then by our inductive hypothesis, we know that y is bumped from a box
that is weakly to the right of C” during the formation of R; 5. Hence, a box weakly to

the right of C’ contains an entry that is not greater-than-or-equal-to y in E,\Q , while C’

—

contains x in R;_» — a contradiction, since y < x. Therefore, our inductive step holds
for the part of our proposition that concerns bumping routes.

We now know that B is weakly to the left of C' and that B’ is weakly to the left of C”.
Thus, the entry in B’ right before the insertion of x into B is less than or equal to the
entry in C” at this time, which is in turn less than z (since x was previously bumped out
of C"). Therefore, x is greater than the entry in B’ (and all the entries directly above B’)
when it is inserted into B, as desired.

Having completed our induction, we have proven our proposition. O

Suppose that S contains only one element (call it B). In this case, the precondition
of the inner shape of R plus B being a valid partition is equivalent to B being an inside
cocorner. Thus, with only one element in S, Algorithm is reduced to Algorithm
[3.2] Therefore, Algorithm necessarily produces a valid semistandard tableau, and the
bumping route of any P € 7~!(B) trends weakly left.

Remark 3.17. The output of Algorithm[3.19 does not depend on the choice of v in line
[4 of Algorithm[3.13.

16

Proof. Take two values of » — call them r; and ro — and perform Algorithm on a
tableau R and a set S of boxes using r; and ry. For any i, let R;(r1) be R; produced
when the algorithm is run using » = r; and let R;(r2) be R; produced when the algorithm
is run using r = ro. Similarly, let q;(r1) be g; produced when the algorithm is run using
r =ry and let q;(r2) be g; produced when the algorithm is run using r = 5.

We will proceed by induction on i. We know that Ry(r1) = Ry(rs) since the same boxes
are taken out of R either way. We also know that qo(r;) contains the same elements as
qo(72), and that both insertion queues are regular, as entries were taken out from R within
any particular row from left to right (and thus from least to greatest). Suppose that we
have R,(r1) = Ry(r2) and the queues q4(rq) and q,(r2) are regular and are permutations
of each other (contain the same elements) for all g < i for some positive i. Then, by
Remark we have R;(r1) = R;(r2), and the queues q,;(r1) and q;(r2) are permutations
of each other. Furthermore, both ¢;(r;) and q,(rs) are regular, by Remark Having
completed our induction, we have shown that R;(r1) = R;(r2) for all ¢, including the final
value that ¢ takes on. Thus, the output of Algorithm does not depend on the choice
of r. O

3.2. The Cylindric Row-Bumping Lemma and its Various Corollaries

Lemma 3.18. Let R be a tableau on which multi-insertion is performed. Then for all
rows v of R, the list of entries bumped out of r in the order in which they were bumped
out 1s weakly increasing.

Proof. 1t suffices to show that for any two entries bumped consecutively from a given
row s (“consecutively” meaning that nothing is bumped out from s in the meantime),
the first of the two entries that is bumped is less than or equal to the second entry that
is bumped. We will proceed by induction on the moment of time the second entry is
bumped. Suppose that, for every row s, any two entries e; and e, that are bumped
consecutively from s (in that order) satisfy e; < es, up to but not necessarily including
the bumping of entries a; and ay (in that order) from a row r. We will show that a; < as.

Suppose that a; € S (meaning that the box containing a; lies in S) and as € S. Since
ay is bumped first, a; is to the left of as, and so a; < ay. Suppose that a; € S and as € S.
Then a; and ay are both originally in row 7 in R (a9 is originally in row r because it is
bumped out consecutively after a; is), with a; to the left of as. Again, it follows that
a; < ay. Clearly, it cannot be the case that a; ¢ S and ay € S. (Note that this is why
we do not need a base case for our induction: we do not use our inductive hypothesis for
the entries originally bumped from R.)

Now, suppose that a; ¢ S and ay € S. Let b; and by be the entries that bump out
a1 and aq, respectively. We have that b is inserted into r before b, is. It follows that
by is bumped from row r — 1 before by is (because queues work on a first-in-first-out
basis). It follows by our inductive hypothesis that b; < bs. Since by and by are inserted
consecutively into row r, it follows that b is placed strictly to the right of b;. Therefore,
a1 < ag, as desired. O

Definition 3.19. Let H be a bumping route (created by an insertion algorithm, such
as Algorithm [3.2) and Algorithm [3.12)). For all plane rows r such that H has a point in
r, H(r) will denote that point. L(H) will denote the number of points in H, and for
1 <1< L(H), H; will denote the i’th point of H.

17

Define a total ordering on points as follows: P = (z1,y1) < Q = (29, ys) if and only if
(a) 1 < mo (P is above @), or (b) x; = x5 and y; > y» (P and) are in the same row,
and P is weakly right of @)). (The > sign is intended.)

Theorem 3.20 (Cylindric Row-Bumping Lemma). Let R be a tableau and S be a set of
boxes such that R and S satisfy the input preconditions for Algorithm[3.19 Let G and H
be two bumping routes created when Algorithm [3.13 is performed with R and S as input,
such that Gy < Hy. Then for all plane rows r such that G(r) and H(r) are defined, H(r)
is strictly to the left of G(r) and the bump that extended G to include G(r) came after
the bump that extended H to include H(r).

Proof. Let s be the plane row that H; is in. Since Gy < H; = H(s), Gy is in s or is
above s. If G () is in a plane row above s, then all elements of G are above all elements
of H, meaning that G(r) and H(r) are not both defined for any r; in this case, we are
done. Otherwise, we know that G(s) is to the right of H(s): if G; = G(s), then G; must
be to the right of H; in order for G; < H; to hold; if G(s) = G, for some m > 1, then
G(s) must be to the right of H(s) because w(H(s)) is a box that was originally removed
from the tableau, and thus H(s) is permanently to the left of the tableau. Similarly, we
know that the bump that extended G to include G(s) came after the bump that extended
H to include H(s): if G; = G(s), then G(s) is to the right of H(s), which means that
it is bumped out later (since the original bumps proceed left to right across rows); if
G(s) = Gy, for some m > 1, then G reaches plane row s on a later call of Algorithm [3.9]

Suppose that H(r) is to the left of G(r) and that the bump that extended G to include
G(r) came after the bump that extended H to include H(r) for all such that s <r < t.
We are to show that H(t) is to the left of G(¢) and that the bump that extended G to
include G(t) came after the bump that extended H to include H ().

Let u = 7(t). Let g and h be the entries bumped out of 7(G(t — 1)) and w(H (t — 1))
when G and H were extended to include G(t—1) and H(t—1), respectively. If G(s) = G,,
for some m > 1, then G was extended to include G(t) on a later call of Algorithm
than the call on which H was extended to include H(¢); thus, in this case, the second
part of our claim is obviously true. If G(s) = Gy, then (h,u) and (g, u) are in the same
queue, but (h,u) comes first by our inductive hypothesis; it follows that the insertion of
h into row u came before the insertion of g into row u. Thus, the bump that extended G
to include G(t) did indeed come after the bump that extended H to include H(t).

By our inductive hypothesis, h was bumped out of row u — 1 before g was. It follows by
Lemma [3.1§ that h < g. Let i’ be the entry in w(H(t)) at the time that g is inserted into
row u. We know that ' < h (Remark [3.4). Thus, &/ < g. It follows that, at this time,
g is greater than or equal to the entry in 7w(H(t)) and all entries to the left of m(H(t))
in row w. Thus, g is inserted in row wu strictly to the right of H(t). Therefore, H(t) is to
the left of G(t), as desired.

Having completed our induction, we have shown that H(r) is to the left of G(r), and
that the bump that extended G to include G(r) came after the bump that extended H
to include H(r), for all plane rows r such that G(r) and H(r) are defined. O

Corollary 3.21. Let G and H be two bumping routes such that, for some plane row r,
H(r) is strictly to the left of G(r). Then Gy < Hy, and for all plane rows s such that
G(s) and H(s) are defined, H(s) is strictly to the left of G(s).

Proof. Suppose, for contradiction, that G; > H;. Clearly, G; # Hy, because otherwise GG
and H would be the same bumping route and it would not be the case that H(r) is strictly

18

to the left of G(r) for some r. Thus, G; > H;, meaning that H; < G;. By Theorem m,
this implies that G(r) is to the left of H(r), a contradiction. Thus, Gy < H;. The rest of
the corollary follows directly from Theorem [3.20] O]

Corollary 3.22. Let G and H be two bumping routes such that, for some plane row r,
the bump that extends G to include G(r) came after the bump that extended H to include
H(r). Then Gy < Hy, and for all plane rows s such that G(s) and H(s) are defined, the
bump that extends G to include G(s) came after the bump that extended H to include
H(s).

Proof. Suppose, for contradiction, that G; > H;. Clearly, G; # Hy, because otherwise
G and H would be the same bumping route and it would not be the case that the bump
that extends G to include G(r) came after the bump that extended H to include H (r) for
some r. Thus, G; > H;, meaning that H; < G. By Theorem [3.20] this implies that the
bump that extends H to include H(r) came after the bump that extended G to include
G(r), a contradiction. Thus, G; < H;. The rest of the corollary follows directly from
Theorem [3.201 O

Corollary 3.23. No point can be part of two different bumping routes that are created
by the same application of multi-insertion. (Bumping routes of two different points are
considered different, even if the points correspond to the same boz.)

Proof. Suppose, for contradiction, that this is false. Then there exists a point P that
is part of two different bumping routes G and H. Without loss of generality, assume
that Gy < H; (we know that Gy # H; because G and H are different bumping routes).
Let r(P) be the plane row that P is in. Then G(r(P)) and H(r(P)) are both defined.
It follows by Theorem that H(r(P)) is to the left of G(r(P)). However, by our
assumption, H(r(P)) = G(r(P)) = P. This is a contradiction. Thus, no point can be
part of two different bumping routes. n

Definition 3.24. Given any bumping route H, the cylindric bumping route w(H) is the
list of boxes 7(H1), m(Hs), ..., 7(Hrm)). Given any cylindric bumping route K, the set
of bumping routes H such that 7(H) = K is denoted 7~ (K).

Corollary 3.25. No boz is part of two different cylindric bumping routes. No box appears
twice or more among the elements of any cylindric bumping route.

Proof. Suppose for contradiction that a box B is part of two different cylindric bumping
routes J and K. Let P be any element of 77'(B). Then there exists a bumping route
G € 7 !(J) such that P € G. Similarly, there exists a bumping route H € 7 !(K) such
that P € H. Clearly, G and H are distinct bumping routes, since 7(G) # w(H). This is
a contradiction, by Corollary [3.23]

Suppose for contradiction that a box B appears twice or more among the elements of a
cylindric bumping route K. Let x be the entry bumped out of B as a result of the bump
that extends K to include B for the first time. Let y be the entry bumped out of B as a
result of the bump that extends K to include B for the second time (we know that this
is a bump, not a landing, because B is already in the tableau); let z be the entry that
bumps y out during this bump. We know that z > x, because bumped-out entries along
a bumping route increase; we know that y < x by Remark [3.4] It follows that z > y, a
contradiction, as z bumps out y. Thus, no box appears twice or more among the elements
of any cylindric bumping route, as desired. O

19

It follows from Corollary that the entry that is in a particular box can only
change once during an application of multi-insertion. This means that when an entry
is inserted into a box, that entry remains in the box throughout the rest of the multi-
insertion process. (In turn, this means that once an entry lands in a box, it cannot later
be bumped from the box.) An entry cannot be bumped out more than once during an
application of multi-insertion.

Corollary 3.26. Let R be a tableau on which multi-insertion is performed. Then for all
rows r of R, the list of entries inserted into r in the order in which they were inserted is
weakly increasing.

Proof. Suppose, for contradiction, that this is not the case. Then there exists a row r
such that an entry is inserted into 7, and then a smaller entry is inserted into r. Choose
any s € 7 1(r). Let P and Q be points in s such that an entry a is inserted into P, and
then b < a is inserted into (). Let G be the bumping route that contains P and H be the
bumping route that contains ¢ (we know that G and H are unique from Corollary .
From Corollary [3.22] we know that H; < G;. From Theorem [3.20] we conclude that P
is to the left of Q).

At the moment when () becomes part of H, a has already been inserted into P, and
from Corollary we know that a stays in P for the rest of the insertion process. This
means that b is inserted into) while a larger entry a is in P, to its left. This is a
contradiction. Therefore, for all rows r of R, the list of entries inserted into r in the order
in which they were inserted is weakly increasing. O]

Corollary 3.27. Let G and H be two bumping routes. Then G < Hy if and only if
GL(G) < HL(H)~

Proof. We will first prove that if Gy < H;, then Grg) < Hpm). Suppose, for contra-
diction, that this is not the case — that there exist two bumping routes G and H such
that G < Hy, but Gy > Hpgy. It follows that the final point of G is in the same
plane row as the final point of H, or it is in a lower plane row. If it is in the same plane
row, it follows by Theorem that G is to the right of Hy gy, which means that
Gr@) < Hpmy — a contradiction.

If the final point of G is in a lower plane row than the final point of H, let r be the
plane row such that Hyy = H(r). Then G(r) is defined, as otherwise it would not be
the case that G < H; (as then G would start lower than H). It follows by Theorem
that H(r) is to the left of G(r). However, since H(r) = Hymy, n(H(r)) is a box
where an entry lands. This means that an entry lands in 7(G(r)) as well. We know
from Corollary that an entry could not have landed in 7(G(r)) and then have been
bumped out. It follows that the insertion that extends G to include G(r) is a landing,.
This is a contradiction, as then the final point of G cannot be in a lower plane row than
the final point of H.

Now we will prove that if Grq) < Hp), then G; < H;. Suppose, for contradiction,
that G; > H,. We know that GGy # Hy, because then G and H are the same bumping
route, and G'r(q) = Hpmy. If G1 > Hy, then, by the first part of this corollary (which we
have proved), Hy) < Gr(g). This is a contradiction. Therefore, if Gy < Hpx), then
Gl < H;. OJ

Definition 3.28. Let A\ be the outer shape of a tableau R. Let S be a set of boxes such
that R and S satisfy the input preconditions of Algorithm Let R’ = FullMulti(R, S)

20

and A be the outer shape of R’. Then the new set associated with R and S, denoted
N(R,S), is the set of boxes in \'/A.

Corollary 3.29. For any tableau R and set of boxes S such that R and S are valid inputs
into Algorithm|[3.13, N (R, S) forms a horizontal strip.

Proof. Suppose, for contradiction, that N(R,S) does not form a horizontal strip. Then
there are two boxes B,C' € N(R,S), with C immediately below B. Then there exist
two points P and @Q such that P € 7=}(B), Q € n~1(C), and P is immediately above
Q). Let G and H be the bumping routes that P and () are a part of, respectively; thus,
P =G and Q = Hyy. If L(H) =1 (meaning that C' was not in the tableau to begin
with), P cannot be above @), because then B would have had to be in A to begin with,
contradicting our supposition that B € N(R,S). If L(H) > 1, consider Q" = Hpm)-1.
We know that 7(P) is not in the outer shape of R to begin with. This means that 7 (P)
was added to R. By Corollary , once an entry has landed in 7(P), it is never bumped
out. Thus, if Hy)—1 were P or any point directly to the right of P, () would end at that
landing point. This means that Hyz)—1 is in the row of P, but to the left of P (and thus
to the left of @). This is a contradiction, as bumping routes trend weakly left. Thus,
N(R, S) necessarily forms a horizontal strip. O

4. Reverse Insertion and Reverse Multi-Insertion

4.1. Reverse Insertion Algorithms and Examples

Analogous to the process of row-deletion for non-cylindric tableaux, Algorithm can be
reversed in a process that we will call “reverse row-insertion.” The algorithm for reverse
row-insertion is shown below. We will prove later that reverse row-insertion is indeed a
process that reverses internal row-insertion, and that the process always results in a valid
semistandard tableau. The algorithm takes a tableau R and an outside corner B of R,
defined as follows:

Definition 4.1. Given R € SSCT(\/u), a box B = 7((4,7)) is an outside corner of R if
Be X but m((i+1,75)) ¢ X and 7((¢,7 + 1)) € A. Visually, B is an outside cocorner of
R if it is to the left of (inside) A, but the boxes to the right of and below B are outside
A. Note that B is not necessarily a box of R, as it is possible that B is inside p as well.

Algorithm 4.2 (Reverse Row-Insertion).

Function Reverselnsert(tableau R, box B) > B must be an outside corner of R.
1 = inner shape of R.
. A := outer shape of R.
if B € R then:
x := entry of R that is in B.
end if.
Shrink A to exclude B and remove B from R.
if B € y then: > This happens only when B was not in R to begin with.
Shrink p to exclude B.
else:
while = # null do:

H
@

21

11: r := row of B.

12: if x is less than or equal to every entry in R in row r — 1 then:

13: B := rightmost box of row r — 1 that is in p.

14: Put z in B and shrink p to exclude B. > We say that x lands in B.
15: 2 := null.

16: else:

17: B := box of the rightmost entry of R in row r — 1 that is less than x.
18: x' := entry of R in B.

19: In R, replace 2’ in B with x.

20: x =1

21: end if.

22: end while.

23: end if.

24: return R.

For an example of reverse row-insertion, the reader may look at Example [3.3] starting
with the last tableau drawn as R and the box with the 7 in the top row drawn as B.
The tableaux obtained after each insertion are the same as the tableaux in Example [3.3]
except in reverse order. The algorithm ends with the original tableau in the example.

Just as a particular box’s entry can only decrease during insertion, the a particular
box’s entry can only increase during reverse insertion, since entries always bump out
smaller entries.

Definition 4.3. Bumping routes for reverse insertion are defined exactly as bumping
routes are defined for insertion. Consider a point P such that m(P) was reverse-inserted
into a tableau R. The reverse bumping route of P is a list of points, constructed as
follows:

e Add P to the reverse bumping route when 7(P) is reverse-inserted into R.

e Say that a point @) = (r,y) is added to the reverse bumping route when an entry x
is bumped out of 7(Q). When x is reverse-inserted into a box B € 7(r — 1), add
the element of 771(B) that is in plane row 7 — 1 to the bumping route.

Since = decreases after every iteration of the loop beginning on line [10] and = cannot
be smaller than the smallest entry in the original tableau, the loop must terminate and
the algorithm must end. Thus, reverse insertion, just like insertion, always ends after a
finite number of steps.

Definition 4.4. An insertion queue is reverse-regular if, for any two elements of the
queue (xq,7) and (xq,7), where x1 < 9, (x1,7) comes after (z2,7) in the queue.

Just as with insertion, one can reverse-insert multiple entries at the same time. The
algorithm below is analogous to Algorithm [3.9} it takes a tableau and a reverse-regular
insertion queue as input and outputs a pair consisting of a map from a subset of Cj, to
the alphabet of the tableau taken as input (though the map itself is not necessarily a
valid semistandard tableau) and an insertion queue.

Algorithm 4.5 (Reverse One-Step Multi-Insertion).

Function ReverseOneStepMulti(tableau R, insertion queue q) > q must be
reverse-regular.

22

1: p := inner shape of R.

2: ¢’ := empty insertion queue.

3: while q is not empty do:

4: Remove the first element from q. Let it be (x,r).

5: if x is less than or equal to every entry in R in row r then:

6: B := rightmost box of row r that is in p.

7: Put = in B and shrink p to exclude B. > p is not necessarily a valid partition
anymore.

8: else:

9: B := box of the rightmost entry of R in row r that is less than z.

10: 2’ := entry of R in B.

11: In R, replace 2’ in B with z.

12: Add (2',r—1) to ¢'.

13: end if.

14: end while.

15: return (R, q’). > R is not necessarily a tableau.

Remark 4.6. The insertion queue returned by Algorithm[{.5 is reverse-regular.

Proof. Let (R',q') = ReverseOneStepMulti(R, q) for a tableau R and a reverse-regular
insertion queue q. Suppose, for contradiction, that ¢’ is not reverse-regular. Then there
exist two elements of ¢, (y1,7) and (ya,r), such that y; > vy, but (y2,7) comes before
(y1,7) in q'. Let z1 and x5 be the entries that bumped out y; and ys, respectively. Then
(x9,7+1) and (zq,7+1) were in q, with (z2,7+1) coming first. Since q is reverse-regular,
it follows that x5 > z;. We also know that x; > i, since ; bumps out y;. It follows
that xo > x1 > y; > yo. Since y; < ¥, y1 is to the right of ¥ in R, and y; < zo. It
follows that y, is not the rightmost entry of R in its row that is greater than z, at the
time that x5 is to be inserted, which is a contradiction, because then x5 does not bump
out y2. Thus, ¢’ is a reverse-regular insertion queue. 0

We can fully reverse-insert multiple entries from a tableau simultaneously using Algo-
rithm [4.5] as a subroutine, in a way analogous to Algorithm [3.12] This algorithm takes a
tableau and a set of boxes that forms a horizontal strip as input (with the precondition
that, when the outer shape of the tableau is shrunk to exclude these boxes, it remains
a valid partition) and outputs a tableau (we will prove later that the output is indeed a
valid semistandard tableau).

Algorithm 4.7 (Reverse Full Multi-Insertion).

Function ReverseFullMulti(tableau R, set S of boxes) > The outer shape of R
minus the boxes in S must be a valid partition; every box in S is in the outer shape
of R. Also, S must form a horizontal strip.

L := list of boxes in row r in S, from right to left.
while L is not empty do:

1: p := inner shape of R.

2: A := outer shape of R.

3: (o := empty insertion queue.

4: Choose any integer 7. > We prove later that the choice of r is immaterial.
5. h:=r.

6: while h # r — k do: > k is the vertical period of R.
T

8:

23

9: B := first element of L.

10: Remove B from L.

11: if B € R then:

12: x = entry of R in B.

13: Put (x,h — 1) into qp.

14: Shrink A to exclude B and remove B from R.

15: else:

16: Shrink g and A to exclude B and remove B from R.
17: end if.

18: end while.

19: h:=h-—1.

20: end while.

21: Ry := R.

22: 1 := 0.

23: while g; is not empty do:

24: (Rit1,9i11) := ReverseOneStepMulti (R;, q;). > This line inserts all elements of
q; into R; and calls the result R;;;. ;41 is the insertion queue of bumped-out cells.

25: 1:=1+ 1.

26: end while.

27 R = R;.

28: return R.

Example 4.8. Let R, drawn below, be the input tableau into Algorithm [4.7] and let the
red boxes in the diagram below constitute S.

Suppose that we pick row 1 to be our starting row r. We shrink A to exclude the red
boxes, deleting those boxes from R and putting corresponding entries into qo. The 5 is
deleted from row 1, and it is to be reverse-inserted into the previous row, so we add (5, 0)
to qo. We then add (3,0) to qo ((5,0) is added first because entries are processed from
right to left, not from left to right as done in Algorithm [3.12)). Finally, (6,1) is added to
qo. We let Ry be our current tableau.

do = (57 0)7 (37 0>7 (67 1)

We now enter the One-Step Reverse Multi-Insertion subroutine. We remove (5,0) from
q and insert 5 into row 0, bumping out the 4 (the rightmost entry strictly less than 5)

24

and adding (4,2) to q'. We remove (3,0) from ¢ and insert 3 into row 0, bumping out
the 2 and adding (2,2) to q’. We remove (6, 1) from g and insert 6 into row 1, bumping
out the 2 and adding (2,0) to ¢’. Finally, with q empty, we exit the subroutine. We let
q; and Ry be the returned insertion queue and the returned tableau, respectively; they
are shown below:

q = (4,2),(2,2),(2,0) Ry =

The process continues as follows:

92 = (27 1)? (17 2)

|
. 2 6
3 is empty Ry = 1 2|4 |
Rzl

Now that q3 is empty, we exit out of the loop, let R equal R3, and return R.

Since entries only bump out smaller entries and no bumped-out entry can be smaller
than the smallest entry originally in the tableau, any chain of bumps eventually ends. It
follows that Algorithm [4.7] always terminates.

In the same way that the concept of a bumping route applies to multi-insertion as
well as single-box insertion, the concept of a reverse bumping route applies to reverse
multi-insertion as well as reverse single-box insertion.

4.2. Relating Reverse Insertion to Forward Insertion

Theorem 4.9. Let R be a tableau and S be a set of boxes such that R and S satisfy the
input preconditions of Algorithm[3.14 Let R’ = FullMulti(R, S) and S’ = N(R, S) (see
Definition . Let B be a box in S. Choose P € 7= Y(B) and let H be the bumping
route of P. Let P' = Hpgy and let H' be the reverse bumping route of P when Algorithm
is called on R and S'. Then, for all 1 < i < L(H), H; = Hygy41—i- That is, H'
consists of the same points as H, but in reverse order.

25

Proof. We first note that the preconditions for Algorithm are satisfied: S’ forms a
horizontal strip (Corollary that can be deleted from the outer shape of R'.
Take any R and S as described in the theorem statement. We know by definition that,
for all P € |J m~Y(B) (with P, H, and H’' defined correspondingly as in the theorem
Bes

statement), H{ = P' = Hy(y). Suppose that, up to but not including the reverse-insertion
of an entry x, all reverse bumping routes created by the reverse multi-insertion process
have retraced the bumping routes created by the multi-insertion process. Let A be the
box containing x prior to this reverse insertion. Select any Q € 7 1(A). Let H be the
bumping route containing () that was made by the multi-insertion algorithm and H’ be
the reverse bumping route containing () that was made by the reverse multi-insertion
algorithm. Let j be such that H} = Q. (Thus, H} = Hi(my41-5.) We will show that
Hi = Himy-j-

Let r be the plane row immediately above the plane row containing). Let C' be the
box into which z is to be reverse-inserted if H},, = Hpu)—;. Suppose, for contradiction,
that = is not reverse-inserted into C.

We know that was bumped out of C' in the forward multi-insertion process. Let y be
the entry that replaced z in C. By Corollary [3.25, we know that x and y were the only
two entries ever to be present in C' during the forward multi-insertion process. Since all
bumping routes thus far have been retraced, it follows that no entry has thus far been
reverse-inserted into C'. Thus, y is in C' when z is to be reverse-inserted into 7(r). Since
y < x and x is not reverse-inserted into C, it follows that y is not the rightmost entry in
7(r) (or r) that is less than z. Let z be the rightmost entry in r that is less than x, and
let z be in box D.

Let V' be the box in plane row r onto which C' projects. Let W be the box in plane row
r onto which D projects. We know that WW contains an entry less than x; however, this
was not the case when y was inserted into C' during the forward multi-insertion process
(because then z, which is smaller than z, would have been to the right of x). Since the
entry in D changes, W must be part of a bumping route. Call this bumping route G,
and let G’ be the corresponding reverse bumping route to G created during the reverse
multi-insertion process. Since z is still in W by the time that x is to be inserted into
plane row r, the first point of G’ must either be below the first point of H’ (in which
case G’ reaches plane row r on a later call of the subroutine), or be to the left of the first
point of H' (in which case it comes later in the queue and continues to be later in the
queue, because of the way that the elements of the queue are processed). This means
that HL(H) = H{ < G/1 = GL(G)-

Since V is to the left of W, H, is to the left of G,. By Corollary [3.21] it follows
that Gy < H;. From this, by Corollary , it follows that G < Hp). This is a
contradiction. Therefore, x is reverse-inserted into C'.

Having completed our induction, we have proven that all reverse bumping routes retrace
their corresponding bumping routes during reverse multi-insertion. O

Remark 4.10. Since all bumping routes are retraced, multi-insertion followed by reverse
multi-insertion results in the original tableau. That is, for any R and S satisfying the
preconditions of multi-insertion,

ReverseFullMulti(FullMulti(R, S), N(R, S)) = R.

By letting S consist of one box, we see that Algorithm retraces the bumping route
of Algorithm and returns the original tableau. This means that everything henceforth

26

that we prove about reverse multi-insertion also applies to reverse insertion of a single
box.

Definition 4.11. The negation function Neg takes a tableau R and, for every entry x
in R, changes x to . For any two entries # and y such that x < y, we have y < 7. If
the entries of our tableau are integers, we can think of the Neg operator as taking the
additive inverse of every entry in the tableau and returning the result.

Definition 4.12. Define the flip function on a cylindric partition A as follows: Flip()) is
the partition such that a point (z,y) is in Flip(\) if and only if it is not in A. Equivalently,
Flip(\) is the cylindric partition with sequence (..., —1 — A, =1 — Ao, =1 — A_q,...).

Consider the map M : Z? — Z? that takes (z,y) to (—z, —y). Since M takes (—k,n —
k)Z to itself, it follows that M induces an endomorphism E of Cy,. If we think of a
cylindric tableau as a partial map from the cylinder to a totally ordered set, then, for a
cylindric tableau R, define Flip(R) to be the map created by applying E on the cylinder,
followed by R, followed by Neg. If R has inner and outer shapes p and A\, respectively,
then Flip(R) has inner and outer shapes Flip(\) and Flip(u), respectively.

We also define the Flip function for boxes and sets of boxes. If B is a box, then Flip(.S)
is the endomorphism £ described above applied to B. If S is a set of boxes, Flip(S) is
E applied to S.

Simply put, let R be a tableau and B be a box of R that contains ¢. Choose any
P € 771(B) and let P have coordinates (a,b). Let C' = m((—a,—b)). Then C' = Flip(B)
and, in the tableau Flip(R), C contains ¢.

Visually, Flip takes a tableau, rotates it by 180°, and negates all of the tableau’s entries.
Similarly, Flip takes a set of boxes and rotates it by 180°.

Remark 4.13. Let R be a tableau. Then Flip(R) is also a tableau.

Proof. Clearly, Flip(R) is bounded by two valid partitions — a partition remains valid
after a 180° rotation; equivalently, Flip negates all elements of a partition’s sequence, but
also reverses their order, keeping the sequence weakly decreasing.

Let B and C be two boxes in Flip(R) such that C' is directly to the right of B. Then
Flip(B) is directly to the right of Flip(C), so, in R, Flip(B) contains an entry that is
weakly greater than the entry in Flip(C'). This means that, in Flip(R), B contains an
entry that is weakly less than the entry in C', as desired.

Similarly, let D and E be two boxes in Flip(R) such that D is directly below E. Then
Flip(D) is directly above Flip(F), so, in R, Flip(E) contains an entry that is strictly
greater than the entry in Flip(D). This means that, in Flip(R), E contains an entry that
is strictly less than the entry in D, as desired. Therefore, Flip(R) is a valid semistandard
tableau. O

Remark 4.14. Flip is an involution — that is, FlipoFlip = I, where I is the identity
function.

Remark 4.15. Let S be a set of bozxes that forms a horizontal strip. Then Flip(S) forms
a horizontal strip.

Theorem 4.16. Let R be a tableau and S be a set of boxes such that R and S satisfy the
input preconditions of Algorithm[{.7. Call Algorithm[{.7 on R and S; simultaneously, call
Algorithm on R' = Flip(R) and S" = Flip(S). Then R = Flip(Ry). Furthermore,
for every value of t, the tableau in Algorithm[3.12 after the t’th insertion is the flip of the

27

tableau in Algorithm after the t’th insertion; the same number of insertions occurs
in the two algorithms.

Proof. We first note that the preconditions for Algorithm are satisfied: Flip(R) is a
valid semistandard tableau (Remark and Flip(S) forms a horizontal strip (Remark
that can be added to the inner shape of Flip(R) and keep the partition valid.
We will show our theorem to be true by simultaneously performing steps of the reverse
multi-insertion algorithm on R and S and the forward multi-insertion algorithm on R’
and 5.

Clearly, R, = Flip(Ry), as Ry is R without the boxes in S, and Ry, is Flip(R) without
the boxes in Flip(.5).

Let 71 be the value of r chosen in line [4] of Algorithm [4.7] Then choose —ry for the
value of r in line [4 of Algorithm [3.12]

Definition 4.17. The corresponding element of an element (x,r) of an insertion queue
is (T, —r). Two insertion queues q; and gy are corresponding queues is they contain the
same number of elements and, for all ¢, the i’th elements of q; and g, are corresponding
elements.

Let qo be the original queue of elements taken out of R during the reverse multi-
insertion process. Let g be the original queue of elements taken out of R’ during the
forward multi-insertion process. We first note that qo and q; are corresponding queues.
Since qo contains pairs containing all entries in the boxes of S in R and q; contains pairs
containing all entries in the boxes of S” in R/, and these entries are in rows whose numbers
are negatives of one another, we know that the elements of qo and qj, can be paired such
that each element is paired with its corresponding element. In order to show that these
entries are in the same order, consider two boxes B, C' € S and their corresponding boxes
B’ = Flip(B) and ¢’ = Flip(C). If B and C are in the same row, suppose, without
loss of generality, that B is to the left of C. Then C is deleted from R (and its entry
is put into qg) before B is deleted from R. B’ is to the right of C’, so the entry in C’
is put in a pair that is put into q; before the entry in B’ is put into a pair that is put
into qj. Thus, C' comes before B and C” comes before B’ as desired. If B and C' are in
different rows, suppose, without loss of generality, that B is deleted from R before C' is.
Since rows are processed from bottom to top beginning with row r; in the reverse multi-
insertion process and they are processed from top to bottom beginning with row —ry in
the forward multi-insertion process (and the rows of B’ and C” are opposite to those of B
and C, respectively), we conclude that B’ is deleted from R’ before C’ is. Thus, for any
two entries in qo, their corresponding entries in g are in the same order relative to each
other as are the two entries in qo. We conclude that g and qf, are corresponding queues.

We have shown that, when the respective subroutines are called on Ry and Ry, the
tableaux are flips of each other and the queues referred to as q by the subroutines are
corresponding. Since the queues referred to as ¢’ by the subroutines are initially empty,
they are also corresponding. Suppose that we move through both algorithms step by
step, examining the tableaux and queues after every insertion. Suppose that, up to but
not including the insertion of x into row s in the reverse insertion process, the queues
referred to as q in the subroutines are corresponding, the queues referred to as ¢’ in the
subroutines are corresponding, and the two tableaux are flips of each other. Let V be
the tableau in the reverse insertion process right before the insertion of x into row s and
V' be the corresponding tableau in the forward insertion process (thus, V' = Flip(V)).

28

We will show that the two pairs of queues continue to correspond and that V' = Flip(V)
after the insertion as well.

Suppose that x takes the place of y in row s in V. Then y is the rightmost entry smaller
than z in s. By our inductive hypothesis, in V', 7 is in row —s, and, by definition, 7 > 7.
Suppose that there is an entry left of 7 in V' that is greater than ; call this entry Z.
Then in V| z < z and z is to the right of y; this is a contradiction. Thus, T takes the
place of 7 in row —s in V’. The first entries in the queues called q by the subroutines are
deleted, so these queues continue to correspond. Corresponding entries ((y,s — 1) and
(g, —s + 1)) are added to the queues referred to as ¢’, so these queues also continue to
correspond. Thus, our inductive step holds, as desired.

We have completed our induction. Since both algorithms end when their respective
queues (which are corresponding and thus have the same length) are empty, the two
algorithms terminate after the same total number of insertions, and, after each successive
insertion, the two tableaux remain flips of one another. O

Definition 4.18. Let © be the outer shape of a tableau R. Let S be a set of boxes such
that R and S satisfy the preconditions of Algorithm[1.7] Let R’ = ReverseFullMulti(R, S)
and p’' be the outer shape of R. Then the reverse new set associated with R and S,
denoted N7'(R, S), is the set of boxes in u/p/.

We will now create alternative inputs and outputs for the functions FullMulti and
ReverseFullMulti. Each algorithm can now take a pair (R,.S) (instead of two arguments
R and S) and returns a pair (R, S’), the first element being the tableau generated by
the algorithms and the second being:

e S"=N(R,S) for FullMulti; and
o 5= N7Y(R,S) for ReverseFullMulti.

We will also define Flip((R,S)) to be (Flip(R), Flip(5)).

Corollary 4.19.
ReverseFullMulti((R, S)) = Flip(FullMulti(Flip((R, 5)))).

Proof. Given R and S, since, after all insertions have been accounted for, the tableaux
returned by Algorithm and Algorithm [3.12] are flips of one another, the tableaux
returned by two algorithms must be flips of one another. Thus, flipping the tableau
returned by Algorithm [3.12| results in the tableau returned by Algorithm 4.7 Since
FullMulti(Flip((R, S))) is the flip of ReverseFullMulti((R, S)), it follows that N~*(R, S)
is the flip of N(Flip((R, S))), as desired. O

We can use Theorem to prove about reverse multi-insertion much of what we
proved about multi-insertion.

Remark 4.20. Given R and S satisfying the preconditions of Algorithm[{.7, Ry is a valid
semistandard tableau. Furthermore, after every insertion that occurs while Algorithm[{.7]
is being performed (including during the subroutine), R is a valid semistandard tableau.

Proof. We know from Theorem that any value of R that appears during the reverse
multi-insertion process, starting from Ry, is the flip of a value of R that appears during
the forward multi-insertion process when it is applied to Flip(R) and Flip(S), starting

29

from Flip(R)g. We know that all values of R starting from Ry during forward multi-
insertion are indeed valid semistandard tableaux from Proposition [3.15] Since the Flip
operator preserves valid semistandard tableaux (Remark , R is a valid semistandard
tableau after every insertion, as desired. O]

Remark 4.21. The choice of r in line[{] of Algorithm[{.7 is irrelevant.

Proof. We have shown that ReverseFullMulti(R, S) = Flip(FullMulti(Flip(R), Flip(5))),
where the r chosen in the forward insertion process is the opposite of the r chosen in
the reverse insertion process. However, the r chosen in the forward insertion process is
immaterial (Remark [3.17). Thus, the choice of 7 in the reverse insertion process cannot
matter either. O

Remark 4.22. If (R, S") = ReverseFullMulti((R, S)), then S’ forms a horizontal strip.

Proof. By Corollary [4.19, we know that
ReverseFullMulti((R, S)) = Flip(FullMulti(Flip((R, 5)))).

Since the Flip function preserves horizontal strips (Remark and FullMulti re-
turns a set of boxes that forms a horizontal strip (Corollary , we conclude that
Flip(FullMulti(Flip((R, S)))) returns a pair whose second element does indeed form a
horizontal strip. O

Remark 4.23. Let R be a tableau and S a set of boxes on which reverse multi-insertion
s performed. Then for all rows r of R, the list of entries bumped out of r in the order in
which they were bumped out is weakly decreasing.

Proof. Let R = Flip(R) and S’ = Flip(S). By Theorem [4.16 the reverse insertion
tableau is the flip of the forward insertion tableau after every time that an insertion
is completed in both algorithms. Also, during the formation of Ry and Rj, entries are
bumped out in the same order. This means that if L = a4, ao,...,a,, is the list of entries
bumped out of a row r during the reverse multi-insertion process, the list of entries
bumped out of —r during the forward multi-insertion process at the same point during
the process is @y, az, ..., G-

By Lemma 3.18| a1, as, . . ., @, is a weakly increasing list. Therefore, L = ay,as,...,an
is a weakly decreasing list, as desired. O

Analogously, we can use Corollary to prove that, given a row r of a tableau R on
which reverse multi-insertion is performed, the list of entries inserted into 7 in the order
in which they were inserted is weakly decreasing.

Proposition 4.24. ReverseFullMulti and FullMulti are inverse operations.

Proof. In order to make notation less cumbersome, we will shorten the names of the
operations as follows:

e ReverseFullMulti to RFM;
e FullMulti to FM; and
e Flip to F.

30

We have shown that REM(FM((R, S))) = (R, S) (Remark [4.10) — that is, RFM o FM =
. (The fact that the second element of the output pair is S follows from the fact that the
boxes added back to R after being removed are the ones that are originally removed.) It
remains to show only that FM o RFM = 1.

Consider the following facts:

e From Remark 410t
RFM o FM = I (1)

e From Remark [4.14}
FoF=1 (2)

We proceed as follows:
Adding F to the left of both sides of and applying , we have

FoRFM =FoFoFMoF =IoFMoF =FMoF.
Adding FM to the right of both sides, we have
FMoFoFM =FoRFMoFM =Fol=F. (3)
Now adding F to the right of both sides of and applying , we have
REMoF =FoFMoFoF =FoFMol=FoFM.

Adding FM to the left of both sides (here we need Remark for well-definedness), we
have
FMoRFMoF =FMoFoFM.

Applying (3), we have
FMoRFMoF =FMoFoFM =F.
Adding F to the right of both sides, we have
FMoRFMoFoF =FoF.
Canceling out the F’s, we have

FMoRFM =1,
as desired. O

Having proven this, we have created a bijection between pairs consisting of a cylindric
tableau and a set of boxes that forms a horizontal strip that can be added to the inner
shape of the tableau while keeping the partition valid on the one hand, and pairs consisting
of a cylindric tableau and a set of boxes that forms a horizontal strip that can be removed
from the outer shape of the tableau while keeping the partition valid on the other. This
is the basis of the cylindric Robinson-Schensted-Knuth (RSK) correspondence, which will
be detailed in the following section.

31

4.3. More Results about Reverse Insertion

We can use the bijection proven above in order to prove more results about reverse multi-
insertion, particularly about bumping routes. This is because, while we proved earlier that
forward bumping routes are retraced with reverse multi-insertion (Theorem , before
this Proposition [4.24 we did not prove that FullMulti(ReverseFullMulti((R, S))) = (R, S).
This result allows us to use more extensively what we already know about forward multi-
insertion in order to prove results about reverse multi-insertion.

Remark 4.25. Reverse bumping routes trend weakly right — that s, given a reverse
bumping route G generated by performing reverse multi-insertion on (R,S), G(m) is to
the right of Gy, for all 1 <m < L(G).

Proof. Let (R',S’) = ReverseFullMulti((R,S)). We know that FullMulti((R',S")) =
(R, S). Let G’ be the bumping route that consists of the same points as G (we know such
a G’ exists from Theorem [4.9). G’ trends weakly left, and G has the same points as G,
but in reverse order. Therefore, G trends weakly right, as desired. O

Remark 4.26. (Counterpart of Theorem) Let R be a tableau and S be a set of
boxes such that R and S satisfy the input preconditions for Algorithm [{.7. Let G and
H be two reverse bumping routes created when Algorithm [{.7 is performed with R and
S as input, such that Gy < Hy. Then for all plane rows r such that G(r) and H(r) are
defined, H(r) is strictly to the left of G(r) and the bump that extended G to include G(r)
came before the bump that extended H to include H(r).

Proof. Let G’ and H' be the forward bumping routes that correspond to G and H, respec-
tively (obtained by performing Algorithm on the result of ReverseFullMulti((R, S))).
We know that Gy = G1 < Hi = HJ), 80, by Corollary Gy < H;. By Theorem
[3.20} this means that, for all plane rows r such that G'(r) and H'(r) are defined, H'(r)
is strictly to the left of G'(r). Since H'(r) = H(r) and G'(r) = G(r) for all r, it follows
that H(r) is strictly to the left of G(r).

Let s be any number such that G(s) and H (s) are defined. If G; and H; are in different
plane rows, then G is above Hy, which means that the bump that extended G to include
G(s) came in an earlier call of the subroutine than the bump that extended H to include
H(s). If G; and H; are in the same plane row, let ¢ be the plane row of G; and H;
and let u = 7(t). Let a and b be the entries in 7(G;) and 7w(H;), respectively. Since
G1 < Hy, 7(Gy) is to the right of w(H;), which means that (b,u — 1) is inserted into qq
before (a,u — 1) is. Because of how entries are taken out of and put into new queues in
the subroutine, the pair corresponding to G comes before the pair corresponding to H in
qm for all m. Thus, in this case as well, the bump that extended G to include G(s) came
before the bump that extended H to include H(s). Therefore, for all plane rows r such
that G(r) and H(r) are defined, the bump that extended G to include G(r) came before
the bump that extended H to include H(r). O

Remark 4.27. (Counterpart of Corollary|3.21.) Let G and H be two reverse bumping
routes such that, for some plane row r, H(r) is strictly to the left of G(r). Then Gy < Hy,
and for all plane rows s such that G(s) and H(s) are defined, H(s) is strictly to the left

of G(s).

Proof. Let G' and H' be the forward bumping routes corresponding to G and H. Since
H(r) is strictly to the left of G(r), H'(r) is strictly to the left of G(r). By Corollary

32

3.21} this implies that, for all plane rows s such that G’(s) and H'(s) are defined, H'(s)
is strictly to the left of G’(s), which implies that, for all plane rows s such that G(s)
and H(s) are defined, H(s) is strictly to the left of G(s). It also implies that G| < Hj,
Svhich(,iby Corollary , implies that G’L(G,) < H j:(H,), which implies that G; < H;, as

esired. [l

Remark 4.28. (Counterpart of Corollary ' the proof is entirely analogous, so it is
not given here.) Let G and H be two reverse bumping routes such that, for some plane
row r, the bump that extends G to include G(r) came after the bump that extended H
to include H(r). Then Gy < Hy, and for all plane rows s such that G(s) and H(s) are
defined, the bump that extends G to include G(s) came before the bump that extended H
to include H(s).

Remark 4.29. (Counterpart of Corollary[53.23.) No point can be part of two different
reverse bumping routes that are created by the same application of multi-insertion.

Proof. Suppose that a point P is part of two reverse bumping routes G and H. Let G’
and H' be the corresponding forward bumping routes to G and H. Then P is on both G
and H. By Corollary this is a contradiction. O

Definition 4.30. Given any reverse bumping route H, the cylindric reverse bumping
route m(H) is the list of boxes m(Hy), m(Hs), ..., m(Hpmy). Given any cylindric reverse
bumping route K, the set of bumping routes H such that m(H) = k is denoted 7—!(K).

Remark 4.31. (Counterpart of Corollary) No boz is part of two different cylindric
reverse bumping routes. No box appears twice of more among the elements of a cylindric
bumping route.

Proof. Suppose there is a box B that is part of two different cylindric reverse bumping
routes J and K. Let P be any element of 7!(B). Then there exists a reverse bumping
route G € 7~1(J) and a reverse bumping route H € 7' (K) such that P € G and P € H.
By Remark [4.29] this is a contradiction.

Suppose that a box B appears twice of more among the elements of a cylindric reverse
bumping route K. Choose any H € 7 !(K). Let H' be the corresponding forward
bumping route to H. Then 7(H’) contains B twice or more. By Corollary [3.25] this is a
contradiction. O]

Remark 4.32. (Counterpart of Corollary) Let G and H be two reverse bumping
routes. Then Gy < Hy if and only if Gy < Hrm).

Proof. Let G" and H' be the corresponding forward bumping routes to G and H, respec-
tively. We know that G; = G’L(G/), H, = H’L(H,), Gre) = G, and Hygy = H]. From
Corollary [3.27, we know that G} < Hj if and only if G’L(G,) < Hj:(H,). Therefore, G; < H;
if and only 1 GL(G) < HL(H)-]

5. The Cylindric RSK Correspondence

5.1. The Correspondence

We now present an analog of the Robinson-Schensted-Knuth correspondence for cylin-
dric tableaux. The idea for this correspondence is based on that of Sagan and Stanley
[SagStan, §6, Theorem 6.1].

33

Definition 5.1. Let S be a set and Ty be a set for any s € S. We define the disjoint
union operator | | as follows:

| |7, ={(t.s)ls € S,teT}

ses

Theorem 5.2. Fix two partitions o and 3. Then there exists a bijective mapping

CRSK: || SSCT(a/p)x SSCT(B/u) — || SSCT(A/B)x SSCT()/a)

neCylpar; AeCylpar;
uCa; pCp aCl; BCA

such that for any pu € Cylpar satisfying p € « and p C 5, T € SSCT(a/u), and
U € SSCT(8/p), if CRSK(((T,U), 1)) = (P, Q),\), then wt(T) = wt(P) and wt(U) =
wi(Q).

Proof. For p, T, and U as in Theorem[5.2] we will construct CRSK(((7,U), 1)) as follows:

Algorithm 5.3 (Cylindric RSK).

Function CylindricRSK(((tableau 7', tableau U), partition p)): > p must be the
inner shape of both 7" and U.
P=T.
« := outer shape of T
@ := empty tableau with shape a/a.
1 := smallest entry that is present in any of the boxes in U.
while true do:
S := set of all boxes that, in U, contain %.
(P,S") := FullMulti((P,S)). © That is, P gets assigned to the tableau returned
by Algorithm and S’ gets assigned to the returned set of boxes.
8: Put 7 into @ in all boxes in S’; expand the outer shape of @) to include all boxes
in 5.
9: if 7 is less than the largest entry that is present in any of the boxes in U then:
10: i := smallest entry greater than ¢ that is present in any of the boxes in U.
11: else:
12: Exit the loop.
13: end if.
14: end while.
15: A := outer shape of P.
16: return ((P,Q),).

Example 5.4. Suppose that we start with the following 7" and U:

34

First, i = 1. We let S be the set of boxes that, in U, contain 1 (shown in red in the
diagram of P above). We then perform Algorithm on (P, 95), letting P be equal to
the return tableau and letting S” be the returned set of boxes. We put 1 in @ in all boxes
in S’. The result is shown below. Boxes that are new to P are shown in green; boxes
that are outside (to the right of) the inner shape of P, but will be inside (to the left of)
the inner shape of P after the next call of Algorithm [3.12] are shown in red.

35

Finally, we have ¢« = 5. Since 5 is the largest entry in U, these are our final values of P
and), and they are returned (in addition to their common outer shape) by Algorithm

5.3l

Example 5.5. The following example is shown to demonstrate what happens when, at
some time during the execution of Algorithm (specifically its subroutine, Algorithm
3.12), the inner shape of P is expanded to include boxes that are not present in P (this

is the “Else” in Algorithm on line [15).

We have

Here, the inner shape of P expands to include a box that is not in P. This means that,
despite the fact that two boxes are added to P’s inner shape, only one entry (which is
(1,1)) is added to q in the subroutine. The 1 takes the place of the 2 in row 0, putting
(2,0) into q. The 2 is placed in row 1 (which is empty) and gets placed in the first box
to the right of P’s new inner shape (the box just to the right of the right red box above).
However, 1 is added in @) into both boxes that were added to the inner shape of P during
the subroutine. Thus, we have:

36

The reader should note that P # T and that @) # U. The boxes in P are shifted down
and to the right by one unit from the boxes in T'; the boxes in () are shifter to the right
by one unit from the boxes in U.

For A\, P, and () as in Theorem , we will construct CRSK™*(((P, @), \)) as follows:

Algorithm 5.6 (Inverse Cylindric RSK).

Function InverseCylindricRSK(((tableau P, tableau @), partition A)): > A must
be the outer shape of both P and Q.

1. T :=P.
2: [:= inner shape of P.
3: U := empty tableau with shape 5/8.
4: 1 := largest entry that is present in any of the boxes in Q).
5: while true do:
6: S := set of all boxes that, in @), contain i.
7 (T, 5") := ReverseFullMulti((7},.5)). > That is, T gets assigned to the tableau
returned by Algorithm and S’ gets assigned to the returned set of boxes.
8: Put ¢ into U in all boxes in S’; shrink the inner shape of U to exclude all boxes
in S’.
9: if ¢ is greater than the smallest entry that is present in any of the boxes in @)
then:
10: 1 = largest entry less than ¢ that is present in any of the boxes in Q.
11: else:
12: Exit the loop.
13: end if.

14: end while.
15: p := inner shape of 7'
16: return ((7,U),).

For an example of our inverse cylindric RSK algorithm, the reader may look at Example
5.4}, starting with the last two tableaux drawn as P and @), respectively. The pairs of
tableaux obtained after each call of the subroutine (Algorithm and update of U
are the same as the pairs of tableaux in Example [5.4] except in reverse order. The

37

algorithm ends with 7" and U equalling the T" and U given at the beginning of Example
[b.4] respectively.

Now we will prove that Algorithm [5.3] and Algorithm [5.6| are valid algorithms for
CRSK((T,U), 1) and CRSK™!((P,Q), \), respectively.

Given any «, 3, u € Cylpar such that 1 C o and p C 3, as well as any T € SSCT(«/p)
and U € SSCT(8/u), let CylindricRSK(((T,U), 1)) = ((P,Q), \). Based on our theorem
statement, in order to show that Algorithm5.3]is a valid algorithm for the CRSK function,
we need to show that:

e Every time that Algorithm [3.12]is called from Algorithm [5.3] all preconditions for
Algorithm [3.12] are met.

Algorithm [5.3] terminates;

A € Cylpar;

aCXand 8 C A

P € SSCT(A/B) and @ € SSCT(\/«); and

wt(T') = wt(P) and wt(U) = wt(Q).

Given any «, 8, A € Cylpar such that a C A and 8 C A, as well as any P € SSCT(A\/f5)
and @ € SSCT(\/a), let InverseCylindricRSK(((P, @), \)) = ((7,U), u). Based on our
theorem statement, in order to show that Algorithm [5.6] is a valid algorithm for the
inverse of the CRSK function, we need to show that:

e Every time that Algorithm [4.7] is called from Algorithm [5.6] all preconditions for
Algorithm [£.7] are met.

Algorithm [5.6] terminates;

u € Cylpar;

p < aand p C B

T € SSCT(a/u) and U € SSCT(5/u); and

wt(T') = wt(P) and wt(U) = wt(Q).

Finally, we need to show that Algorithm [5.6) does indeed invert Algorithm [5.3] That is,
we need to show that, for a valid input ((T,U),) into Algorithm ,

InverseCylindricRSK(CylindricRSK(((7,U),) = (T, U), p),

and that, for a valid input ((P,Q),) into Algorithm [5.6)

CylindricRSK(InverseCylindricRSK(((P, @), A))) = (P, @), A).

We will prove these facts below.
Remark 5.7. Every time that Algorithm[3.13 is called from Algorithm all precondi-
tions for Algorithm are met.

Proof. We will proceed by induction. We know that the original P (which equals T') is
a valid semistandard tableau. We also know that p plus the boxes in U that contain the
smallest entry of U (call it m) is a valid partition (because otherwise there would be a

38

box in U containing m that would be below or to the right of a box containing an entry
less than m). Furthermore, any set of boxes that, in a tableau, contain the same entry,
forms a horizontal strip (since otherwise there would be an entry below an entry of the
same value in the tableau). Thus, the preconditions for Algorithm are satisfied the
first time that the subroutine is called.

Suppose that, up to but not including the call of Algorithm when i = j (for some
j > m), the preconditions of the algorithm are satisfied. We know, then, that P is a valid
semistandard tableau at the time of the call when i = j (because Algorithm returns
valid semistandard tableaux). We know that S forms a horizontal strip of boxes (by the
same reasoning as above).

Let p; be the inner shape of P when ¢ = j but before Algorithm is called in that
iteration of the loop. We know that f; is a valid partition. Suppose, for contradiction,
that adding to j; the boxes in S will result in an invalid partition. Let u; be the result
when these boxes are added (by our assumption, p; is not a valid partition). Then one
of the boxes in S (call it B) has a box above it or to its left (call it C') that is neither in
ftj, nor in S.

The boxes that are not in U fall into two categories: boxes in ¢ and boxes not in 5. We
know that any box above or to the left of B that is not in U falls into the first category.
Thus, if C'is not in U, C' € p, and p C p;. It follows that C' € p;, a contradiction. If C'
is in U but is not in p;, then, in U, C' contains an entry that is greater than or equal to
j. We know that C' cannot contain 7 because then it would have been in S. This means
that C' contains an entry greater than j in U. This is a contradiction, as B contains j
and C' is above or to the left of B. Therefore, adding S to p; results in a valid partition.
This means that all preconditions for Algorithm [3.12| are satisfied.

Having completed our induction, we have shown that all preconditions for Algorithm
are met every time that the algorithm is called from Algorithm [5.3] m

Remark 5.8. Algorithm[5.9 terminates.

Proof. By Remark [3.14] we know that the subroutine called from Algorithm always
terminates. The loop in Algorithm terminates as well, as () has a finite number of
boxes (since A\/p has a finite number of boxes for all 4 C) and therefore has a finite
number of distinct entries (values that ¢ can take on). Therefore, Algorithm always
terminates. [

Remark 5.9.)\ € Cylpar.

Proof. Since the subroutine (Algorithm [3.12)) always returns a valid tableau, the final
tableau returned by the subroutine (which is the final value of P) is bounded by a valid
outer shape. This is the partition A that is returned by the algorithm. O

Remark 5.10. a C X and g C .

Proof. Suppose, for contradiction, that o € A. Then there is a box that is in «, but is
not in A. Since at the beginning of the algorithm, « is the outer shape of P, and at the
end, A is the outer shape of P, it follows that the outer shape of P lost at some point
during the algorithm. P is only modified in the subroutine, but in the subroutine the
outer shape of the tableau can only expand. This is a contradiction. Therefore, a C A.
Suppose, for contradiction, that § X\. Then P would not be a valid tableau. This is
a contradiction, as P is returned by Algorithm [3.12] which always returns valid tableaux.
Therefore, 5 C . O

39

Remark 5.11. P € SSCT(\/fB) and Q € SSCT(\/«).

Proof. The outer shape of P is A by definition. The inner shape of P is u, plus the boxes
of U (i.e. the boxes in 3/u). Therefore, the inner shape of P is . P is a semistandard
tableau, as it is returned by Algorithm [3.12] which always returns semistandard tableaux.
Therefore, P € SSCT(A/f).

The boxes of @) are the boxes that are in P but not in 7' (since they are the boxes
that were added to P after every call of Algorithm [.12). Since T' € SSCT(«/p) and
P € SSCT(A\/5), Q consists of all boxes that are in A but not in @ — that is,)’s inner
shape is « and its outer shape is A.

Suppose, for contradiction, that () is not a semistandard tableau. Then there is a box
B in @ that contains an entry (call it b) that is below a box that contains b, or is below
or to the right of a box that contains an entry greater than b.

The first case would imply that S” does not form a horizontal strip. This is a contra-
diction, by Corollary 3.29] In the second case, let C' be a box that is above or to the
left of B that contains an entry greater than b. Consider the tableau that is returned by
Algorithm during the iteration of the loop of Algorithm when i = b; call this
tableau R. B isin S’ (and is therefore in the outer shape of R), but C' gets added to the
outer shape of P on a later call of the loop, and is therefore not in the outer shape of R.
This means that the outer shape of R is not a valid partition. This is a contradiction.
Therefore,) is semistandard. It follows that @ € SSCT(\/«). O

Remark 5.12. wt(7) = wt(P) and wt(U) = wt(Q).

Proof. Algorithm clearly preserves the weight of a tableau. It follows that wt(7T") =
wt(P). In any given iteration of the loop in Algorithm 5.3} |S] is the number of times that
i appears in U, and |S’| is the number of times that ¢ appears in Q. Clearly, |S| = |9’|.
Therefore, wt(U) = wt(Q). O

We have proven all necessary facts about Algorithm[5.3 The proofs of the facts outlined
above about Algorithm have entirely analogous proofs, and, for this reason, are not
provided in this paper.

Next, we show that our algorithms are indeed inverses of each other.

Remark 5.13. InverseCylindricRSK(CylindricRSK(((7,U), 1)) = (T, U), p)

Proof. Let ((P,Q), \) = CylindricRSK(((7,U), u)). We first note that ((P, @), \) satisfies
the input preconditions for Algorithm[5.6; P and @ are both valid semistandard tableaux
with outer shape A (Remark [5.11]).

Define P; and (); to be the values of P and (@), respectively, during the execution of
Algorithm on ((T,U),) while ¢ = j, but before Algorithm is called inside the
loop. Define T and U; to be the values of 7" and U, respectively, during the execution
of Algorithm on ((P,Q),\) while i = j, after Algorithm is called inside the loop.
Define S; to be the set of boxes that, in U, contain j, and N; to be the set of boxes that,
in (), contain j.

Suppose that, for all j > m for some m, P; = T; and U; is the tableau of boxes that, in
U, contain entries greater than or equal to j, with those boxes holding the same entries
as they do in U. We will show that P,, = T}, and that U,, is the tableau of boxes that, in
U, contain entries greater than or equal to m, with those boxes holding the same entries
as they do in U.

40

If m is the largest value that ¢ takes on (that is, it is the largest entry in any box in
U),let V=P and W = Q. Otherwise, let M be the smallest entry in U that is greater
than m (that is, it is the value that i takes on after m in Algorithm and it is the
value that i takes on before m in Algorithm ; let V =Ty and W = Uy;. We know
that FullMulti(P,,, S;) = V, because we know that the tableau returned by Algorithm
is Pyy = Ty =V (or is V if m is the largest value that i takes on). Since N, is
the set of boxes that, in @, contain m, it follows that FullMulti((P,,, Sym)) = (V, Nm).
V' is the tableau from which, during Algorithm [5.6] the boxes that, in @, contain m are
removed (in the iteration of the loop following the one in which V' is defined). Thus,
ReverseFullMulti((V, N,,)) = (T, X) for some set of boxes X. By Theorem [£.24] it
follows that 7, = P,, and that X = S,,. From the latter fact it follows that m is placed
in U, in the boxes of S,,. By definition, S,, is the set of boxes that, in U, contain m.
Since W is the tableau of boxes that, in U, contains entries greater than m, with those
boxes holding the same entries as they do in U (by inductive hypothesis or trivially in
the case that m is the largest value that ¢ takes on), it follows that U, is the tableau of
boxes that, in U, contains entries greater than or equal to m, with those boxes holding
the same entries as they do in U. Our induction being complete, we have proven that
P, =T, and U; = U, where t is the smallest value that i takes on. Since T, and U, are the
final values that 7" and U take on in Algorithm [5.6) P, = T in Algorithm [5.3] and p is the
inner shape of T', it follows that ((T7,U), u) is returned by Algorithm [5.6] as desired. [

The proof that CylindricRSK(InverseCylindricRSK(((P, @), \))) = ((P,Q),) is en-
tirely analogous and, for this reason, is not provided in this paper.

Having proven the validity of the outputs of Algorithms [5.3 and [5.6] the outputs’
compliance with the theorem statement, and the fact that the algorithms are inverses of
each other, we have shown the existence of a cylindric RSK correspondence.® O

5.2. Consequences of the Cylindric RSK Correspondence

Just as the RSK correspondence can be used in order to prove many results about regular
tableaux, the cylindric RSK correspondence can be used in order to prove results about
cylindric tableaux. Some such results are shown below.

Theorem 5.14 (Cylindric Cauchy Identity). Given two cylindric partitions « and 3, we

have
D senw®ssnu) = D svsX)snaly)- (4)

u€eCylpar; AECylpar;
uCa;uCp aC\;BCA
where x and 'y are variable sets.

Proof. 1t is easy to see that

Yo se®sauly) = Y xMOy® (5)

peCylpar; neCylpar;

pCosuCp pnCao;uCp;
TeSSCT(a/u);
UeSSCT(B/u)

6Having proven the validity of CylindricRSK and InverseCylindricRSK, we can now refer to them as
they are referred to in the statement of Theorem CRSK and CRSK ™!, respectively.

41

and that

Z sx/8(X)sx/a(y) = Z x" Py (@), (6)

AeCylpar; AECylpar;

aCX;BCA aCX;BCA;
PeSSCT(M\/B);
QEeSSCT(\/a)

The cylindric RSK correspondence establishes a bijection between such pairs (7', U) and
(P, Q) as in equations 5] and [6| Furthermore, the bijection takes a pair (T, U) to a pair
(P,Q) such that wt(T') = wt(P) and wt(U) = wt(Q), meaning that x"T) = x"*) and
yWt) = yWt@Q) Therefore,

§ th(T)ywt(U) — § th(P)ywt(Q)‘
peCylpar; A€Cylpar;
pnCosuCB; aCA;BCA;
TeSSCT(a/p); PEeSSCT(\/B);
UEeSSCT(8/1) QESSCT (M a)
Our theorem statement is therefore proven, by the transitive property of equality. O

Definition 5.15. A standard cylindric tableau is a semistandard cylindric tableau whose
alphabet is 1,2,...,m for some nonnegative integer m, such that each entry of the
tableau’s alphabet appears in exactly one box of the tableau. An example of a stan-
dard cylindric tableau is shown below.

Definition 5.16. Given two cylindric partitions A and p, fy,, will denote the number of
standard tableaux with shape \/pu.

Corollary 5.17. Let o and B be two cylindric partitions and m be a nonnegative integer.
Let M be the set of all partitions p such that u C o, p C B, and o/ contains m distinct
bozes. Let A be the set of all partitions X such that « C X\, 5 C X, and A/ contains m

distinct boxes. Then
" fapudom =D Fyalys: (7)

pneM AEA

Proof. Let a be the number of boxes that are in «, but not in ; let b be the number of
boxes that are in 3, but not in . Then the number of boxes in 5/u is m —a + b. Let
p=m — a+ b. Similarly, the number of boxes in A/« is p.

For any standard tableau T with shape a/p, we have x""7) = z125 ... 2,,. Similarly,
for any standard tableau U with shape (3/u, we have y"*(U) = g9 .. .y,

The left hand side of is the number of pairs of standard tableaux (7,U) with a
common inner shape and outer shapes of o and 3, respectively. It follows that this is the
coefficient of 125 . .. 2, - Y172 . . . yp On the left hand side of .

Similarly, we have that the right hand side of @ is the coefficient of zyxy...2,, -
Y12 - . . Yp on the right hand side of . Therefore, by Theorem , the left hand side
and the right hand side of have the same value, as desired. O]

42

5.3. The Symmetry Property of CRSK

We now prove an important property of CRSK, from which we can then derive more
identities.

Theorem 5.18. Given T, U, and p that satisfy the preconditions of CRSK(((T,U), u)),
let CRSK(((T,U), u)) = (P, @), A). Then CRSK(((U,T), n)) = ((Q, P), A).

Proof. We first note that it is clear that if the preconditions of CRSK(((7,U), u)) are
met, then the preconditions of CRSK(((U,T"), u)) are also met.

We will prove this theorem 7" and U with alphabets (1,2,...,mr) and (1,2,...,my),
respectively; the result for tableaux with other alphabets follows directly by analogy. We
will also assume, without loss of generality, that all elements of {1,2,...,mr} appear
in 7" and that all elements of {1,2,...,my} appear in U (this can be assumed because
otherwise the entries in 7" or U can be “compressed” and my or my reduced).

Define Ty to be T and T}, for 1 < j < my, to be the value of P after line [7] of
Algorithm [5.3|is performed (with input ((T,U), 1)), when ¢ = j. Define Uy to be U and
Uj, for 1 < j < my, to be the value of P after line [7] of Algorithm [5.3]is performed (with
input ((U,T),p)), when ¢ = j.

Define A, ;, for 0 <i < my and 0 < j < myp, to be the outer shape of the tableau with
the same inner shape as T; and containing exactly the boxes that, in 7T}, contain entries
that are less than or equal to j. (That is, A; ; is the right bound on the entries 1 through
jin T;.) Define v; j, for 0 <7 < mgp and 0 < j < my, to be the outer shape of the tableau
with the same inner shape as U; and containing exactly the boxes that, in U;, contain
entries that are less than or equal to j.

We will perform induction on two statements, for all 1 < ¢ < my and 1 < d < my:

(1) Let B be a box. Then d is bumped from B during the formation of 7. if and only
if ¢ is bumped from B during the formation of Uy; and

(2))\c,d = Vd,c-

Suppose that d = 0. Then ., is the inner shape of 7;.. Based on how CRSK works, we
know that A. is the outer shape of the tableau with inner shape that of U, containing
exactly the boxes that, in U, contain entries that are less than or equal to c. It is easy to
see that this equals vy = v4,.. Similarly, if ¢ = 0, then .4 = vgq.. These two facts serve
as our base cases (as it will turn out, base cases for statement are not necessary).

Suppose that statements [(1)| and [(2)] are true for all d < j, for some 1 < j < my. We
will show that they are true for d = j as well.

Suppose that statements and are true for d = j and all ¢ < 4, for some
1 <i < my. We will show that they are true for d = j and ¢ = 7 as well.

We will first prove statement for ¢ and 7 — that is, that, for any box B, j is bumped
from B during the formation of T; if and only if ¢ is bumped from B during the formation
of Uj‘

Choose a particular box B. We will first prove that if j is bumped from B during the
formation of Tj, then ¢ is bumped from B during the formation of U;.

Case 1: In T, B contains j. Since j is bumped from B during the formation of T;
(and is replaced by an entry that is less than j), we know that B € \;;_1/\i—1-1. It
follows from our inductive hypothesis for statement that B € v;_1,;/v;_1,-1, which
means that, in U;_;, B contains ¢. By how CRSK works, we know that an entry is bumped

43

out of B during the formation of U; (since T' contains j in B). Thus, i is bumped from
B during the formation of Uj, as desired.

Case 2: In T, B does not contain j. B contains j in T;_1, s0 B € A\i_1;/Ni—1,j-1.
By our inductive hypothesis on statement , it follows that B € v;;_1/vj_1,-1. Thus,
an entry that is greater than or equal to i is bumped out of B during the formation of
U,. (From Corollary , we know that only one entry is bumped out of B during the
formation of U;.) It remains to show that this entry is indeed 1.

Suppose that in U, B contains 4. Then in U,_;, B contains an entry that is less than
or equal to i. However, an entry that is greater than or equal to 7 is bumped out of B
during the formation of U;. Thus, ¢ must be the entry that is bumped out of B during
the formation of Uj, as desired.

Now suppose that in U, B does not contain ¢. This means that, during the formation
of T;, B is not one of the boxes that is originally removed in the subroutine (that is,
B ¢ S). That is, j is bumped out of B by an entry j” during the formation of 7;. This
means that B € \; ju/\;,_1 j». By our inductive hypothesis on statement , this means
that B € vju;/vjn ;1 — that is, that B contains ¢ in Uj». For all j” < x < j, z is not
bumped from B during the formation of 7;; it follows from our inductive hypothesis on
statement that for all j” < x < j, i is not bumped from B during the formation of
U,. Therefore, i is in B in U;_;. We conclude that 7 is the entry that is bumped out of
B during the formation of U; in this case as well.

Note that we used our inductive hypothesis on statement once, and we used it for
c=1and d =z for j” <z < j (that is, for defined values of ¢ and d); for this reason, we
did not need a base case for this proof.

The converse of the statement that we have proven follows by symmetry. This is not
immediately trivial, because our induction is not symmetric (we induct on d and, for
each d, induct on c¢); however, the reader may notice that, in all cases, the inductive
hypothesis was used only for ¢ < and d < j. Thus, the converse of the statement does
indeed follow by symmetry.

We have shown statement to be true for ¢ = 7 and d = j. Now we show that
statement is true for ¢ =7 and d = j.

Consider the process of formation of T; and consider a particular row r. By Corollary
3.26, we know that all j’s that are bumped into r are bumped into r after all entries less
than 7 are bumped into r. It follows that all j’s that are bumped into r are inserted just
to the right of the rightmost of the following:

e The rightmost entry less-than-or-equal-to j that is in 7;_1; or

e The rightmost entry less than j that is in 7; (in the case that, during the formation
of T;, entries less than j bump out all j’s that were in T;_1).

That is, the j’s are placed just to the right of the rightmost of A;_;; and A; j_1 in row r.

Similarly, during the formation of Uj, the i’s are placed in row 7 just to the right
of the rightmost of v;_;; and v;;_;. By our inductive hypothesis, \;i_1; = v;,-1 and
)\i,jfl =Vj1,-

Since, for any box B in row r — 1, j is bumped from B during the formation of T;
if and only if ¢ is bumped from B during the formation of Uj, it follows that the same
number of j’s are inserted into r during the formation of T; as the number of i’s that are
inserted into r during the formation of U;. Since the leftmost of these insertion locations
is the same (see the previous paragraph), we conclude that the j’s inserted during the

44

formation of T; are inserted into the same boxes as the ¢’s inserted during the formation
of U;. It follows that \; ; = v;;, as desired.

We have completed our induction on ¢ and have shown that statements and are
true for d = 7 and all values of c.

We have completed our induction on j and have shown that statements and are
true for all values d and all values of c.

Let CRSK(((T,U),pn)) = ((P,Q),A) and CRSK(((U,T),u)) = (@', P"),\). We will
show that P = P’ (it will follow by analogy that @ = @', and it will follow that A\ = X).

Define ~;, for 1 < ¢ < mp, to be the outer shape of the tableau with the same inner
shape as P and containing exactly the boxes that, in P, contain entries that are less than
or equal to i; define 7y to be the inner shape of P. Define 7/ analogously for P’. It suffices
to show that, for all 4, v, = ..

7o and 7} are both the outer shape of U, so clearly 7o = 7. For any 1 < i < mpr,
Vi = Amy.i (since P =T,). By how CRSK works, we know that, for any 1 < i < myp,
is the outer shape of U;. Thus, v, = V; ,,,. By statement we know that A\, i = Vim, -
Therefore, v; = 7/, as desired.

Therefore, for any two tableaux 7" and U and partition p that satisfy the precon-
ditions of CRSK(((T,U), n)) and CRSK((U,T),), if CRSK(((7,U), 1)) = ((P,Q),\),
then CRSK(((U,T), 1)) = ((Q, P), \), as desired. O

Corollary 5.19. Given two tableaux P and @) and a partition A that satisfy the pre-
conditions of CRSK™'(((P,Q),)\)) and CRSK™*((Q, P),), let CRSK™'(((P,Q),\)) =
((T,U),). Then CRSK™(((Q, P),\)) = ((U,T).).

Proof. We have that CRSK(((7,U),n)) = ((P,Q),) By Theorem [5.18] we have that
CRSK(((U,T), 1)) = ((Q,P),\). Therefore, CRSK'(((Q, P),\)) = ((U,T), 1), as de-
sired. O

Corollary 5.20. Given a tableau T with inner shape p, CRSK(((T,T), 1)) = ((P, P), A),
for some P and).

Proof. Let CRSK(((T,T),pn)) = ((P,Q),\). We are to show that P = (). By Theorem
5.18 we have CRSK(((7,7T),pn)) = ((Q, P), A). Thus, P = @, as desired. O

Corollary shows that CRSK can be viewed as a bijection that takes a tableau with
outer shape « to a tableau with inner shape a with the weight. This allows us to obtain
some more important results:

Corollary 5.21. Given any cylindric partition o, we have

Z Sa/u(x) = Z Sx/a(X). (8)

peCylpar; AeCylpar;
uCa aCA

It is worth mentioning that setting 8 := a and x = y in Theorem gives us the
following related (but different) result:

E Si/u(x> = E Sg\/a(x)'
ueCylpar; AeCylpar;
pCa aCA

We can use in order to obtain the following result, analogous to Corollary :

45

Corollary 5.22. Let a be a cylindric partition and m be a nonnegative integer. Let M
be the set of all partitions u such that p C a and «/p contains m distinct bozes. Let A
be the set of all partitions X such that « C X\ and A/« contains m distinct bozes. Then

Z fa/u = Zf)\/a-

pneM AEA

Relatedly, we can set § := « in to obtain:

Z fz/u = Zf)%/a

neM AEA

6. A Marble-Game Interpretation of Cylindric Tableaux

Definition 6.1. Consider any partition «. The marble arrangement of a (denoted
Arr(a)) is constructed as follows. We begin with k& people — call them pg, p1, ...,
pr—1 — in a circle (k being the vertical period of the cylinder) such that p; is clockwise
from p;_; (note that, just as with rows, p; refers to p; (mod), and thus py is clockwise
from pg_1). For all 4, p; has a;_; — a; marbles («; is the i’th term in the o’s sequence).”

Let R be a cylindric tableau with alphabet {1,2,...,¢}, inner shape p, and outer shape
A. Define Arrg(R) := Arr(p). Next, for 1 < j < ¢, obtain Arr;(R) from Arr;_;(R) as
follows: for every row r, let x be the number of times j appears in row r in R. Then p,
in Arr;_;(R) passes x marbles to p,4;.

For 0 < j <'t, let \;(R) be the outer shape of the tableau with inner shape ;i and
containing exactly the boxes that, in R, contains entries less than or equal to j.

Remark 6.2. For 0 < j <t, Arr;(R) = Arr()\;(R)).

Proof. We will proceed by induction. We know that A\g(R) = p, so we have Arrg(R) =
Arr(Ao(R)). Suppose that Arr;(R) = Arr(\;(R)) for all 0 < j < m. We will show that
Arr,(R) = Arr(An(R)).

Consider any integer r. Say that m appears x; times in row r (the projection of plane
row r onto the cylinder) and z5 times in row r — 1. Then (A, (R)), — (Am_1(R)), = 21
and (A (R))r—1 — (Am—1(R)),—1 = x2. Subtracting these two equations, we have

(Am(R))T’—l - ()‘m(R))r = (Am—l(R))r—l - (Am—l(R))r + T2 — 27.

Therefore, we have that p, has x5 — x; more marbles in Arr(\,,(R)) than he did in
Arr(Am-1(R)).

When Arr,,(R) is obtained from Arr,, 1(R), p, passes 1 marbles to p,,; and receives
x9 marbles from p,_;. Thus, we have that p, has x9 — z1 more marbles in Arr,,(R) than
he did in Arr,,_1(R). Since this is true for all integers , and by our inductive hypothesis,
we have that Arr,(R) = Arr(A\,(R)), as desired. Having completed our induction, we
have proven that for 0 < j <t, Arr;(R) = Arr()\;(R)). O

Remark 6.3. For 1 < j <'t, the formation of Arr;(R) never entails a person passing
more marbles than he has to this right.

"Clearly, there is a total of n — k marbles (n — k is the horizontal period of the cylinder).

46

Proof. The number of marbles that p, has, being the difference between the length of the
row above r and the length of row r in the sub-tableau of R consisting of the entries 1
through j — 1, describes how many entries j row r can possibly have without the tableau
being non-semistandard. O

Definition 6.4. A turn is a combination of simultaneous marble passes among the k
people, such that each person passes at most as many marbles as he has. A turn is
denoted (ag, ai,...,ar_1), where a; is the number of marbles that p; passes to p;;1.

Definition 6.5. A marble game of length ¢ is an initial arrangement of n — k marbles
among the k people, along with a sequence of ¢ successive turns.

Proposition 6.6. Given a partition p and a nonnegative integer t, there is a bijection
between marble games of length t with initial arrangement Arr(u) and cylindric tableauz
with alphabet {1,2,...,t} and inner shape p.

Proof. We have shown a construction of a marble game given a tableau, and, as stated
in Remark [6.3] the game thus constructed is a valid one. Given a marble game G, one
can obtain a unique tableau that produces G with the process described above. This
is because turn j in G describes the horizontal strip of j’s that is in its corresponding
tableau: from A;_;(R) we obtain \;(R) by adding to row r the number of j’s equal to
the number of marbles that p, gives to p,.1. Because p, cannot give more marbles than
he has to p,;1, the tableau thus produced is indeed a valid semistandard tableau. O]

Example 6.7. Let R be the following cylindric tableau, with ¢ = 6 (recall that the top
row of the tableau is row 0).

Originally, we have po = 1, p; = 1, and ps = 2. On the first turn, one 1 is added to
rows 0 and 1 and two 1’s are added to row 2; thus, after the first turn (represented as
(1,1,2)), we have py = 2, p; = 1, and ps = 1. The next turn is (2,1,0), so after turn 2,
we have pg = 0, p; = 2, and py = 2. There are no 3’s in R, so the next turn — (0,0,0) —
results in pg = 0, p; = 2, and ps = 2. Turn 4 is (0,0,1); turn 5 is (1,0, 1); and turn 6 is
(1,3,0). Thus, the marble game corresponding to R has the following sequence of turns:

(1,1,2),(2,1,0),(0,0,0),(0,0,1), (1,0,1), (1, 3,0).

If we know g, we can use this information to retrace R: the first turn encodes that R
has one 1 in rows 0 and 1 and two 1’s in row 2; the second turn encodes that R has two
2’s in row 0, one 2 in row 1, and no 2’s in row 2; and so on.

Note that knowing p and Arr;(R) for 1 < j <t does not uniquely determine R. For
example, if Arrq(R) = Arr(u), one cannot necessarily determine whether there are no 1’s
in R, each row has one 1 in R, each row has two 1’s in R, etc. Thus, a game, and not

47

just the series of arrangements attained by a game, is necessary in order to describe a
tableau.

We can use Proposition in order to obtain some results relating the marble game
and cylindric tableaux.

Corollary 6.8. Let u be a cylindric partition and t be a nonnegative integer. The number
of cylindric tableaux with inner shape p and alphabet {1,2, ...t} equals the number of
possible marble games with t turns that begins with the arrangement Arr(p).

Corollary 6.9. Let u be a cylindric partition and t be a nonnegative integer. The number
of standard cylindric tableauz with inner shape p and alphabet {1,2,...,t} equals the
number of possible marble games with t turns that begins with the arrangement Arr(pu)
and in which exactly one marble changes hands on every turn.

Corollary 6.10. Let A be a cylindric partition and t be a nonnegative integer. The num-
ber of cylindric tableaux with outer shape A and alphabet {1,2, ...t} equals the number
of possible marble games with t turns that ends with the arrangement Arr(\).

Note that the number of possible marble games with ¢ turns that ends with the ar-
rangement Arr()) is the same as the number of possible marble games with ¢ turns that
begins with the arrangement Arr()\), except that marbles are passed counterclockwise
instead of clockwise. This is because this modified marble game retraces the steps of any
marble game that ends with Arr(\).

Corollary 6.11. Let X be a cylindric partition and t be a nonnegative integer. The
number of standard cylindric tableaux with outer shape A and alphabet {1,2,... t} equals
the number of possible marble games with t turns that ends with the arrangement Arr(\)
and in which exactly one marble changes hands on every turn.

Corollary 6.12. Given a cylindric partition o and nonnegative integer t, the number of
possible marble games with t turns that starts with the arrangement Arr(«) is equal to
the number of possible marble games with t turns that ends with the arrangement Arr(a)
(which is in turn equal to the number of possible marble games with t turns that starts
with the arrangement Arr(a), but in which marbles are passed counterclockwise). This
remains true if we restrict all turns so that exactly one marble changes hands on every
turn.

Proof. If in Corollary , we let x = (1,29,...,2;) and we let 71 =9 = -+ =2, = 1,
we find that the number of cylindric tableaux with alphabet {1,2,...,¢} and inner shape
« equals the number of cylindric tableaux with alphabet {1,2,... ¢} and outer shape .
The first part of our proposition now follows directly from corollaries [6.8 and The
second part of our proposition follows analogously from corollaries [6.9] and O

It is noteworthy that this marble-game construction only works for cylindric tableaux.
A similar concept can be defined for regular tableaux, but it would involve an infinite
line of people in which the first person can obtain an arbitrary number of marbles — a
construction that is not nearly as interesting and much less likely to be of use. The purely
combinatorial construction which we have described in this section shows the promise of
cylindric tableaux in potential applications outside of tableau theory.

One such application may be in information theory, where marbles are bits and players
are computers that are linked in a ring in which communication is only allowed in one

48

direction. In such an interpretation, the numbers in a column represent the times when
a particular bit is transferred from one computer to the next. The ease of tracking
particular bits with tableau representations of communication in unidirectional rings
makes it possible for such representations to be useful in optimizing such communication.

7. Applying Results Concerning Cylindric Tableaux to
Skew Tableaux

At the beginning of the paper, we fixed n and k. For this section, we will unfix n and k.

It turns out that results concerning skew tableaux can be proven from analogous results
concerning cylindric tableaux. The typical construction for such proofs is, given a skew
tableau or shape, to create a cylindric tableau that looks like the skew tableau or shape,
but with a very large k (as large as necessary) and an even larger n (so that n — k is as
large as necessary). As an example, given the skew shape below on the left, the cylindric
shape that would be produced looks like the cylindric shape below on the right.

________________________________ ‘_j

-

Definition 7.1. If a partition A\ is turned into a cylindric partition as shown above,
where the vertical period of the cylindric partition is £ and the horizontal period of the
cylindric partition is n — &, we denote the cylindric partition Cyl; ,(A). (Thus, if above
our skew shape is A/p, then the cylindric shape shown above is Cyl, ,,(A)/ Cyl; ,,(1).)

We will illustrate an example of such a proof. The proposition below is not a new result
and follows directly from [SagStan, §6, Corollary 6.12], given [Ful, §4.3, Equation (3)].
The purpose of the proposition below is, instead, to demonstrate a proof technique that
uses results concerning cylindric tableaux in order to prove results about skew tableaux.

Proposition 7.2. Given two (non-cylindric) partitions and 3, we have

Z So/u(X)85/u(Y) - Z s, (x)s,(y) = Z $x/8(X)Sr/a(y)-

49

Proof. Given a power series P, let hg; P be the degree-d homogeneous component of P
(the part of the power series consisting of only degree-d terms). We show that for all d,

hgdst X)85/u(Y) Y 54(x) hgdzsw X)$x/a(¥)-
Y

Consider any particular d. Choose k and n such that £ and n — k are both very large
compared to d and the dimensions of a and f. Specifically, if & = (ay,as,...,a,) and
B = (b1,ba,...,by,), then the following values of k and n should be large enough:

k = max(m,p) + 2d + 1; n =k + max(ay, b)) + 2d + 1.

Lemma 7.3. Given two partitions o and 3, let o/ = Cyl, , (a) and p" = Cyl; ,(8). Then

hgdzsa/u X)55/u(Y) D 55(X)5,(y) =hgg D Sarsu(X)sp(y).
vy 1’ €Cylpar;
weai Cp

(Partitions on the left side above are reqular; those on the right side are cylindric.)

Proof. Take any particular p' that produce terms of degree d on the right hand side of
the above equation. Note that this puts a limit on the number of boxes in o'/y/ (and
B'/p'). This means that o /i’ looks something like this:

________________________________ :_j

A

|

e

Because k£ and n — k are large compared to d and the dimensions of o/, the regions
designated above as A and B are not connected.

Both regions A and B are in «'; neither is in p/. Let ¢/ be the partition such that
W CvV Ca, Bisin v/, and A is entirely outside of /. Since A and B are disconnected
regions, we have

So//// (X) = SO//,,/ (X) SV'/M' (X)
Similarly, we have
S (X) = 817 (X) S0y (X).

50

Since y/ can be thought of in terms of as o/ sans region A, and then sans region B (for
small enough sizes of A and B), we have

hg, Z St /u (X) S0 (¥) = hgy Z S v (X) S 1 (¥) Z S (X)sur e (y), (9)
w €Cylpar; W
W' Calsu' CH
where v/ ranges over all cylindric partitions such that Cyl, () = v/ for some partition
v such that a/v (a skew shape) contains d or fewer boxes, and where y' ranges over all
cylindric partitions that are v/, except with a “corner” (such as region B above) — which
has at most d boxes — removed from /.
For any particular v/ and p' (satisfying the limitations described in the above para-
graph), let B be the skew shape that looks like the region B between y' and v/ (so in the
above example, B = (3,3,3,3)/(2,1)). Clearly,

S/ (X) = sp(x).

Let B’ be the shape that is B rotated by 180° (because of the shape of the outer shape
of B, we have that B’ is a straight (non-skew) partition; in our example, we would have
B = (3,3,2,1)). As it turns out, sp(x) = sp(x) [GriRel, §2, Exercise 2.21]. This is
because if a skew tableau R with shape B has content (ay,as, ..., a,,), we can create the
tableau R’ with shape B’ that has content (a,,,dm_1,...,a1) by switching all 1’s with
m’s, 2’s with m — 1’s, etc., and by symmetry of Schur polynomials, we have that the
number of tableaux with shape B’ and content (a,,, @m_1,...,a1) equals the number of
tableaux with shape B’ and content (aj,as,...,a,). Therefore, we have that, given 1/,
for small enough degrees (including all up to d),

D s (s (y) =D sm(X)sm(y) =D 5,(x)s,(y). (10)

w B! ¥

Combining equations [and [10} we have

hg, Z Sy (X)8pr 0 (y) = hgy Z Satju (X) 550 (Y) Z $(x)s,(y)

' €Cylpar; v
w'Calsp’ B
= hg, Z Sar o (X) 550 (¥) D 54(%)55(y)-
¥

Finally, since sq/,/(x), for every v/, describes the ways to fill the corresponding region
A (or its corresponding skew shape), and analogously for ', we have that, for small
enough degrees (including all up to d),

Y s ()80 (Y) = D Sayu(X)s5/u(y)-

v/ m
Therefore,
hg, Z Sar/u(X)85/u(y Z sy(x = hg, Z Sar /(%) 567/ (Y),
' €Cylpar;
wCaliu' Cp

51

as desired. O
By Theorem we have that

heq Z Sar /et (X) 81/ (¥) = hgy Z Sx/p/ (X)Sx 1o (¥).
' €Cylpar; N eCylpar;
WSl Cp! o N6/ TN

Thus, it suffices to show that

hgy D swye(X)sxy(y) = he, Z $x/6(%)8x/a(y)-
N eCylpar;
o' TN BICN
his is true because the Schur polynomials on either side of the above equation (for a skew
partition A and \" = Cyl, ,,())) describe the ways of filling the same region with letters
(since k and n — k are large enough compared to d and the dimensions of o and). Thus,
we have

hgdzsa/u X)s5/u(y) - D 54(x) hgdzsx/ﬂ X)$x/a(¥)-

o

This being true for all nonnegative integers d (since we can always find large enough
values of k£ and n), we have proven our proposition. O

The proof style used above can be used to prove other facts about skew tableaux. This
means that cylindric tableaux have the potential to be very useful to regular tableau
theory.

8. A Note on Knuth Equivalence for Cylindric Tableaux

8.1. Words and Knuth Equivalence

This subsection introduces the concepts of tableau words, Knuth transformations, and
Knuth equivalence. These concepts are well-established in tableau theory, but are de-
scribed here in order to establish conventions. These conventions are the ones used in
William Fulton’s Young Tableaur [Ful, §2.1]. In this subsection, tableauz will refer to
reqular (non-cylindric) tableau.

Definition 8.1. The word of a tableau is the sequence of letters (entries) in the tableau,
reading left to right across the tableau’s rows and then from bottom to top.

For example, the following (skew) tableau’s word is 3346354.

31314

Definition 8.2. Let yzx be a sequence of three consecutive letters of a word w such that
x < y < z. Then a transformation of type K’ takes w into the word w’ obtained by
replacing the three letters yzx with yxz.

52

For example, we have 3346354 K 3343654. Note that K” may not be able to be applied
to a word, or might be applicable to a word in more than one way.

Definition 8.3. Let xzy be a sequence of three consecutive letters of a word w such that
x < y < z. Then a transformation of type K" takes w into the word w’ obtained by
replacing the three letters zzy with zzy.

For example, we have 3346354 K 3346534, Just like K7 , the transformation K” may
not be able to be applied to a word, or might be applicable to a word in more than one
way.

Definition 8.4. An elementary Knuth transformation is a transformation that is K’, K",
or the inverse transformation of K’ or K”. Two words are Knuth equivalent if one can
be obtained from another through a series of elementary Knuth transformations. Two
tableaux are Knuth equivalent if their words are Knuth equivalent.

Knuth equivalence is an equivalence relation; thus, for any two words w and v, if w
is equivalent to v, then v is equivalent to w. The significance of Knuth equivalence is
that there is a unique semistandard tableau that is Knuth equivalent to a given skew
semistandard tableau, and that tableau is that skew tableau’s rectification [Ful, §2.1,
Corollary 2]. (See [Eul, §1.2] for an explanation of tableau rectification.) In general,
Knuth equivalence is an extraordinarily useful notion in tableau theory.

8.2. Cyclic Knuth Equivalence

The concept of tableau words makes sense for cylindric tableaux as well as regular
tableaux.

Definition 8.5. The word of a cylindric tableau is the sequence of letters (entries) in
the tableau, reading left to right across the tableau’s rows and then from row & to row 1.

Due to the cyclic nature of cylindric tableaux, it is desirable that two tableaux be
Knuth equivalent if one can be obtained from the other by shifting all cells by the same
amount in the same direction. For example, the following two tableaux should be Knuth
equivalent:

Given our current definition of Knuth equivalence, this is not always the case. For
example, the following two tableaux are not Knuth equivalent, as their words (123 and
312, respectively) are not Knuth equivalent.

33

It is natural, then, to define a rotation operation R on a word, which places the

rightmost letter of a word to the left of the word. For example, we have 3346354 it
4334635. By applying R multiple times to a word, we can rotate the letters of the word
by any amount.

Definition 8.6. An elementary cyclic Knuth transformation is any transformation that
is an elementary Knuth transformation or is R. Two words are cyclic Knuth equivalent
if one can be obtained from another through a series of elementary cyclic Knuth trans-
formation. Two cylindric tableaux are cyclic Knuth equivalent if their words are cyclic
Knuth equivalent.

It turns out, however, that cyclic Knuth equivalence is not a useful equivalence relation
for cylindric tableau theory, as all tableaux of the same content are cyclic Knuth equiva-
lent. This fact is a consequence of Theorem 5.6.7 in Lothaire’s Algebraic Combinatorics
on Words [Lothl, §5.6, Theorem 5.6.7]. Here, we provide a proof of this fact that relies
exclusively on basic techniques.

Theorem 8.7. For any positive integer m, all words of length m that are permutations
(i.e. words of length m that consist of the letters 1 through m) are cyclic Knuth equivalent.

Proof. In this proof, “word” will refer exclusively to permutations. We will also define a
word as an equivalence class of words modulo R, since R allows us to rotate any word to
any desired position. We will identify each word with its representative that has 1 as its
leftmost letter. For any word w, we will say that wy; = 1 and w; is the letter directly to
the right of w;_; for 1 < i < m. In addition, w, is directly to the right of w,,.

We will create an algorithm that transforms any word w into x = 1234 ...m. This is
sufficient because, for any w and v, if w is equivalent to x and v is equivalent to x, then
w is equivalent to v.

Note that the elementary Knuth transformations state that we can switch two consec-
utive letters if the letter on either side of them is in between the two letters in value.

Definition 8.8. A catalyst is a letter that facilitates the swapping of two other letters
(i.e. the letter y in definitions[8.2)and [8.3)). We say that a catalyst catalyzes the swapping
of two letters.

Our theorem may be easily verified for m = 1, m = 2, and m = 3. For m > 4, our
algorithm is as follows:

Algorithm 8.9 (Word Transformation Algorithm).

Function WordTrans(word w) > w must be a permutation of length m.
1: while w # x do:
2 1= 1.
3 while i < m do:
4 if w; can switch with w;,; under an elementary Knuth transformation then:
5: Switch w; with w;, 1.
6 Exit out of the loop beginning on line 3]
7 end if.
8: i:=1+ 1.
9: end while.
10: end while.

o4

11: return w. > Clearly, z is returned (if this line is reached).

An example of this algorithm is shown below, with w = 159362847. The two letters that
are switched in the following step are bolded. Steps following those in which w; switches
with wy are in red. The reader will gain intuition about the algorithm by following these
steps; however, following all of these steps is not necessary for the proof.

159362847 — 153962847 — 139628475 — 193628475 — 136284759 — 132684759 —
126847593 — 126487593 — 162487593 — 124875936 — 128475936 — 182475936 —
124759368 — 127459368 — 172459368 — 124593687 — 124539687 — 124359687 —
142359687 — 123596874 — 123956874 — 129356874 — 192356874 — 123568749 —
123586749 — 123856749 — 128356749 — 182356749 — 123567498 — 123564798 —
123546798 — 125346798 — 152346798 — 123467985 — 123469785 — 123496785 —
123946785 — 129346785 — 192346785 — 123467859 — 123467589 — 123465789 —
123645789 — 126345789 — 162345789 — 123457896 — 123457869 — 123457689 —
123475689 — 123745689 — 127345689 — 172345689 — 123456897 — 123456879 —
123458679 — 123485679 — 123845679 — 128345679 — 182345679 — 123456798 —
123456978 — 123459678 — 123495678 — 123945678 — 129345678 — 192345678 —
123456789

Definition 8.10. For any word w, define M (w) to be word wyws, ... w; such that w; <
wy < --- < wy, but w; > wjgq (recall that wy = 1 < wy). We will call j the increase
length of w. (If w has length m and w; < ws < -+ < w,, (in other words, w = x), then
M(w) = wywy ... w, and the increase length is m.)

With this concept, we can illustrate exactly when the “If” clause of the above algorithm
is entered. It is possible that w; can be switched with ws, with w,, as a catalyst. If not,
let j be the increase length of w (we assume that j # m, because in that case we are
done). We know that w; > w;_; and that w; > w;,1, so, out of w;_1, w;, and w;, either
w;_1 or w;y; is the middle term in value. Thus, w; can be switched with the smaller of
its two neighbors. The switch cannot occur earlier, because two consecutive terms in the
middle of w’s increasing sequence do not have a term in between them in value to either
side.

We conclude that the “If” clause is entered in every pass through the loop beginning
on line [1 because M (w) ends with a letter that is not wy, (since we are taking w #).

One might observe from the example that the location of the switch always shifts to
the left, unless w; switched with w, in the previous step. This is indeed the case.

Lemma 8.11. The location of the switch made by the algorithm always shifts to the left,
unless wy switched with ws n the previous step.

Proof. Let w be a word that is obtained during the execution of Algorithm (but not
necessarily the word that is taken as input). We will consider two cases.

Case 1: w = lcb..., where b and ¢ just switched (that is, w, and w; just
switched values). In this case, ¢ cannot be between 1 and b in value, because then 1
and b would have switched in the previous step. ¢ cannot be less than 1. Thus, 1 < b < ¢,
which means that b will catalyze the switch between 1 and c.

Case 2: w = ...abdc..., where ¢ and d just switched (that is, w; and w;;; just
switched for some [> 2). In this case, d cannot be between b and ¢, because then b

95

and ¢ would have switched in the previous step. We also know that a < b < ¢, because at
least one element of the increasing sequence beginning with w, is present in every switch
(which implies that the increasing sequence continues up to, if not beyond, ¢). Thus, we
have that either a < b<c<d,a<d<b<c,ord<a<b<c In the first and third
cases, b switches with d (which means that the location of the switch shifts one place to
the left). In the second case, a switches with b (which means that the location of the
switch shifts two places to the left).

Thus, the location of a switch is always to the left of the location of the previous switch,
unless the previous switch was between w; and ws. O

Remark 8.12. Note that the switch in question always shifts either 1 or 2 places to the
left (if the previous switch was not between wy and wy) as the algorithm proceeds; this
fact will be used later.

From the fact that the switch always shifts to the left, it follows that, from any word, a
switch between w; and wy will eventually happen (unless we arrive at x beforehand). This
means that, in performing the algorithm, an infinite loop in which w;, never switches with
wy will never be reached. Thus, if there exists an infinite loop in any possible execution
of the algorithm, such a loop must contain a word that was obtained by switching w,
with ws.

Definition 8.13. A critical word is a word obtained by switching w; with wy. Note that
no particular word is critical or non-critical; this adjective describes how the word was
obtained within a particular execution of Algorithm [8.9]

In the example above, the critical words were written in red. We will examine these
critical words more closely.

- — 139628475 — .-+ — 136284759 — --- — 126847593 — --- — 124875936 —

- — 124759368 — --- — 124593687 — ... — 123596874 — ... — 123568749 —

<o — 123567498 — - -+ — 123467985 — -+ — 123467859 — .- — 123457896 — .-+ —
123456897 — - - - — 123456798 — - - - — 123456789

For any 1 <[< m, let P,(l) be the integer ¢ such that w, = [. To each word w of
length m we can assign a base-m + 1 number N(w) whose base-m + 1 representation is
P,(1)P,(2)...P,(m). For example, N(159362847) = 164825973. We will write down
the numbers associated with the critical words in our example.

152794863 — 142683759 — 129573648 — 128369547 — 127358496 — 126347985 —
123946875 — 123845769 — 123745698 — 123495687 — 123485679 — 123459678 —
123456978 — 123456798 — 123456789

In our example, these numbers strictly decrease. It suffices to prove that they strictly
decrease, because then a loop cannot be entered, and the smallest possible value of N(w)
for any word w, 123...n, will eventually be reached. It is indeed the case that these
numbers are strictly decreasing.

Lemma 8.14. Let w be a word and let v be any critical word reached by following the
algorithm starting with w, except for 123...n. Let v be the next critical word obtained
by the algorithm, assuming that such a word exists.> Then N(v') < N(v).

81f v does not exist, then 123...n is reached, and so we are done.

56

Proof. Let | be the number such that v; # [, but for all ¢ such that 1 <i < [, v; = i. Then
N(v)=123...(I —1).... We have identified the position of the switch that happens to
v as either between v, and vy, catalyzed by v,,, or between the local maximum® with the
smallest position number and its smallest adjacent entry.

Case 1: v; switches with v, with catalyst v,,. Since v; = 1, v, cannot be 2, as
nothing can catalyze a switch between 1 and 2. Thus, N(v)’s second digit, P,(2), is some
number that does not equal 1 or 2. When v; switches with v, the position of 2 in the
new word (call it v) is smaller by 1 (since Py (ve) = m, and all other position numbers
have decreased by 1). Hence, in this case, N(v') < N(v), as desired.

Case 2: The switch that happens to v is between the local maximum with
the smallest position number in v and the smallest entry adjacent to it. The
first local maximum cannot be [, as v; > [and v; is part of M(v). Furthermore, since
[is smaller than some entry to its left, the first local maximum must be to the left of
[. This means that the switch that the algorithm performs on v decreases P,(l) by 1 or
keeps it the same. By our discussion above, the switch that happens to the word obtained
from v will be to the left of the switch that happens to v, so P,(l) will either decrease
by 1 or stay the same. This will continue until some letter switches with 1, when P,(I)
will decrease by 1 (since the letter occupying the second position now occupies the m’th
position). Note that the letter that switches with 1 cannot be [, since, for this to happen,
[must have switched with — 1 at some point, which is impossible (as there are no letters
that could catalyze this switch).

Let v" be the next critical word obtained from v. We have shown that [will have a
smaller position number in the next critical word; that is, P,(l) < P,(I). Now we will
prove that for all 1 <i <, P,(i) = Py (7).

By Remark [8.12] in the process in which v is transforms into v/, the location of the
switch shifts to the left by 1 or 2 places every time. Combined with the fact that the
switch that happens to v is to the right of v;_; (or includes v;_1), we conclude that there
is a switch that switches v;_; with another letter during the process that transforms v
into v’. Consider the first such switch and let u be the word to which this switch occurs.
Note that for all 1 < i < [, u; = v; = i. Since the switch that happens to u involves
w;—1 = L — 1, the switch cannot be between u;_1 and u;_» (since, again, two letters whose
value differs by 1 cannot be switched). Hence, the switch occurs between u;_; and wu;.
Let u’ be the word that is obtained after this switch. Then «' = 123...(l — 2)w(l — 1).
Since [— 2 < | — 1 < w, u; switches with [— 2. If the new word is called v” (and u”
is not a critical word), we have u” = 123...(l — 3)w(l — 2), so w; switches with [— 3.
This continues until u; switches with 1. When this happens, v’ is obtained, and by this
analysis we know that Py (i) =i for 1 <i <.

Thus, we know that N(v) =123...(I—-1)P,(I)... and N(v') =123...(I=1)Py,(l)....
As proved earlier, P,(l) < P,(l). Thus, N(v") < N(v) in this case as well, as desired. [

We have constructed an algorithm that transforms words into other words. We have
shown that this algorithm does not get stuck in a loop where no change is made. We
have shown that this algorithm does not get stuck in a loop devoid of critical words. We
have shown, through a decreasing monovariant, that no critical word can be repeated.
Since the word with the smallest monovariant is 123 ...m, we have shown that this word
is obtained through our algorithm. Since the Knuth transformations are reversible, if
one can get from any word p to another word ¢, one can get from ¢ to p through these

9By this we mean a letter that is greater than the two letters to either side of it.

57

transformations. Thus, for any two words w and v, we have shown how to get from w
to 123...m and from 123...m to v, thus constructing a method to get from w to v. As
this is applicable to all words, we have successfully shown that all permutations are cyclic
Knuth equivalent. [

We now extend our theorem, which applies only to permutations, to all words, and thus
show that any two cylindric tableaux with the same content are cyclic Knuth equivalent.

Corollary 8.15. For any two words w and v such that v is a permutation of w, w and
v are cyclic Knuth equivalent.

Proof. For any word w of length m that consists of more than one distinct letter (if all
letters are the same, then clearly w is cyclic Knuth equivalent to all of its permutations),
let s(w) be the smallest letter of w. Construct the word w’ as follows: let ¢ be the integer
such that:

e If the last letter of w is not s(w), then ¢ is such that the ¢’th letter of w (from the
left) is the leftmost instance of s(w) in w.

e If the last letter of w is s(w), then ¢ is the smallest positive integer greater than 1
such that the ¢'th letter of w is s(w), but the (t — 1)’th letter of w is not s(w).

Then, for all 1 < ¢ < m, let the 7’th letter of w’ be the i’th letter of w, plus M
Next, construct the permutation p(w) of length m such that, for all 1 < i,5 < m, "if the
i'th letter of w’ is smaller than the j’th letter of w’, then the i’th letter of p() is
smaller than the j’th letter of p(w). For instance, if w = 43242, then s(w) = 2, t = 3,
w' = (4.6)(3.8)(2)(4.2)(2.4), and p(w) = 53142.

We know that for any word w of length m, p(w) is transformed by Algorithm into
x =12...m. Clearly, for any two distinct words w and v that are permutations of each
other, p(w) # p(v). We show p(w) and p(v) to be equivalent by applying Algorithm
to each one, transforming them into x. Thus, if we can show that for each switch that
occurs during the execution of Algorithm on p(w), the corresponding switch of letters
in w is permissible under the cyclic Knuth transformations, then it will follow that w and
v are cyclic Knuth equivalent. We will now show this.

For 1 < ¢ < m, define w; to be the letter corresponding to p(w);. (In our example
above, the first 2 is wy.) For any 1 <14, j < m, if p(w); < p(w);, then w; < w;. Thus, any
restrictions on switches in w that do not exist in p(w) arise only when two letters that
are equal in w are part of the switch (either being switched or acting as a catalyst).

The restrictions on switches involving equal letters set by definitions [8.2] and [8.3] can
be summarized as follows:

(1) Equal letters cannot be switched;

(2) A letter acting as a catalyst from the left cannot be equal to the smaller of the two
letters being switched; and

(3) A letter acting as a catalyst from the right cannot be equal to the larger of the two
letters being switched.

Suppose that all switches performed on w corresponding to switches done by Algorithm
on p(w) have been legitimate up through the formation of a word u (u may equal w).
(We think of w and p(w) as words that change value over time, as opposed to u, which is

38

a particular word.) We will show (assuming that Algorithm has not yet terminated)
that the switch that takes u to a new word u’, analogous to the corresponding switch
done by Algorithm with input p(w), is also legitimate.

First, we note that, since all switches so far have been legitimate, it is the case that,
for all j, the j’s in w have stayed in the same order relative to each other. This means
that the letters of p(w) corresponding to the j’s in w have also stayed in the same order
relative to each other. In the original p(w), this order is increasing (in our example above,
the letters of p(w) corresponding to the 4’s in w are p(w), = 4 and p(w)y = 5). This
means that no two of these letters can switch (because, if they are adjacent, they differ
by 1, which means that no letter can catalyze their switch). Consequently, condition |(1)l
is satisfied for the switch that takes u to u'.

Suppose that condition is violated by the switch that would take u to u/. Due to
the increasing nature of the letters of p(w) corresponding to the j’s in w (for any j) and
the fact that p(w); never switches with p(w),, during the execution of Algorithm [8.9]
the only possibility of this is if p(w),, catalyzes the switch between p(w); and p(w)y. In
order for this scenario to be a violation of condition Uy, must equal s(w) (note that
although w changes, s(w) is constant). We now show that this cannot be the case.

Suppose that u,, = s(w). For the original value of w, w,, # s(w) (because t is originally
chosen such that the (¢—1)’th letter of w — that is, w,, — is not s(w)). Thus, w,, becomes
s(w) after some switch that happens to a value of w that precedes u. In order for this
to happen, one of two things must happen: p(w); must switch with p(w)s, with p(w),
corresponding to s(w) in w, — this is impossible, as previously discussed — or p(w),,
must switch with p(w),,—1, with p(w),,— corresponding to s(w) in w. This cannot be the
case, because neither p(w),,—1 nor p(w),, can be the first local maximum in p(w) (as we
discussed in our proof of Theorem [8.7] every switch not between p(w); and p(w)s involves
the first local maximum). Thus, u,, # s(w) and condition [(2)|is not violated.

Suppose that condition is violated by the switch that would take u to u/. Due to
the increasing nature of the letters of p(w) corresponding to the j’s in w (for any j) and
the fact that p(w); never switches with p(w),, during the execution of Algorithm , the
only possibility of this is if p(w); catalyzes a switch between p(w),,—1 and p(w),,; this is
clearly impossible, as p(w); cannot act as a catalyst.

Having proven that no condition is violated by the switch that takes u to u’, we have
completed our induction and have shown that w and v are cyclic Knuth equivalent for
all w and v that are permutations of each other. O

It would be very helpful to have an analog to Knuth equivalence for cylindric tableaux;
however, cyclic Knuth equivalence is clearly not the desired analog.

39

References

[Ful] Fulton, W. (1997). Young tableauz. Cambridge, United Kingdom: Cambridge Uni-
versity Press.

[GesKra] Gessel, 1. M., & Krattenthaler, C. (1997). Cylindric partitions. Transac-
tions of the American Mathematical Society, 349(2), 429-479. Retrieved from
http://www.ams.org/journals/tran/1997-349-02/S0002-9947-97-01791-1/
S50002-9947-97-01791-1.pdf

[GriRei| Grinberg, D., & Reiner, V. (2014, August 12). Hopf algebras in combinatorics.
Retrieved from https://web.archive.org/web/20140818000335/
http://web.mit.edu/"darij/www/algebra/HopfComb-sols.pdf

[Knu] Knuth, D. E. (1970). Permutations, matrices, and generalized Young
tableaux. Pacific Journal of Mathematics, 34(3), 709-727. Retrieved from
http://projecteuclid.org/download/pdf_1/euclid.pjm/1102971948

[Loth] Lascoux, A., Leclerc, B., & Thibon, J.-Y. (2002). The plactic monoid.
In M. Lothaire (Author), Algebraic combinatorics on words (pp. 144-172).
Cambridge, United Kingdom: Cambridge University Press. Retrieved from
http://www-igm.univ-mlv.fr/“berstel/Lothaire/AlgCWContents.html

[McN] McNamara, P. (2006). Cylindric skew Schur functions. Advances in Mathematics,
205(1), 275-312. http://dx.doi.org/10.1016/j.aim.2005.07.011

[MorSch] Morse, J., & Schilling, A. (2012). A combinatorial formula for fu-
sion coefficients. DMTCS Proceedings, AR, pp. 735-744. Retrieved from
http://www.dmtcs.org/pdfpapers/dmAR0165. pdf

[Post] Postnikov, A. (2005). Affine approach to quantum Schubert cal-
culus. Duke Mathematical —Journal, 128(3), 473-509. Retrieved from
http://www-math.mit.edu/ apost/papers/affine approach.pdf

[SagStan] Sagan, B. E., & Stanley, R. P. (1990). Robinson-Schensted algorithms for skew
tableaux. Journal of Combinatorial Theory, Series A, 55(2), 161-193. Retrieved from
http://dx.doi.org/10.1016/0097-3165(90)90066-6

60

http://www.ams.org/journals/tran/1997-349-02/S0002-9947-97-01791-1/S0002-9947-97-01791-1.pdf
http://www.ams.org/journals/tran/1997-349-02/S0002-9947-97-01791-1/S0002-9947-97-01791-1.pdf
https://web.archive.org/web/20140818000335/http://web.mit.edu/~darij/www/algebra/HopfComb-sols.pdf
https://web.archive.org/web/20140818000335/http://web.mit.edu/~darij/www/algebra/HopfComb-sols.pdf
http://projecteuclid.org/download/pdf_1/euclid.pjm/1102971948
http://www-igm.univ-mlv.fr/~berstel/Lothaire/AlgCWContents.html
http://dx.doi.org/10.1016/j.aim.2005.07.011
http://www.dmtcs.org/pdfpapers/dmAR0165.pdf
http://www-math.mit.edu/~apost/papers/affine_approach.pdf
http://dx.doi.org/10.1016/0097-3165(90)90066-6

Acknowledgments

First and foremost, I would like to thank my mentor, MIT graduate student Darij
Grinberg, for introducing me to this topic, answering all of my questions, and helping to
proofread my paper. I would also like to thank MIT professors Slava Gerovitch, Pavel
Etingof, and Tanya Khovanova for organizing and managing PRIMES, the program that
facilitated my research. Finally, I would like to thank MIT professor Alexander Postnikov
for suggesting this subject of research.

61

	Introduction
	Preliminary Definitions
	Forward Internal Insertion and Multi-Insertion
	Forward Insertion Algorithms and Examples
	The Cylindric Row-Bumping Lemma and its Various Corollaries

	Reverse Insertion and Reverse Multi-Insertion
	Reverse Insertion Algorithms and Examples
	Relating Reverse Insertion to Forward Insertion
	More Results about Reverse Insertion

	The Cylindric RSK Correspondence
	The Correspondence
	Consequences of the Cylindric RSK Correspondence
	The Symmetry Property of CRSK

	A Marble-Game Interpretation of Cylindric Tableaux
	Applying Results Concerning Cylindric Tableaux to Skew Tableaux
	A Note on Knuth Equivalence for Cylindric Tableaux
	Words and Knuth Equivalence
	Cyclic Knuth Equivalence

