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Abstract

Circular planar graphs are used to model electrical networks, which arise in clas-

sical physics. Associated with such a network is a network response matrix, which

carries information about how the network behaves in response to certain potential

differences. Circular planar graphs can be organized into equivalence classes based

upon these response matrices. In each equivalence class, certain fundamental elements

are called critical. Additionally, it is known that equivalent graphs are related by cer-

tain local transformations. Using wiring diagrams, we first investigate the number of

Y-∆ transformations required to transform one critical graph in an equivalence class

into another, proving a quartic bound in the order of the graph. Next, we consider

positivity phenomena, studying how testing the signs of certain circular minors can be

used to determine if a given network response matrix is associated with a particular

equivalence class. In particular, we prove a conjecture by Kenyon and Wilson for some

cases.
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1 Introduction

From classical electromagnetism, resistor networks connected to batteries have been widely

studied and used in electrical engineering. In particular, such networks can be manipulated

(most famously through parallel, series, and Y-∆ transformations) to understand properties

of current and voltage. Circular planar graphs and electrical networks extend these well-

known notions. The study of these objects was begun by de Verdière-Gitler-Vertigan [dVGV]

and Curtis, Ingerman, and Morrow [CIM] who considered how the network responds (through

a response matrix ) to voltages applied to boundary vertices. A notion of equivalence between

electrical networks was developed and has been understood combinatorially through local

equivalences and medial graphs. Naturally, an inverse boundary problem was addressed:

given information about a network (its response matrix), what data can be recovered? Aside

from certain combinatorial data concerning the signs of certain minors, it was determined

that for a network with an underlying graph that is critical, the conductances can be uniquely

recovered.

Additionally, Alman, Lian, and Tran constructed a graded poset EPn to organize equiv-

alence classes of eletrical networks with n boundary vertices, and have analyzed various

enumerative and topological properties [ALT]. In relation to response matrices, a natural

question to ask is as follows: Given such a response matrix, can we efficiently determine

which of electrical networks it is associated with? To this end, Kenyon and Wilson have

conjectured that knowledge of the signs of certain small sets of minors can determine the

equivalence class of a particular circular planar electrical network [KW]. Alman, Lian, and

Tran study such sets, called positivity tests, for the top rank element of EPn [ALT2] .

In Section 2 of this paper, we provide detailed definitions and background on the topic.

In Section 3, we introduce a novel discussion of the size of equivalence classes, showing that

the number of Y-∆ transformations needed to transform one critical electrical network into

an equivalent one is at most quartic in the n. In Section 4, we address certain cases of

Kenyon and Wilson’s conjecture. We conclude in Section 5, addressing further research.

This paper addresses certain questions concerning electrical networks that are algorithmic
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in nature. Thus, the results have potential implications for computer science, improved

circuit design, and networking efficiency. Circular planar graphs have also been widely used

in a novel medical imaging technique known as electrical impedence tomography [BDGV08].

Critical circular planar graphs, due to unique properties of simplicity and recoverability, can

be naturally used to model this process. Our work concerning critical graphs may be helpful

for optimal modeling.

2 Definitions and Background

Definition 2.1. A circular planar graph Γ = (V,E) is a planar graph embedded in a

disc D with a designated set boundary vertices VB on the boundary of D. The order n is the

number of boundary vertices. Self-loops and interior vertices of degree 1 are not allowed.

Definition 2.2. A circular planar electrical network (Γ, γ) is a circular planar graph

Γ = (V,E) along with a conductance map γ : E → R>0. See Figure 1 for an example.

This object can be interpreted physically as having resistors of conductance γ(e) in

place of edges. In particular, the network satisfies laws in classical physics: Kirchoff’s law

and Ohm’s law. Fix some circular planar electrical network, label the boundary vertices

b1, . . . , bn, and suppose that electrical potentials v1, . . . , vn are assigned to these boundary

vertices. This defines a natural map f : Rn → Rn such that f(v1, . . . , vn) = (c1, . . . , cn)

where ci is the current through boundary vertex vi. This map f is, in fact, linear [CIM].

Using the natural bases for Rn we then can define a network response matrix for the

map f associated with each circular planar electrical network (Γ, γ).

Definition 2.3. Two electrical networks are said to be equivalent if they have the same

network response matrices.

Equivalent electrical networks are related by the following local equivalences [dVGV,

Théorème 4]. These can be performed in reverse as well.

• Parallel equivalence: Two edges with common endpoints v and w and conductance a

and b can be replaced by an edge of conductance a+ b.
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Figure 1: Electrical Network Figure 2: Y-∆ Transformation

• Series equivalence: Two consecutive edges uv and vw of conductance a and b, respec-

tively, can be replaced by an edge uw of conductance ab
a+b

.

• Y-∆ equivalence: The transformation in Figure 2 with conductances satisfying

A =
bc

a+ b+ c
B =

ac

a+ b+ c
C =

ab

a+ b+ c
.

Definition 2.4. Two circular planar graphs are said to be equivalent if they are related

by a sequence of local equivalences (disregarding the references to conductances, of course).

For circular planar graphs in the same equivalence class, the space of possible response

matrices is the same. The “simplest” elements of an equivalence class are called critical:

Definition 2.5. A circular planar graph is called critical if it has the least number of edges

in its equivalence class.

Theorem 2.6 ([CIM, Theorem 1]). Equivalent critical circular planar graphs are related by

Y-∆ transformations.

A useful dual object to circular planar graph is its medial graph. The construction of a

medial graph M(Γ) from a circular planar graph Γ = (V,E) is shown in Figure 3. A medial

graph can be associated with a wiring diagram (as in Figure 4). More detailed description

and theory can be found in [CIM] and [ALT]. For our purposes, it will suffice to know that

critical circular planar graphs are in bijection with full, lensless wiring diagrams:
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Definition 2.7. Fix a disc D with n boundary vertices. For each boundary vertex, place

two medial boundary vertices, one on each side. A wiring diagram is a collection of n

smooth curves embedded in a disc D, such that each wire connects two medial boundary

vertices. Each medial boundary vertex is associated with one wire, and triple crossings and

self-loops are not allowed. The order of W is defined to be n. We call W lensless if any

two wires intersect at most once, and we call W full if no two boundary vertices can be

connected by a smooth curve inside D without intersecting a wire.

Theorem 2.8 ([CIM, Lemma 13.1], [ALT, Theorem 2.4.6]). Critical circular planar graphs

of order n are in bijection with full, lensless wiring diagrams of order n.

Proposition 2.9 ([CIM]). If two critical circular planar graphs are related by a Y-∆ trans-

formation, then their corresponding wiring diagrams are related by a transformation known

as a motion, shown in Figure 5.

(A motion can be thought of as lifting a wire over the intersection of two other wires).

Therefore, equivalence classes of critical graphs under Y-∆ transformations are isomor-

phic to equivalence classes of wiring diagrams under motions. The following result charac-

terizes such equivalence classes.

Theorem 2.10 ([CIM, Theorem 7.2]). IfW1 andW2 are full, lensless wiring diagrams whose

wires pair up the medial boundary vertices in the same manner, then W1 and W2 are related

by a sequence of motions.

We will make use of the following construction from [ALT, Lemma 3.1.1]:

Definition 2.11. Circular planar graph equivalence classes can be organized into a poset

EPn with ordering relation as follows: if G can be transformed into H by contracting and/or

deleting some sequence of edges, then [G] ≥ [H].

Theorem 2.12 ([ALT, Theorem 3.2.4]). EPn is graded by the number of edges in the critical

graph of the equivalence classes. In the top rank element, graphs have
(
n
2

)
edges.

We can interpret this poset as one of equivalence classes of full, lensless wiring diagrams.
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Figure 3

b4 b1

b3 b2

Figure 4

b4 b1

b3 b2

Figure 5

Shown in Figure 3 is a circular planar graph of order 4 (red) along with its medial graph
(red). The corresponding wiring diagram is given in Figure 4. Figure 5 illustrates a motion.

Contractions and deletions of edges in circular planar graphs correspond to breaking the

crossings of two wires in the wiring diagram. In particular, if a, b, c, d are medial boundary

vertices in clockwise order around the circle and ac and bd are two wires, then we can break

the crossing by replacing these wires with either wires ab and cd or ad and bc.

An interesting combinatorial characterization of circular planar graphs involves circular

pairs and circular minors:

Definition 2.13. A circular pair (P ;Q) is an ordered pair of two sequences of distinct

vertices P = (p1, . . . , pm) and Q = (q1, . . . , qm) such that p1, . . . , pm, qm, . . . , q1 appear in

clockwise circular order.

For n = 6, an example of a circular pair is (1, 2; 6, 4).

Definition 2.14. Let Γ be a circular planar graph. A circular pair (P,Q) is said to be

connected if there exist pairwise vertex-disjoint paths from pi to qi. The path from pi to qi

must not use any other boundary vertices.

Definition 2.15. Let (Γ, γ) be an electrical network, let (P ;Q) be a circular pair, and let

N be the response matrix. The circular minor associated with (P ;Q) is the determinant

of the submatrix of N with ordered row set P and ordered column set Q.

Theorem 2.16 ([CIM, Theorem 4, Theorem 4.2]). All circular minors of the response matrix

are non-negative. Positive circular minors correspond to connected circular pairs in Γ.
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3 Critical Graph Equivalences Classes

In this section, we will prove the following:

Theorem 3.1. Suppose Γ1 and Γ2 are equivalent critical circular planar graphs of order n.

The number of Y-∆ equivalences required to transform Γ1 into Γ2 is at most quartic in n.

This can be rephrased as: Given two full, lensless wiring diagrams W1 and W2 of order

n whose wires pair up the same vertices, the number motions are needed to transform one

into the other is at most quartic in n.

We first consider the equivalence class Mn of wiring diagrams corresponding to the top

rank element of EPn, with
(
n
2

)
intersections. Number the medial boundary vertices 1 to

2n in counterclockwise order. Our wiring diagram must match the medial boundary vertex

i to i + n modulo 2n. We now relate elements of Mn to reduced decompositions of the

permutation (n, . . . , 1) ∈ Sn. Write tx for the transposition (x, x+ 1).

Definition 3.2. A reduced decomposition of a permutation σ ∈ Sn is a sequence of

transpositions of the form tx such that σ = s1 · · · sk under composition and k is minimal.

Fix a reduced decomposition s1 · · · sk of (n, . . . , 1). It is well-known that k =
(
n
2

)
.

Definition 3.3. If si = tx and si+1 = ty with |x− y| ≥ 2, they can be swapped to produce

another valid reduced decomposition s1 · · · si−1si+1sisi+2 · · · sn. This is called a 2-move.

Definition 3.4. If si−1 = si+1 = tx and si = ty where |y − x| = 1, replacing the sequence

si−1sisi+1 = txtytx with tytxty does not alter the resulting permutation. This is a 3-move.

Call two reduced decompositions of (n, n − 1, . . . , 1) ∈ Sn 2-equivalent if a sequence of

2-moves can transform one into the other. Let Rn be the set of these equivalence classes.

Lemma 3.5. Rn and Mn are in natural bijection, and 3-moves in Rn correspond to motions

in Mn.

Proof. Fix a wiring diagram in Mn (as in Figure 6). Discard the circle and pull the vertices

labeled 1 to n to one side and the vertices labeled n+ 1 to 2n to the other side. We organize

the wires as shown in Figure 7, with intersections occurring in one of the n − 1 horizontal

7



Figure 6
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Figure 7
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Figure 6 shows a wiring diagram in M4 and Figure 7 shows the result of deforming the wiring
diagram.

rows in a well-defined order. Label i the row between vertex i and i + 1. Define a reduced

decomposition s1 · · · sk as follows: Recording from left to right, if the ith intersection occurs

in row x, write si = tx. Indeed, any 2-move on the resulting decomposition corresponds to

a homotopy on the wiring diagram. Any 3-move corresponds to a motion.

For a reduced decomposition r of (n, . . . , 1), let [r] ∈ Rn denote its equivalence class under

2-moves. Define F ([r]) = (a1, a2, . . . , an−1), where ax denotes the number of transpositions

of the form tx in r.

Lemma 3.6. Let [m] ∈ Rn be such that a sequence of the form tx+1txtx+1 does not appear

in any element of the equivalence class. Then F ([m]) = (n− 1, . . . , 1).

Proof. We proceed by induction on n. For n = 2, this is trivial. Suppose it holds for n− 1.

Let m = s1 · · · s(n
2)

We construct a sequence of indices i1, . . . , in−1 as follows. Let in−1 be

the largest index for which sin−1 = tn−1. Let ik be the largest index less than ik+1 such that

sik = tk. This is a well-defined sequence because when s1 · · · sk is applied to the permutation

(1, . . . , n), the transpositions that change the position of the number n will be si1 , . . . , sin−1 .

We now inductively apply two moves so that ik, . . . , in−1 are consecutive numbers. Sup-

pose for some k this is true. Let sik−1 = tx. If x = k−1, we have ik−1, . . . , in−1 are consecutive

numbers. We cannot have x = k because this would imply m is not a reduced decomposition.

Suppose that x > k. Then, a sequence of 2-moves can be applied so that txtx−1tx shows
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up in the reduced decomposition, a contradiction. If x < k − 1, we can apply a sequence

of 2-moves so that the sequence ik, . . . , in−1 7→ ik − 1, . . . , in−1 − 1 and ik−1 remains fixed.

Therefore, by induction, we can ensure i1, . . . , in−1 are consecutive. By a similar argument

as above, we must also have that ik = k for all k.

Now, r = sn · · · s(n
2)

is a reduced decomposition of the permutation (n − 1, . . . , 1) such

that a consecutive sequence of the form tx+1txtx+1 never appears in any element of [r]. Using

the induction hypothesis, we can see that F ([m]) = (n− 1, . . . , 1), as desired.

Corollary 3.7. The lexicographically highest output of F is (n− 1, n− 2, . . . , 1). A reduced

decomposition r for which F ([r]) is not lexicographically maximal can be transformed via 3-

moves (and 2-moves) to a reduced decomposition r′ where F ([r′]) is lexicographically higher.

Lemma 3.8. If F ([r]) = F ([r′]) = (n− 1, n− 2, . . . , 1), then [r] = [r′].

Proof. This follows from using 2-moves in a similar way as in Lemma 3.6.

Define G([r]) = (n− 1, . . . , 1) · F ([r]) (dot product between vectors in Rn).

Lemma 3.9. Let r and r′ be two reduced decompositions. Then, there exists a sequence of

2-moves and 3-moves transforming r to r′ with the number of 3-moves at most cubic in n.

Proof. Note that every time a 3-move of the form tx+1txtx+1 7→ txtx+1tx is applied, the value

of G([r]) increases by 1. Let r0 be a reduced decomposition such that F ([r]) = (n−1, . . . , 1).

By Corollary 3.7 and Lemma 3.8, we can transform r into r0 with 2-moves and 3-moves

of the form tx+1txtx+1 7→ txtx+1tx. Similarly, we can transform r0 to r′ with a sequence of

2-moves and 3-moves of the form txtx+1tx 7→ tx+1txtx+1. Thus, we have r 7→ r0 7→ r′ using

at most 2× (n− 1, n− 2, . . . , 1) · (n− 2, n− 4, . . . , 2− n) 3-moves. This is cubic in n.

Corollary 3.10. Let W1 and W2 be two wiring diagrams in Mn. Then, the number of

motions required to transform W1 to W2 is at most cubic in n.

We are now ready to prove Theorem 3.1 in full. We will generalize the above result to

prove that two full, lensless wiring diagrams in the same equivalence class are related by at

most a quartic (in n) number of motions.
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Figure 8
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Figure 9

A

D

Figure 8 displays a portion of a wiring diagram within the region R. The wires x and y
are composed of segments of the form si and ti, respectively. The corresponding faces of
the form fi and gi have also been identified. Figure 9 illustrates region F of a hypothetical
wiring diagram. Note the labeling of the wire segments with wi.

Let k be the rank of [W1] in EPn. Call two wires parallel if they do not intersect. In

order prove Theorem 3.1, we will show the following:

Lemma 3.11. Some two parallel wires in W1 can be made to border the same face in at

most k motions.

Let x and y be two parallel wires such that there is no wire z between them such that z is

mutually parallel to x and y. Let A and D be the boundary vertices of x, and B and C the

boundary vertices for y such that A, B, C, D are in clockwise order. Let s1, s2,. . . ,sp be the

segments of wires whose union is x such that for i < j, si is closer than sj to A along wire

x. Similarly, define, t1, t2, . . . , tq to be segments of wires with union y and i < j, ti is closer

than tj to B along wire y. Let R denote the region between x and y. For 1 ≤ i ≤ p, let fi

be the face contained in R that has si as an edge; for 1 ≤ j ≤ q, let gi be the face contained

in R that has ti as an edge. (See Figure 8.) Suppose that a face fi or gj is a triangle. Then,

through a sequence of at most k motions of x and y, we can ensure that each fi and gj is

not a triangle. This is because two motions are never made over the same point.
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Figure 10

x
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Qi+1

Qi+2

Pi

Pi+1

Pi+2

Figure 11

A B

CD
R3

R2

R1

R4

r1

r2

Figure 12

Figure 10 depicts the case where PQ and wi are consecutive. Note that the wire v must
partition the face outlined in red. Figure 11 illustrates the case where wi and PiQi are not
consecutive. Note how wires containing wi+2 and wi+3 (blue and cyan) intersect twice. In
Figure 12, the wires r1 and r2 partition region R into the four regions R1, R2, R3, and R4.

At this point, we claim that x and y are edges to a common face. Suppose this is not true.

Let F be the union of the faces fi. Then, the boundary of F consists of wire x from D to A;

an arc of the boundary circle between A and B; a sequence of wire segments w1, w2, . . . , wk

such that two consecutive wire segments are from different wires; and an arc of the boundary

circle between C and D. (See Figure 9.)

Lemma 3.12. A wire w containing wi cannot intersect x.

Proof. Let P be such a point of intersection and let Q be a point on w such that Q lies on

the boundary of F , the wire segment PQ is contained in region F , and P and Q are the only

points on the segment PQ that are on the boundary of F . We have two cases to consider,

depending on whether wi and PQ are consecutive segments.

First, assume they are consecutive. Then Q is an endpoint of wi and is either wi ∩ wi−1

or wi ∩ wi+1. Assume it is the latter. Then we can see that the wire containing wi+1 will

intersect x at a point R, such that R is closer to A than P . Clearly PQR is a triangle and

must be partitioned by at least one wire. Let v be such a wire and assume that v intersects

QR at a point M . Let N be the other point of intersection with triangle PQR. Let L and O
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be the boundary vertices of v such that the vertices L, M , N , and O appear in alphabetical

order on v. (For example, M is closer to L than N .) We can assume that segment LM does

not intersect x. Either N is on PR and therefore on x or N is on PQ. In the latter case,

either NO or LM does not intersect x, and we can assume without loss of generality that

LM does not. Now, consider the face in F that has Q as a vertex and a subset of wi as an

edge. Clearly, LM must partition this face, a contradiction. Thus, the segments PQ and wi

cannot be consecutive on w. (See Figure 10.)

Let Xi = wi ∩ wi+1 for 1 ≤ i ≤ k − 1. So wi can be written as Xi−1Xi. We will now

consider the case where PQ and wi are not consecutive. For a wire w containing wi, we will

write the points P and Q as Pi and Qi, respectively. There exists a unique index j 6= i such

that Qi ∈ wj. Assume without loss of generality that Pi is closer to Xi than Xi−1 along w.

We can see that j > i; otherwise, w forms a loop or partitions the face in F to which Xi is a

vertex. Then, it can be seen that the wire containing wi+1 must intersect x at point Pi+1 such

that Pi+1 is closer to A than Pi along x; otherwise, the wires of wi and wi+1 intersect twice.

We also then have Qi+1 ∈ wl such that l ≤ j. But, inductively, this is clearly impossible.

(See Figure 11.) Therefore, any wire containing wi cannot intersect x.

Proof of Lemma 3.11. We call a wire a Type 1 wire if it has a boundary vertex between

A and B and a boundary vertex between B and C. A wire is a Type 2 wire if it has a

boundary vertex between B and C and one between C and D. Due to Lemma 3.12, we have

that each segment wi belongs to a Type 1 or 2 wire. We can now see that there exists an

index m such that wires containing wi for 1 ≤ i ≤ m are Type 1 and otherwise are Type 2.

Indeed, if wi belongs to a Type 1 wire, then wi−1 must have a boundary vertex between A

and B and thus must be Type 1.

Now, define a Type 3 wire to have a boundary vertex between A and B and one between

D and A. Define a type Type 4 wire to have boundary vertex between C and D and one

between D and A. Let G be the union of the faces gi. For 1 ≤ i ≤ 4, Let ri be a Type i

wire with the following properties:

1. Segments of r1 and r2 and r1 ∩ r2 are on the boundary of F .

12



2. Segments of r3 and r4 and r3 ∩ r4 are on the boundary of G.

We now show that r1, r2, r3, r4 cannot be arranged without violating a necessary condition.

Let R1, R2, R3, and R4 be the regions into which R is partitioned by r1 and r2, as shown in

Figure 12. Suppose r3 ∩ r4 ∈ R4. Consider the face in F that has r1 ∩ r2 on its boundary.

This face is clearly partitioned by r3 and r4, a contradiction. So, we assume that r3 ∩ r4 ∈

R1 ∪ R2. Then, r4 and r1 intersect twice, a contradiction. We have proven Lemma 3.11.

Proof of Theorem 3.1. Now, let [W ] denote the equivalence class obtained from [W1] by

matching a to c and matching b to d. Let C be the maximum number of motions required to

transform one wiring diagram into another in [W ]. We can transform W1 to W
′
1 in at most

k motions, and similarly W2 to W
′
2, where W

′
1 and W

′
2 have parallel wires x and y as edges

to a common face (by Lemma 3.11). Let W
′′
1 and W

′′
2 be the wiring diagrams obtained from

W
′
1 and W

′
2, respectively, by crossing the segments of x and y that are common to a face.

Consider a sequence of motions to transform W
′′
1 to W

′′
2 . We can apply this sequence to W

′
1

to obtain W
′
2 by treating any motion over the newly created intersection of the wires A to

C and B to D as homotopy. Therefore, we have a sequence of motions of length at most

C + 2k that can transform W1 to W2. Finally, using Corollary 3.10 and the fact that EPn

has a quadratic number of ranks, we are done.

4 Positivity Tests

We investigate positivity tests for response matrices of particular equivalence classes. Let M

be a symmetric n x n matrix. A question of interest is as follows: Can we determine if M is

a network response matrix for some electrical network in a given equivalence class of EPn?

Definition 4.1. An r-positivity test for an equivalence class [G] of EPn of corank r is

defined to be an ordered pair of sets of circular minors (S1, S2) such that: if the elements

of S1 are positive and the elements of S2 are 0, then M is a valid response matrix for an

electrical network with underlying graph in [G].

In general, the following has been conjectured:
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Conjecture 4.2 ([KW]). For each equivalence class of corank r, there exists an r-positivity

test such that |S1| =
(
n
2

)
− r and |S2| = r.

[ALT2] shows this conjecture for r = 0. We will prove this conjecture for odd n and

r = 1, 2. For simplicity, we will interchange the use and notation of circular pairs and circular

minors where the context is clear. As a matter of notation, we will write the sequence of

vertices (x, x + 1, . . . , x + y − 1, x + y + 1, . . . , x + z) as (x, . . . , x + z)x+y. Let n = 2k + 1.

We first describe which circular pairs are connected in equivalence classes in EPn of corank

1 and 2.

Definition 4.3. A circular pair (P ;Q) is said to be maximal if exactly one vertex v ∈

{1, . . . , n} does not appear in P or Q.

We can identify maximal circular pairs by the vertex that has not been included. For

brevity, we will write (v) for the maximal circular pair in which v does not appear.

Definition 4.4. A rotation of a circular pair (P ;Q) by c means we add c to each vertex

in the circular pair modulo n.

The following provides a description of equivalences class of corank 1 and 2. Circular

planar graphs in equivalence classes of corank 1 have exactly 1 maximal circular pair not

connected, and all other circular pairs are connected. Circular planar graphs in equivalence

classes of corank 2 have all circular pairs connected except one of the following sets of circular

pairs are not connected, up to a rotation:

1. (k + 1) and (v), for v 6= 1, 2k + 1

2. (1, . . . , k); (k + 1, . . . , 2k + 1)p where k + 1 ≤ p ≤ 2k + 1

3. (1, . . . , k + 1)p; (k + 2, . . . , 2k + 1) where 1 ≤ p ≤ k + 1

4. (k + 1) and (1) and (2, . . . , k); (k + 2, . . . , 2k + 1)p where k + 2 ≤ p ≤ 2k + 1.

This is seen by considering contractions and deletions of the well-connected network in

[CIM, Page 132]. We will now develop positivity tests for these equivalence classes.
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Definition 4.5. Fix any matrix M . Suppose the row set and column set are indexed as I

and J . Then, we will write ∆i1i2···is,j1j2...jt for the determinant of the submatrix M ′ obtained

by deleting rows i1, . . . , is ∈ I and columns j1, . . . , jt ∈ J , assuming M ′ is square.

Proposition 4.6. We will use the following well-known Grassmann-Plücker relations:

(a) Fix an n×n matrix M . Let a, b be elements of its row set, with row a above row b, and

let c, d be elements of the column set, with column c to the left of column d. Then,

∆a,c∆b,d = ∆a,d∆b,c + ∆ab,cd∆∅,∅. (*)

(b) Fix an (n+ 1)×n matrix M . Let a, b, c be rows (in this order top to bottom). Let d be

a column. Then,
∆b,∅∆ac,d = ∆a,∅∆bc,d + ∆c,∅∆ab,d. (**)

Definition 4.7. A circular pair (P ;Q) is said to be solid if both p1, . . . , pm and q1, . . . , qm

show up consecutively around a circle. For two vertices v and w on the circle, we write

d(v, w) for the number of boundary vertices between them moving clockwise from v to w. A

solid circular pair (P ;Q) is called diametric if |d(q1, p1)− d(pm, qm)| ≤ 1.

Let D denote the set of diametric pairs. It is shown in [ALT2, Corollary 4.1.9] that (D, ∅)

is a 0-positivity test. We first give a 2-positivity test for case 4 above. Define the following:

A = (k + 1) B = (1)

C = (2, . . . , k); (k + 2, . . . , 2k) D = (2, . . . , k); (k + 3, . . . , 2k + 1)

E = (1, . . . , k + 1)2; (k + 2, . . . , 2k + 1) F = (1, . . . , k)2; (k + 2, . . . , 2k)

G = (1, . . . , k)2; (k + 3, . . . , 2k + 1) X = (1, . . . , k − 1); (k + 3, . . . , 2k + 1)

Y = (3, . . . , k + 1); (k + 2, . . . , 2k)

Lemma 4.8. If S1 = D∪{X,E} \ {A,B,C,D}, S2 = {C,D}, then (S1, S2) is a 2-positivity

test.

Proof. Suppose the elements of S1 are positive and those of S2 are 0. We first show that

A = B = 0. Consider the following uses of the first Plucker relation.
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∆ a b c d

(*)(1) (1, . . . , k); (2k + 1, . . . , k + 2) 1 k 2k + 1 k + 2

(*)(2) (2, . . . , k + 1); (2k + 1, . . . , k + 2) 2 k + 1 2k + 1 k + 2

In (1), using ∆a,d = ∆a,c = 0 and ∆ab,cd > 0, we have A = 0. In (2), using ∆b,d = ∆b,c = 0

and ∆ab,cd > 0, B = 0.

We now show Y > 0. We use the following three instances of the Plücker relations.

∆ a b c d

(**)(3) (1, . . . , k); (2k + 1, . . . , k + 3) 1 2 k 2k + 1

(*)(4) (1, . . . , k + 1)2; (2k + 1, . . . , k + 2) 1 k + 1 2k + 1 k + 2

(**)(5) (1, . . . , k); (2k, . . . , k + 2) 1 2 k k + 2

From (3), we can deduce G > 0. From (5), we then have F > 0. Together with (4), Y > 0

as desired.

We will now show that the remainder of the circular minors associated with solid cir-

cular pairs are positive. In particular, we will use strong induction on the value e(P ;Q) =

|d(q1, p1)−d(pm, qm)|. Fix some such (P ;Q) /∈ D∪{A,B,C,D,X, Y }. Note that e(P ;Q) ≥ 3.

Suppose for all solid circular pairs (P ′;Q′) with e(P ′;Q′) < e(P ;Q), we have deduced the

desired sign of the associated circular minor, either 0 or positive. We assume without loss of

generality that d(q1, p1) < d(pm, qm). Then consider the following relation:

∆ a b c d

(*)(6) (p1, . . . , pm, pm + 1); (q1, . . . , qm, qm + 1) p1 pm + 1 q1 qm + 1

We wish to show ∆b,d > 0. Note that the rest of the terms in the relation correspond to

solid circular pairs with lower values of e. Since (P ;Q) /∈ D ∪ {A,B,C,D,X, Y }, we can

deduce that ∆a,c > 0. Now, suppose in (6), both products on the right hand side of the

relation are 0. This implies ∆b,d = 0. This would mean that in any circular planar graph

with circular pairs in S1 connected (P ;Q) would not be connected. However, the existence

of the equivalence class described in case 4 above gives us a contradiction. Since each term

on the right hand side of (6) is nonnegataive by the induction hypothesis, the right hand
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side must be positive. Therefore, we have that ∆b,d > 0. By induction, we have deduced

signs of all solid circular pairs.

We show minors of the form (2, . . . , k); (2k + 1, . . . , k + 2)p for k + 3 ≤ p ≤ 2k are 0.

∆ a b c d

(**)(7) (2, . . . , k); (2k + 1, . . . , k + 2)p 1 2 k + 1 p

Since A = B = 0 and E > 0, we have ∆ac,d = 0.

Definition 4.9. Let (P ;Q) be a circular pair. Define φ(P ;Q) = d(p1, pm) + d(qm, q1) if

(P ;Q) is not solid. Otherwise, let φ(P ;Q) = 0.

Definition 4.10. Call a circular pair (P ;Q) one-holed if one of P and Q consists of

consecutive vertices and the other can be made into a consecutive sequence of vertices with

the addition of a single vertex.

Let S be the set of one-holed circular pairs with φ(P ;Q) ≤ 2k− 1, not including circular

pairs of the form (2, . . . , k); (2k + 1, . . . , k + 1)p. We show using induction on φ that minors

associated with elements of S are positive. Fix (P ;Q) ∈ S and assume that the result is true

for all circular pairs with smaller associated φ. Assume that P is one-holed and let us label

the vertex that is not included with p, such that p is between pc and pc+1 on the circle.

∆ a b c d

(**)(8) (p1, . . . , pc, p, pc+1, . . . , pm); (q1, . . . , qm) p1 p pm q1

In (8), ∆b,∅ = (P ;Q). It can be easily checked that ∆ac,d,∆bc,d, and ∆ab,d are either in S

with a lower value of φ or are among solid circular pairs with arc size less than k − 1. Each

is positive. Also, we observe that ∆a,∅ and ∆c,∅ are both solid and at least one must be

positive. Thus, the induction is complete.

We will now show that circular minors associated with the pairs (k+1, . . . , 2k+1)p; (k, . . . , 1)

where 2k ≥ p ≥ k+ 2 and (k+ 2, . . . , 2k+ 1, 1)p; (k+ 1, . . . , 2) where 2k+ 1 ≥ p ≥ k+ 3 are

positive. We use the following:

17



∆ a b c d

(**)(9) (k + 1, . . . , 2k + 1); (k, . . . , 1) k + 1 p 2k + 1 k

(**)(10) (k + 2, . . . , 2k + 1, 1); (k + 1, . . . , 2) k + 2 p 1 2

In (9), ∆ac,d and ∆c,∅ are positive minors associated with diametric pairs. Also, ∆ab,d ∈ S

and ∆a,∅ = 0. Thus, ∆b,∅ > 0. Similarly, in (10), we conclude ∆b,∅ > 0. Now, we show

positivity of minors of one-holed circular pairs of the form (P ;Q) = (1, . . . , k + 1)p, (2k +

1, . . . , k + 2). For p = 2, (P,Q) = E ∈ S1. We proceed by induction on p from 2 to k to

show each such (P ;Q) is positive. Assume for some 2 ≤ p ≤ k − 1 we have that the minor

of (1, . . . , k + 1)p; (2k + 1, . . . , k + 2) is positive.

∆ a b c d

(**)(11) (1, . . . , k + 1); (2k + 1, . . . , k + 2) 1 p p+ 1 2k + 1

In (11), we have by the induction hypothesis ∆b,∅ > 0. Additionally, ∆a,∅ = B = 0 and

∆ab,d, ∆ac,d ∈ S ∪ {Y }. Thus, ∆c,∅ > 0, as desired in our induction.

Finally, we can finish the proof by showing positivity of the remainder of minors of non-

solid circular pairs. We proceed by induction on φ. Let (P ;Q) be some such circular pair,

and suppose for those circular pairs with lower values of φ we have deduced the desired sign

of the minor (desired means corresponding to which circular pairs are connected and which

are not). Assume, without loss of generality, that P is not a consecutive sequence of vertices.

Let pc + 1 /∈ P be a vertex with minimal d(p1, pc + 1). Consider the following relation:

∆ a b c d

(**)(12) (p1, . . . , pc, pc + 1, pc+1, . . . pm); (q1, . . . , qm) p1 pc + 1 pm q1

We have (P ;Q) = ∆b,∅. Note that all other terms in the relation have lower values of φ. We

claim that ∆ac,d > 0. Assume the contrary. Because of the induction hypothesis, we have

that if ∆ac,d ≤ 0, then ∆ac,d = 0. Furthermore, it can be readily checked that if this is the

case (P ;Q) must be a non-solid circular pair of the form:

• (k + 1, . . . , 2k + 1)p; (k, . . . , 1)

• (k + 2, . . . , 2k + 1, 1)p; (k + 1, . . . , 2)
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• (1, . . . , k + 1)p, (2k + 1, . . . , k + 2)

However, we have shown the positivity of such minors. So we must have ∆ac,d > 0. Also,

by the induction hypothesis, we have deduced that each term on the right hand side is non-

negative. Suppose in (12) the right hand side evaluates to 0. This implies ∆b,∅ = 0. This

would mean that any circular planar graph with circular pairs in S1 connected necessarily

does not have (P ;Q) connected. However, the equivalence class described in case 4 above

gives us a contradiction. Thus, the right hand side of 11 must be positive. Therefore, we

have that ∆b,∅ > 0. By induction, we have therefore deduced the desired signs of all non-solid

circular pairs, and we are done.

Theorem 4.11. Conjecture 4.2 holds for odd n and r = 1, 2.

Proof. We must find r-positivity tests for cases 1, 2, 3, 4 presented above. The proof of case 4

is given in Lemma 4.8. For cases 1, 2, 3, we partition D into positive and 0 parts. The proof

follows readily from a slight modification of the argument of [ALT2, Lemma 4.1.8].

5 Conclusions and Discussion

In this paper, we have addressed a novel question of how many Y-∆ equivalences are needed

to relate equivalent critical circular planar graphs. Critical graphs, being the “simplest”

elements of their equivalence classes, have potential for improved modeling of real networks.

In the future, perhaps our bound can be made cubic in n. We have also discussed positivity

tests, proving certain cases of a conjecture by Kenyon and Wilson. An inherently algorithmic

topic, positivity tests may have interesting implications in analyzing network efficiency.

For future research, it would be interesting to explore the analogies and connections

between the space of electrical networks and the totally nonnegative Grassmannian [Pos],

which have related applications in physics. Building off these analogies, one can better

characterize equivalence classes of EPn and study certain topological properties of the poset

(e.g. lexicographic shellability) [ALT].
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