
Protecting Private Data in the
Cloud: A Path Oblivious RAM

Protocol

Nathan Wolfe and Ethan Zou
Mentors: Ling Ren and Xiangyao Yu

Fourth Annual MIT PRIMES Conference
May 18, 2014

Outline

1. Background
2. What is Oblivious RAM?
3. New Features
4. Evaluations
5. Future Work

Dropbox

Dropbox Security Problems

● Dropbox matches your files with other users’
files to save space

● The federal government can compel Dropbox
to release data

● Dropbox can see what files you change
(access pattern)

Encryption

Encryption

Oblivious RAM

ORAM: The Solution

● added layer of encryption on client’s
end (1 & 2)

● obfuscation of access pattern
and access type (3)

Outline

1. Background
2. What is Oblivious RAM?
3. New Features
4. Evaluations
5. Future Work

Oblivious RAM

● Naïve ORAM
○ Access all the data blocks for

each memory access

Our Design: The Big Picture

Path ORAM
Implementation

Path ORAM
• Path ORAM is organized

as a binary tree.

• Unoccupied nodes are
filled with dummy blocks
– Dummy and real blocks

are indistinguishable after
encryption

A,0 dummy C,2 D,3

B,1 dummy

E,1
Binary Tree

ORAM Interface

Client

Dropbox

0 1 2 3

L levels

Path ORAM
• Stash

– A small list of data blocks

– Background eviction
prevents stash overflow

• Position Map
– maps each program

address to a random leaf

A,0 dummy C,2 D,3

B,1 dummy

E,1

Stash

Binary Tree

Position
Map

ORAM Interface

F,3

0 1 2 3

Client

Dropbox

L levels

Path ORAM
• Path ORAM invariant: If

block a is mapped to leaf
s, then a is stored
– along the path from root

to leaf s, or

– in the stash within the
ORAM interface.

A,0 dummy C,2 D,3

B,1 dummy

E,1
Binary Tree

Position
Map

ORAM Interface

F,3

0 1 2 3

Client

Dropbox

L levels

Stash

Path ORAM Example

A,0

dummy C,2 D,3

B,1 dummy

E,1
Binary Tree

Position
Map

ORAM Interface

Load Block A

• Lookup position map,
s = PosMap(A)

• Load the path into
stash

address A

leaf 0

F,3

0 1 2 3

Client

Dropbox

L levels

Stash

Path ORAM Example

Access and Remap

• Read/Update Block A

• Remap A to a random
leaf.
PosMap(A) = rand()

• Each path ORAM
access will access a
random leaf

dummy C,2 D,3

dummy

Binary Tree

Position
Map

ORAM Interface

A,2 B,1 E,1F,3 A,0

0 1 2 3

Client

Dropbox

L levels

Stash

Path ORAM Example

Write Back

• Each block a
i
 in the

stash is
– written back to the

tree, or

– stays in the stash

dummy C,2 D,3

dummy

Binary Tree

Position
Map

ORAM Interface

A,2

B,1

E,1

dummy

F,3

0 1 2 3

Client

Dropbox

L levels

Stash

Outline

1. Background
2. What is Oblivious RAM?
3. New Features
4. Evaluations
5. Future Work

New Features

1. Dynamic Tree Growing/Shrinking
2. User File System
3. Multi-Computer

Dynamic Growing/Shrinking

● Dropbox
○ limited space, subscribe for additional
○ possibility to store unsecured files

alongside
● Saves space when the tree is unnecessarily

large
● Prevents overflow of the tree if too much

data

Dynamic Growing/Shrinking

User File System

● allows writing of files of different sizes

● partitions files into manageable chunks and
assigns each data segment with a unique
segment ID

● writes/reads to and from the ORAM
controller

User File System

ORAM
Controller

User File
System

data segments

Various metadata dictionaries,
the stash, the position map and
the tree

Birds.jpg

 0
 1

 2
 3

 5
4

data segments

Multi-Computer

Dropbox Server

Local Dropbox Folder

Syncing done by Dropbox
service

ORAM Data Structures
(Stash, Position Map, Tree,
etc.) to be written to
Dropbox

ORAM data structures are
written to the Dropbox
folder

Another computer: data
structures are
downloaded, ORAM is
reconstructed and ready
to use again!

Outline

1. Background
2. What is Oblivious RAM?
3. New Features
4. Evaluations
5. Future Work

With ORAM vs Without it

Parameters: z = 3, segment size = 4 KB

File Type/Size Without ORAM With ORAM With vs. Without

Photo (30.9 KB) 0.0009 sec
(34,333 KB/sec)

0.045869 sec
(674 KB/sec)

51x slower

PDF (170 KB) 0.0011576 sec
(146,856 KB/sec)

0.5202 sec
(327 KB/sec)

449x slower

Video (64.5 MB) 0.17809 sec
(370,869 KB/sec)

2131.38207 sec
(31 KB/sec)

11,964x slower

Does segSize affect efficiency?

Outline

1. Background
2. What is Oblivious RAM?
3. New Features
4. Evaluations
5. Future Work

Future Research

● Software package
● Crash recovery
● User interface

○ graphics
○ directories

● Optimizations
○ hybrid ORAM
○ dynamic segment size
○ multi-block accesses

Acknowledgements

● Our mentors, Ling and Xiangyao, for their guidance and
insight

● Professor Srini Devadas for suggesting the project and
encouraging us along the way

● MIT PRIMES for making this research possible

● Our parents for their continuous support (and for
transportation :))

Stash Eviction

Write Back

• Each block a
i
 in the

stash is
– written back to the

common subpath of
the accessed path
and PosMap(a

i
) as

high as possible, or

– stays in the stash

• overhead = 2 x Z x L

dummy C,2 D,3

dummy

Stash

Binary Tree

Position
Map

ORAM Interface

A,2 B,1 E,1

dummy

F,3

0 1 2 3

Client

Dropbox

L levels

