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Chromosomes function in a complex
& dynamic environment

* A gene’s expression dynamically depends on position in nucleus

Eukaryotic nucleus, electron
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Nat Rev Gen 2007



Tracking DNA loci in living cells is a widely
used method for investigating chromatin
dynamics/organization
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Ecoli: Javer et al, Yeast: Hajjoul et al, Human: Bronstein et al,
Nat. Comm. 2014 Genome Res. 2013 Phys Rev Lett 2009

and many others !



Tracking DNA loci allows the measurement
of diffusive behavior (MSD vs. time)

genetic engineering microscopy analysis
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MSD plots characterize diffusive behavior: regular vs.
subdiffusion
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Live-cell DNA tracking experiments observe
subdiffusive behavior:

MSD = Dt?% ,alpha<1
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MSD (10s) (um?)

A surprising observation: MSD depends
on brlghtness of tracked loci

T T T T T T T 17717
0
=2 =
102 o ¥ g . :
- y ° v ° g
! Ter3 CAA+Glu ¥ \ 4 B
I Ter3 Glu ' ]
1 . Ter3 Gly D —
! Ori2 CAA+Glu
Ori2 Glu o
- .Ori’{Glyx j i i | | I T I N |
102 10° 1
Signal (a.u.)

*Certain experiments observed lower MSD for
brlght.er tracked loci (i.e. those with more bound Ecoli: Javer et al, Nat. Comm.
protein) 2014
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A surprising observation: MSD depends
on brlghtness of tracked loci
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*Certain experiments observed lower MSD for
brlght.er tracked loci (i.e. those with more bound Ecoli: Javer et al, Nat. Comm.
protein) 2014



How does bound protein affect observed
subdiffusion??

-- Bound protein is commonly assumed not to affect DNA diffusion of a locus

-- However, certain experiments observed lower MSD for loci with more bound
protein

-- Amount of bound protein (and RNA) varies dramatically genome-wide (e.g.
RNA polymerase complex, condensin, etc.)

-- Approach: test how, and to what extent, binding of protein affects diffusion in
simulations



Simulation Design: Locus Tracking In Silico

30,000 monomer polymer confined to a sphere control locus
* ‘beads-on-a string’ (monomers linked via harmonic bonds)

» Repulsive forces between monomers &

* Stochastic dynamics (Brownian motion)

» Simulated with OpenMM on GPUs k

* Proteins are attached at protein-bound locus
5 position | |

» Other % position is used 30,000 particles
as control

‘beads-on-a string’
representation of a polymer
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Simulation Design (continued)
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Expected polymer subdiffusion observed
at the control locus

— control

* a ~ 0.5 (Rouse diffusion)
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Subdiffusion is drastically altered at the protein-
bound locus

protein-bound locus: a ~ 0.66 (instead of
Rouse)

— length 10, mass 100
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_arger Probes Further Alter subdiffusion

— length 3, mass 30

— length 10, mass 100
- length 3 control locus
- length 10 control locus
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Different density (i.e. different size of confining
volume) has a minimal impact on a

| — flength 10, mass 100, density 0.05  |dentical a
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‘ength 10, mass 100, density 0.1 « Different subdiffusion coefficients
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Mass distribution has no effect on
subdiffusion
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Lower crossing frequency slows diffusion

Length 10, Phantom chain
10°} — Length 10, Partial crossing
— Length 10, No crossing

/ * Primarily affects the diffusion coefficient
~ * Very little effect on a

chain crossing
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Spherical Confinement Periodic Boundary Conditions (Vpgc=Vhere)
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MSD

PBC has a small effect on observed
subdiffusion
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Summary

* Loci with bound proteins had lower MSD at given times, but larger slopes for MSD vs.
time

» More bound protein = stronger effect
» The distribution of the proteins and the density of the system have minimal effects

* More chain crossing accelerates the rate of diffusion, slower MSD not solely due to
excluded volume

» On the timescales we tested, spherical confinement vs. PBC had minimal effects on
our results



Conclusions

* In simulations, bound protein slows diffusion at the bound locus

 This might explain observation of slower diffusion for brighter loci in
experiments

 Future experiments can be designed to control for this
« Caution is required: when fitting homogeneous polymer models to diffusion

of DNA loci, since chromosomes are non-uniform and may have vastly
different amounts of protein bound at different loci



Future directions

- — Length 10, Partial crossing

Length 10, Phantom chain

— Length 10, No crossing
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* Interesting behavior at start of
diffusion

 This can be examined by
collecting simulated data more
frequently
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