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SUMMARY
So far we have studied:

(I) Geometric properties of snowflakes and icosahedral viruses,
(II) Mathematical modeling for visualizing snowflakes,

(III) 3D printed snowflake puzzles.

We have begun the study of further questions of model analysis and
improvement.
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GEOMETRY AND MORPHOLOGY OF SNOWFLAKES
Snowflakes - a rich combination of symmetry and complexity:

Six-fold symmetry⇒ hexagonal structure of ice-crystal lattice.
Complexity⇒ random motion in the atmosphere.

Different types grow in different morphological environments:

1
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SNOWFLAKE CLASSIFICATION

Focus on regular, symmetrical types.

Most basic shape is a very tiny hexagonal prism.

More sophisticated crystals grow from prism:
Plates and dendrites,
Columns and needles,
Anomalies and variants.

2
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PLATES AND DENDRITES

Dendrites: tree-like crystals
Main branches grow simultaneously from an initial hexagonal
prism and therefore are symmetrical.
Seemingly random growth of side branches depends on
temperature and humidity.

Plates: plate-like crystals.
Simplest plate is a plain hexogon divided into six equal pieces
with thin ridges.
More elaborate examples are stellar plates and sectored plates.

3

3[2] Libbrecht 2005



SUMMARY SNOWFLAKE GEOMETRIC PROPERTIES SNOWFLAKE COMPUTER MODELING SNOWFLAKE PUZZLES ICOSAHEDRAL VIRUS

OBJECTIVES OF COMPUTER MODELING

Challenges of physics/chemistry modeling: many aspects such as
diffusion-limited growth are only understood on a qualitative level.
Computer modeling is to

Capture essential features of snow crystal growth with relatively
simple mathematical models,

Use computer programs to simulate the models to produce snow
crystal images,

Correlate mathematical models/parameters with physical
conditions by comparing computer-generated images with actual
snow crystals.
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BRIEF OVERVIEW OF COMPUTER MODELING

Wittern and Sandar (1981): diffusion-limited aggregation (DLA)
model. A diffusing particle takes random walks on a 2D rectangular integer lattice and

freezes if one of its nearest neighbors has been frozen.

Packard (1984): DLA variant model on hexagonal lattice. Every

cell is characterized by a continuous variable - mass, which is updated according to a

discrete heat equation rather than random walks to model diffusion.

Reiter (2005): simplified Packard’s model with very few
parameters.

Gravner and Griffeath (2008): refined Reiter’s model to
incorporate additional physically motivated features.
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REITER’S MODEL
BASIC SETUP

Tessellate the plane into hexagonal cells. The state of cell x is
characterized by state variable st(x) - the amount of water in the cell
at time t. Cells are divided into three types.

If st(x) ≥ 1, cell x is frozen.
A boundary cell is not frozen itself but at least one of the nearest
neighbors is frozen.
The union of frozen and boundary cells are called receptive cells.
A cell that is neither frozen nor boundary is called nonreceptive.
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REITER’S MODEL
INITIAL CONDITIONS

The growth model starts from a single ice crystal at the origin
cell, which represents a thin hexagonal prism.

s0(x) :=
{

1 for x = 0
β for x 6= 0

,

where β = constant background vapor density.

The states of the cells evolve as a function of the states of their
nearest neighbors according to local update rules.

Local update rules = the underlying mathematical models.
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REITER’S MODEL
LOCAL UPDATE RULES (I): CONSTANT ADDITION

Notation: ◦ and ′ to denote variables before/after a step is completed.

At time t, define two intermediate variables u(x), v(x) for cell x.
u(x) := 0, v(x) := st(x), if cell x is receptive;
u(x) := st(x), v(x) := 0, otherwise.

For any receptive cell x, let

v′(x) := v◦(x) + γ,

where γ is a positive constant representing water added to the
receptive cell from an outside source. The water in a receptive
cell is assumed to permanently stay in that cell.
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REITER’S MODEL
LOCAL UPDATE RULES (II): DIFFUSION

For any cell x, let

u′(x) :=
1
2

u◦(x) +
1

12
(u◦(y1) + . . .+ u◦(y6)) .

More generally,

u′(x) := u◦(x) +
α

12

−6u◦(x) +
∑

y∈Nx,y6=x

u◦(y)

 .

The underlying physical principle is the diffusion equation
∂u
∂t = a∇2u, where a is a constant and∇2u = ∂2u

∂x2 + ∂2u
∂y2 is the

Laplacian, which can be approximated on the hexagonal lattice
as∇2u = 2

3

(
−6u◦(x) +

∑
y∈Nx,y6=x u◦(y)

)
Here, α = 8a.

Combining the two intermediate variables, the state variable becomes
st+1(x) = v′(x) + u′(x) as time reaches t + 1.
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REITER’S MODEL
LOCAL UPDATE: AN EXAMPLE

Divide into nonreceptive cells and receptive cells:
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REITER’S MODEL
LOCAL UPDATE: AN EXAMPLE

Constant addition for receptive cells:
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REITER’S MODEL
LOCAL UPDATE: AN EXAMPLE

Diffusion for all cells:
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REITER’S MODEL
LOCAL UPDATE: AN EXAMPLE

Combine addition and diffusion:
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REITER’S MODEL
GENERATED IMAGES

By varying parameters α, β, γ, the Reiter’s model generates several
geometric forms of snow crystals observed in nature.

4

4[3] Reiter 2005
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GRAVNER AND GRIFFEATH’S MODEL
BASIC SETUP

Gravner and Griffeath’s model is a refinement of Reiter’s model that
incorporates several physically motivated features.

State variables: whether cell x is frozen, quasi-liquid (boundary)
mass, ice (crystal) mass, and vapor (diffusive) mass.

Same three types of cells. A frozen cell consists of only ice
mass. A boundary cell consists of all three types of mass. A
nonreceptive cell consists of only vapor mass.

Initial conditions very similar to Reiter’s model with single
frozen cell and constant background vapor density.
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GRAVNER AND GRIFFEATH’S MODEL
LOCAL UPDATE RULES

Vapor mass diffusion: similar to Reiter’s model.

Freezing: in a boundary cell, a proportion of vapor mass converts
to ice mass directly and the remaining becomes quasi-liquid
mass.

Attachment: a boundary cell may become frozen depending on
the states of neighboring cells.

Melting: in a boundary cell, a proportion of quasi-liquid mass
and a proportion of ice mass converts to vapor mass.

Noise: in any boundary or nonreceptive cell, add an independent
random noise to vapor mass to reflect environment perturbation.
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GRAVNER AND GRIFFEATH’S MODEL
GENERATED IMAGES

Much more sophisticated than the Reiter’s model, involving
many more control parameters.
Comparison of natural and simulated crystals generated by the
Gravner and Griffeat’s model.

5
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ANALYSIS OF COMPUTER GENERATED IMAGES

While computer models generate snowflakes images resembling real
ones, there has not been much analysis of the models in the literature.
Some questions we may ask are:

Why main branches grow the fastest? What are the growth rate
of main branches? What are the ridges that appear on main
branches?

Why the growth between main branches is the slowest? Why are
there permanent holes where cells never become ice?

What are the growth directions and distributions of side
branches? Why do some snow crystals grow leafy side branches
while others have hardly any side branches?

What is the distribution of “time to become ice” as a function of
location? What is the asymptotic density?
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IMPROVEMENT OF COMPUTER MODELS

Observation: while dendrite images resemble real snow crystals
pretty well, plate images are quite different: a plate image is in
effect generated as a very leafy dendrite.
Conjecture: Reiter’s model takes into account diffusion control
but not local geometry.

Two basic mechanisms of snow crystal growth: diffusion control
(long-range processes) and interface control (local processes)
Interface control is based on geometric growth determined by
local conditions only such as curvature.
Without proper modeling of interface control, computer models
are unable to simulate certain features.

We propose to improve the models by taking into account local
conditions, e.g., curvature effect and surface free energy
minimization.
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OUR IMPLEMENTATION OF REITER’S MODEL
COMPARISON OF COMPUTER GENERATED IMAGES

As a first step, we have implemented the Reiter’s model in Matlab and
have been able to generate images that match what were provided in
the literature:

6
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OUR IMPLEMENTATION OF REITER’S MODEL
SIMULATED SNOW CRYSTAL GROWTH PROCESS

Below are the images of a snow crystal at different simulation times:

We will use the Matlab code to analyze and improve computer
modeling.
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MODULAR BASIC BUILDING BLOCKS

Basic building blocks: hexagons of different sizes (big, medium,
small).

Special design at the vertices that use the alignment hole pockets
to allow the hexagons to interlock with each other.

A variety of puzzles can be formed with basic building blocks.
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PUZZLE DESIGN EXAMPLES
STELLAR DENDRITE



SUMMARY SNOWFLAKE GEOMETRIC PROPERTIES SNOWFLAKE COMPUTER MODELING SNOWFLAKE PUZZLES ICOSAHEDRAL VIRUS

PUZZLE DESIGN EXAMPLES
SECTORED DENDRITE
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PUZZLE DESIGN EXAMPLES
SECTORED PLATE
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PUZZLE DESIGN EXAMPLES
STELLAR PLATE
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ICOSAHEDRAL VIRAL

An icosahedral viral capsid is constructed from Ncap capsomers
20 trisymmetrons (triangular symmetry),
12 pentasymmetrons (pentagonal symmetry).

An image of color-coded CIV capsid:

Ncap = 12 + 10(T − 1) = 20NTS + 12NPS.
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GEOMETRIC CONSTRAINTS
We define

ePS := edge length of pentasymmetrons.

eTS := edge length of trisymmetrons.

NPS := size of pentasymmetrons.

NTS := size of trisymmetrons.

T := triangulation number, h, k integers.

NPS = 1 + 5ePS(ePS − 1)/2.
NTS = eTS(eTS + 1)/2.
T = h2 + k2 + hk.
eTS(eTS + 1)/2 = (T − 1)/2− 3ePS(ePS − 1)/2.
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THREE CLASSES OF CONSTRUCTION RULES
All possible positive integral solutions categorized into three classes:

Class 1 (h odd) Class 2 (k odd) Class 3 (h + k odd)
ePS (h + 1)/2 (k + 1)/2 (h + k + 1)/2
NPS 1 + 5(h2 − 1)/8 1 + 5(k2 − 1)/8 1 + 5((h + k)2 − 1)/8
eTS (2k + h− 1)/2 (2h + k − 1)/2 (k − h− 1)/2
NTS ((2k + h)2 − 1)/8 ((2h + k)2 − 1)/8 ((k − h)2 − 1)/8

7
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LATTICE PROPERTIES OF REAL VIRUSES
Lattice properties for icosahedral capsids of all large dsDNA viruses
with known structures:

Virus T h k NDS
8 NTS NPS

SIV 156 4 10 9 55 16
SIV 129 5 8 0 55 16
SIV 147 7 7 0 55 31
TIV 147 7 7 0 55 31
CIV 147 7 7 0 55 31
FV3 169 7 8 0 66 31
PBCV−1 169 7 8 0 66 31
PpV01 219 7 10 0 91 31

Three rows labeled as SIV represent different interpretations of
SIV images.

Because of limited quality of the SIV images, some earlier
interpretation (the first or second SIV row) might not be accurate
⇒ Likely NDS = 0 in a modern reconstruction of SIV.

8NDS = size of disymmetrons of linear symmetry
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ONE OBSERVATION AND FURTHER QUESTION

While NTS varies for different viruses, NPS = 31 in all cases.

While other solutions are possible mathematically, nature seems
to like this particular solution.

Are there additional geometric rules to be discovered regarding
icosahedral virus construction?

Admittedly, the sample size is quite small: T = 147, 169, 219.
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ONE OBSERVATION AND FURTHER QUESTION
PRELIMINARY THOUGHTS

For T = 147, two possible solutions:
h = 2, k = 11; h = 7, k = 7. Nature prefers h = 7, k = 7, which
leads to NPS = 31.
For T = 169, two possible solutions:
h = 0, k = 13; h = 7, k = 8. Nature prefers h = 7, k = 8.

For h = 7, k = 8, two possible solutions:
NTS = 66,NPS = 31;NTS = 0,NPS = 141. Nature prefers
NTS = 66,NPS = 31.

For T = 219, only one solution: h = 7, k = 10, which has two
possible solutions: NTS = 91,NPS = 31;NTS = 1,NPS = 181.
Nature prefers NTS = 91,NPS = 31.

Conjectures

Nature prefers more “balanced” h, k values.

Nature prefers more “balanced” NTS,NPS values.
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Thank you for listening.
Questions?


	Summary
	Snowflake Geometric Properties
	Snowflake Computer Modeling
	Snowflake Puzzles
	Icosahedral Virus

