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Problem

MOOCs - Massive Online Open Courses
150,000:1 Student/professor ratio

Computer grading - Limited by multiple choice
Peer grading - Hackable by clever students
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Model

1) Let H be a function of a student's grade, returning a
student’'s happiness, such that H(0)=0.
Happiness Is an arbitrary numerical unit.

2) Students want to maximize their happiness.
3) Grading an assignment costs 1 happiness.

4) Happiness is not affected by external factors, such as
the grades of peers.

5) Students can communicate with their peers.
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Model - New Assumptions

6) Students are not perfect graders.
7) There is no such thing as partial-grading.

8) Students can report their level of uncertainty when they
grade. Let this factor be equal to U.

9) More effort spent in grading lowers uncertainty.

10) When a student assigns a grade G, the chance of the
grade being N off from the actual grade is proportional to U.



Benchmark



Benchmark

A numerical score defined by

maximum work done by any person +
highest possible error in grading.



Benchmark

A numerical score defined by

maximum work done by any person +
highest possible error in grading.

max._{IH(g)-H(o)I} + max_ {w}
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Experiment

Online, crowdsourced, and anonymous
Designed to validate Calibration Mechanism:

Presented two assignments to grade,
Rewarded on one assignment

Assignment - A set of “marbles”
Grading - Counting the orange “marbles”
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Confidence | Within Reward
1 1 marble $0.25
2 2 marbles | $0.20
5 5 marbles | $0.10
10 10 marbles | $0.05
20 20 marbles | $0.01




Experiment - Reward

Confidence | Within Reward Rewal‘d iS based on
: 1 marble | $0.25 the reported

2 2 marbles | $0.20 confidence and the
5 5 marbles | $0.10 accuracy of the

10 10 marbles | $0.05 reported guess

20 20 marbles | $0.01
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Calibrated set indicates grading proficiency
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Conclusion

e Student model - approximations for student behavior

e Benchmark - score measuring efficiency and workload
of various mechanisms

e Calibration, Improved Calibration, and Deduction
mechanisms developed

e Calibration validated by a crowdsourced experiment

e Calibration and Deduction mechanisms outperform
existing grading solutions
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Conclusion - Next Steps

e Improving realism - producing accurate

grades from incompetent graders

o Proficiency test

o Using multiple graders to reduce error
e Implementation

o User testing with Mechanical Turk
o Eventually in Coursera / EdX
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