
The PRIMES 2015 Computing Problem Set

Dear PRIMES applicant!

This is the PRIMES 2015 Computing Problem Set. Please send us
your solutions as part of your PRIMES application by December 1,
2014. For complete rules, see http://web.mit.edu/primes/apply.shtml

Note that this set contains two parts: “General Math problems” and
“Computer Science problems.” Please solve as many problems as you
can in both parts.

For the General Math problems, you can type the solutions or write
them up by hand and then scan them. Please attach your solutions
to the application as a PDF (preferred), DOC, or JPG file. The
name of the attached file must start with your last name, for exam-
ple, “smith-math-solutions.” Include your full name in the heading of
the file. Please write not only answers, but also proofs (and partial
solutions/results/ideas if you cannot completely solve the problem).

For the Computer Science problems, see instructions at the beginning
of that part.

Besides the admission process, your solutions will be used to decide
which projects would be most suitable for you if you are accepted to
PRIMES.

You are allowed to use any resources to solve these problems, except
other people’s help. This means that you can use calculators, comput-
ers, books, and the Internet. However, if you consult books or Internet
sites, please give us a reference.

Note that posting these problems on problem-solving web-
sites before the application deadline is not allowed. Applicants
who do so will be disqualified, and their parents and recommenders
will be notified.

Note that some of these problems are tricky. We recommend that
you do not leave them for the last day. Instead, think about them, on
and off, over some time, perhaps several days. We encourage you to
apply if you can solve at least 50% of the problems.

We note, however, that there will be many factors in the admission
decision besides your solutions of these problems.

Enjoy!

1

General math problems
Problem G1. You roll three dice trying to get all three to be equal.

If at some throw two are equal, you keep rolling the third one in the
hope of it turning equal to the other two. What is the chance that you
do not succeed if you are allowed to roll the dice two times? n times?
(note that rolling all three dice or just rolling the third one each count
as one roll).

Problem G2. John lives 2 miles north from a road, which is sepa-
rated from John’s house by a grove. If he walks from his house to the
road along any straight line, the last mile of his walk is through the
grove. Find the shape of the grove (describe its northern boundary by
an equation).
Problem G3. Two white and two black rooks are placed at random

on a standard 8-by-8 chessboard. What is the chance that NO white
rook attacks a black rook? (recall that a rook attacks along the vertical
and horizontal line it stands on). Give the answer as a fraction in lowest
terms.

Problem G4. The number 1 is written on a blackboard. John
plays the following game with himself: he chooses a number on the
blackboard, multiplies it by 2 or 3, adds 1, and puts the result on the
blackboard (if it does not appear there already).

a) How many pairs of consecutive numbers can appear?
b) Can it happen that three consecutive numbers appear on the

blackboard?
c) Can it happen that the numbers n, n + 1, n + 3, n + 4 appear for

some n?
Problem G5. Prove that for every real C > 0, there is some finite

nonempty set of integers A such that |A + A| ≥ C|A− A| (where |X|
is the number of elements in a set X). Here

A + A := {a + b : a ∈ A, b ∈ A}

and

A− A := {a− b : a ∈ A, b ∈ A}

are the set of pairwise sums and the set of pairwise differences of A,
respectively.

For example, let A = {0, 2, 3, 4, 7, 11, 12, 14}. We have A + A =
[0, 28] \ {1, 20, 27} and A − A = [−14, 14] \ {±6,±13}. (Here [m,n]
denotes {m,m + 1, . . . , n}). Thus |A + A| = 26 and |A − A| = 25, so
the example proves the statement for C ≤ 26/25.

2

Problem G6. Let an, n ≥ 1 be the sequence determined recursively
by the rule

a1 = 1, an+1 =
n + 2

n + 1
an +

n3 + 3n2 + 2n− 2

n(n + 1)
.

Find a formula for an.
Hint. Compute the first few values and try to guess the answer.
Problem G7. Let Mn denote the n× n matrix whose entries are 0

below the main diagonal and 1 on and above the main diagonal. E.g.,

M4 =


1 1 1 1
0 1 1 1
0 0 1 1
0 0 0 1

 .

Determine M r
n for any r ≥ 1.

3

Computer science problems.

About the problems. The theme of this year’s problems is data encoding,
in particular Huffman coding. Huffman coding is used in data compression.
It is used for lossless data compression, i.e. compression in which there is no
information loss due to approximation, so that uncompressed data is exactly the
same as before the compression. You will experiment with various encodings of
text and determine how effective they are.

What you need to do. For these problems we ask you to write a pro-
gram (or programs) to experiment with various encodings. You may use any
programming language you want. It is best to implement each problem as a
separate function so that we can run them separately. We will be looking for
the following in your submissions:

• Correct code that we can run. You need to send us all your code files,
including the header files for languages like C++. If you are using standard
libraries, make sure to include all “import” statements, as required by the
language you are using. Make sure to send the files under the correct
names, including the file extension (.java, .c, etc). Make sure that the file
names do not contain any identifying information about you, such as your
first or last name.

• Test data for your code that you have used (you can write it in comment
or in a separate file). Make sure to test your code well – you don’t want
it to fail our tests!

• Code documentation and instructions. Important: do not include

your name in comments or in any file names. If you are submitting
your answers to non-code problems in a separate file, also make sure that it
does not have your name in the contents or in the file name. The only place
where you specify your name is the zip file with your solutions which must
be of the form yourlastname-CS-solution.zip (replace yourlastname

by your actual last name). Make sure that you use zip compression,

and not any other one, such as tar. In the beginning of each file
specify, in comments:

1. Problem number(s) in the file. If you have a file with “helper” func-
tions, mark it as such.

2. The programming language, including the version (Java 1.7 or 1.8, for
instance), the development framework (such as Visual Studio) that
you used, unless you were using just a plaintext editor (notepad,
emacs, etc), and the platform (such as Windows, Mac, Linux)

3. Instructions for running your program (how to call individual func-
tions, pass the input (if any), etc), either in comments in your pro-
gram file or as a separate file, clearly named. Your program may get
input from the user (i.e. it asks to enter some data and then reads it)
or you may store the data in specific variables within your program.
You need to clearly explain how to input or set the data.

1

http://en.wikipedia.org/wiki/Huffman_coding

4. Some of your code may be commented out if it is not used in the
final run of your program. Make sure it is clear what needs to be
uncommented to run code for each of the problems.

5. All of your test data.

6. If you were using sources other than the ones listed here (i.e. text-
books, online resources, etc) for ideas for your solutions, please clearly
credit these contributions. This is a courtesy to work of others and
a part of ethics code for scholars.

• Clear, understandable, and well-organized code. This includes:

1. Clear separation between problems; comments that help find individ-
ual problems and explain how to run the corresponding functions.

2. Breaking down code into functions that are clearly named and de-
scribed (in comments), using meaningful names for variables and
function parameters. Your code should be as self-explanatory as
possible. While using comments helps, naming a variable average

is better that naming it x and writing a comment “x represents the
average”.

3. Minimization of code repetition. Rather than using a copy-paste
approach, use functions for repeated code and reuse these functions.

4. Using well-chosen storage structures (use an array or a list instead of
ten variables, for instance) and well-chosen programming constructs
(use loops or recursion when you can, rather than repeated code).

5. While we are not asking for the fastest program (it’s better to make
it more readable), you should avoid unnecessary overhead.

Problem 1. For this problem you need to consider a simple encoding
scheme, illustrated here on a small example. Suppose you have an alphabet
of seven letters: a, b, c, d, e, f, g. We would like to encode these letters as
sequences of zeros and ones of the same length so that each letter has a different
encoding. It is clear that we can do it with strings of length 3: A is 000, B is
001, C will be represented by the next string which is 010 (a binary encoding
of 2), etc. As the result we get:

a b c d e f g
000 001 010 011 100 101 110

Note that no character has the encoding 111.
Using this encoding, how long would a string of 0s and 1s be in order to

encode an alphabet of 26 letters, such as English? What would be the encoding
for the letter t? If you are given an alphabet of 33 letters, such as Russian, what
would be the length of each letter encoding? Generalize it to an alphabet of N
letters for any integer N > 1. Please explain all your answers.

Problem 2. Write a program to encode an English text with the character
encoding that you proposed in Problem 1. Before you encode the text, your
program must remove all the non-letter symbols and convert all letters to lower

2

case. For instance, the text ‘’If you can’t explain it simply, you don’t under-
stand it well enough.” is converted to “ifyoucantexplainitsimplyyoudontunder-
standitwellenough” before encoding. What will this phrase encode to? What
would the phrase “Courage is what it takes to stand up and speak; courage is
also what it takes to sit down and listen.” encode to? Your program may read
text as input or have it stored in a variable.

Problem 3. Write a program to decode an English text encoded with the
above scheme. What is the decoding of the phrase

10010101000001000010001001001010010000

10011100110110010010001001010011100100

11100010100110011100100001101001100010

11000101110011000010100000010000101110

10010001001001001101110001010000001000

01011101001000100100101100100010011001

11011101010010011010110111010010100100

11100010100100011011001100111101001001

001000000001001001100

Problem 4. Now we start exploring the idea of Huffman coding. Huffman
codes are based on the idea that more frequent symbols in an alphabet should
be encoded by shorter strings than less frequent letters. Consider the following
alphabet with percentages of occurrences of each letter as below:

letter a b c d e
frequency, % 51 22 15 7 5

The table shows the letter a on average occurs 51% of the time, the letter
b 22% of the time, and so on. Below is an encoding of this alphabet with 0s
and 1s using Huffman codes. Note that the more frequent letters have shorter
encodings. The letter a, which appears, on average, more than half of the time,
is encoded with a single character 1, the letter b with two characters 00, and so
on:

letter a b c d e
encoding 1 00 011 0101 0100

Now we can encode words that use this alphabet. For instance, the word
cab will be encoded as 011100.

The encodings are of different lengths, but they are constructed so that
we know exactly where each letter begins and ends, even though there are no
separators between encodings of different letters. This is because no encoding
is a prefix (i.e. a beginning) of any other one. For instance, if the encoded word
starts with 00, the first letter in it must be b because no other letter starts with
00.

Encode words ace and add in this alphabet. Decode the following words:
101011, 0010101.

Problem 5. Compare the length of encoding of an average text in the
alphabet given in the previous problem using the equal length strings of 0s and
1s (what length do we need?) and Huffman codes. Specifically, assume that we
have a text of 100 letters from a to e distributed according to the frequencies

3

given in the previous problem (i.e. a appears 51% of the time, etc.). How many
0s and 1s do we need to encode 100 letters with equal-length encoding, as in
problem 2? How many do we get for Huffman codes? What’s the ratio between
the two?

Problem 6. Now let us consider construction of Huffman codes for a given
alphabet with letter frequencies. The algorithm is given here:
http://en.wikipedia.org/wiki/Huffman coding#Basic technique.
Below is an overview and a step-by-step application of the algorithm to the
5-letter alphabet in Problem 4.

The algorithm represents letters in the alphabet or groups of such letters
as nodes that eventually are combined into a binary tree. At the start of the
algorithm each letter, together with its frequency, makes up a node that is not
connected to any other node. All nodes are placed into a set. I will represent
each node as a pair of its frequency and its contents, in parentheses. For in-
stance, (51, a) is a node with frequency 51 that contains a. In our example, the
set will look like this:

{(51, a), (22, b), (15, c), (7, d), (5, e)}

At each step of the algorithm we will take out two nodes with the smallest
frequencies, combine them into one, and put them back into the set. The
frequency of the combined node will be the sum of the frequencies of the nodes
we are combining. In our case we need to combine (5, e) and (7, d). We will
denote this combination as (12, (5, e) + (7, d)): the combined frequency of the
node is 12, and it consists of (5, e) on the left and (7, d) on the right. Putting
the combined node into the set, we get:

{(51, a), (22, b), (15, c), (12, (5, e)+ (7, d))}

Now we repeat the process by picking the two nodes with the smallest frequencies
and combing them. In this case the smallest two frequencies are 12 and 15. By
convention we always put the node with the smaller frequency to the left when
combining nodes. We get three nodes in the set: two simple nodes for a and b,
and one combined node that consists of a node for c on the right and a combined
node for e and d on the left.

{(51, a), (22, b), (27, (12, (5, e)+ (7, d)) + (15, c))}

We continue this process until we get one large combined node in the set:

{(51, a), (49, (22, b) + (27, (12, (5, e) + (7, d)) + (15, c)))}

and finally

{(100, (49, (22, b) + (27, (12, (5, e) + (7, d)) + (15, c))) + (51, a))}

The result of the last iteration may be a bit difficult to read, so we show it as
a tree that also contains 0s and 1s used for encoding:

4

http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FHuffman_coding%23Basic_technique
http://en.wikipedia.org/wiki/Binary_tree

100

49 51, a

22, b 27

12 15, c

5, e 7, d

0 1

0 1

0 1

0 1

The encoding of a letter is the path from the root of the tree to that letter,
where left edges are labeled with 0, and right edges are labeled as 1. For instance,
in our tree a is the immediate right child of the root, so its encoding is 1 (one
step to the right). The path to b is left to the combined node with frequency
49%, and then left again, so its encoding is 00. Since no letter is on the path to
any other letter, it is guaranteed that no encoding is a prefix of any other one.

Your task for this problem is to construct (by hand, no programming) Huff-
man codes for the following alphabet:

letter a b c d e f
frequency, % 25 22 18 15 11 9

Show all your intermediate work, i.e. how you combine nodes, and the
resulting tree.

Problem 7. Write a program that reads in an alphabet with frequencies,
i.e. pairs of a symbol (a letter) and a number, and constructs the Huffman
codes for it. Try it on the two examples considered above, make sure you get
the right answers.

The alphabet may be given in any order, not necessarily in the order of
decreasing frequencies. If two nodes that you are combining have the same
frequencies, the one whose leftmost letter is earlier in the given alphabet goes
to the left. The leftmost letter in a node is its single letter if the node contains
just one, or the one on the path that always goes to the left if the node is a
combined one.

Your program should store and print the letters in the order in which they
are specified in the given alphabet and their encodings.

Problem 8. Extend the program written in the previous program so that
after it has computed the Huffman codes, it reads a text in the given alphabet
(either as an input, or stored in a string) and encodes it using the Huffman
codes that it has computed. Also extend it so that it reads an encoded text and

5

decodes it. Show test examples for both encoding and decoding.
Problem 9. Add an option to your program so that it computes the ratio

between the space need for encoding 1000 letters in a given alphabet using fixed-
length encoding to the space expected to be taken by Huffman code encoding,
assuming that the given 1000 letters have exactly the same frequencies as the
ones used to construct the Huffman codes. Test this option on the alphabet
and frequencies given in Problem 4, the result should be equal to what you have
obtained in Problem 5.

Problem 10. This page
http://practicalcryptography.com/cryptanalysis/letter-frequencies-various-languages/english-letter-frequencies
gives you frequencies of letter in English alphabet. Compute the Huffman codes
for the alphabet. Encode the following text, ignoring non-letter symbols and
converting all letters to one case (fromWikipedia article on integrated circuits):

An integrated circuit or monolithic integrated circuit (also

referred to as an IC, a chip, or a microchip) is a set of

electronic circuits on one small plate ("chip") of

semiconductor material, normally silicon. This can be made

much smaller than a discrete circuit made from independent

components. ICs can be made very compact, having up to several

billion transistors and other electronic components in an area

the size of a fingernail. The width of each conducting line in

a circuit can be made smaller and smaller as the technology

advances.

ICs were made possible by experimental discoveries showing

that semiconductor devices could perform the functions of

vacuum tubes and by mid-twentieth-century technology advancements

in semiconductor device fabrication. The integration of large

numbers of tiny transistors into a small chip was an enormous

improvement over the manual assembly of circuits using

discrete electronic components. The integrated circuit’s mass

production capability, reliability, and building-block

approach to circuit design ensured the rapid adoption of

standardized integrated circuits in place of designs using

discrete transistors.

There are two main advantages of ICs over discrete circuits:

cost and performance. Cost is low because the chips, with all

their components, are printed as a unit by photolithography

rather than being constructed one transistor at a

time. Furthermore, much less material is used to construct a

packaged IC die than to construct a discrete

circuit. Performance is high because the components switch

quickly and consume little power (compared to their discrete

counterparts) as a result of the small size and close

6

http://practicalcryptography.com/cryptanalysis/letter-frequencies-various-languages/english-letter-frequencies/
http://en.wikipedia.org/wiki/Integrated_circuit

proximity of the components.

Then decode the following sequence of 0s and 1s encoded with the same Huffman
codes:

110010100101111010100111100101010000011100010010101111

000111010010110111111101010111110010100010111011000010

011111000110011011010000001101111011000101101111100110

101000101001010100111111010010111101101110111100100111

111010110111100100011000100111111110111100110000110010

111000100010100101111011011101100101110101010101010111

010101001110010100010000000110111111111010010011011000

110000000110100110111011010000011111011101111001011101

111011001011011011111110100001100101110011010100010100

101010011111101011100000111100111010110011011111000111

110011111111001001110111100100001010101110111010000111

100001001110000011111010101111110010101010110011101110

010010011011101111100101000000110111110011111111001011

100011110100101100000111101101110010111011000000001101

101011110110101001000100001010010110001100110110101101

001010100111001010110001001010100100110000111011101010

101010111111110100101110110101011110110111011100100000

110111110011000110101011011100110011101001010010111001

010101111100101000100111110101011111011000010101001110

010100010010010101001011001111110101111011011101111001

001010111111111011110101110111001101010001010010101001

111110100101111011011111001010001001111101010111110010

011111010111101010010100111011010000011010110011101011

000100010110010100111100101001110100001000110111100110

110101110100101111011011111001010001001100101001011111

010101010111110010100010011001010111011101100110011110

101110011001101111111000111101011110101001111001100001

110011001110011011010000001101111111110100100110110001

100000001101001100111010101000011100101010000010111111

101010110001101000011000111110000111011111111001111101

000011111000110011111011001110101111101011101000100000

001101011110110111011000111110110011101011001011101100

001110100101111011011111001010001001111100111010101010

000101101110011011010100110110011011110110010101001011

001111111001111101011001111111000111101011000011100011

001010111100101110011101011001101010001010010101001111

110101001111111101001001101100011000000011010011011101

110001100010000011100100000111100100100011111011001110

101110110011111001011101111101101000000110110111001000

110001001111100001110111111001100011011011001111101100

110011101110000010110111011000001011000011010001011001

010011101001011101101110100101110101011010110101010001

7

000011101001011011111000011110000100001100000101110110

000111111010110011111001110110011001110010110011101011

010000111111101010100111101001010000011011100111010101

010000101101110011011010100110110011011110111111001110

010101101000001101110000111010000100011011110011011010

111010010111101101111100101000100010010110000011110110

111100101001110110000110101111010100101001110110101001

101101010011011001101111011001111110000110010001110100

111000111111101111011011011000011111001100001110010111

010000011101110101010011100101000100001010111110000111

000101100110000010010000011111110101110101110011001010

111101010010100111011010100110110101001101100110111101

100100110101000101001010100111111010100101001011000001

111011011101011111110101011000110110010100101110001011

110001110100001110110110111000100111100111101011010010

111010000011101110010111001010101111100101000100111101

011110110111011110010101110111001010011111110000001100

010010110001101000001101110100101001001101100011100011

010010111001010111001010100001110000111100001000011000

100111000010100000110111001011111000011110000100001100

010011111100001110011101100000001110111001111011110000

110100000111000111111101000001111010101000100001111011

110010001100010011111111011111010011101101000100010010

110000011110110111100101110100101111011011111001010001

001001101101010011011001101111011001100101111100111111

000111100001111101101101001101010001010010101001111110

100101111011011111001010001001100100110101101000111111

101111000111110110110011101111001000110001001111111101

111101001110110100010011111110111101010111101010011110

011000011100110011100110110100100101100000111101101111

001

Problem 11. It is a proven fact that Huffman encoding is an optimal
encoding (i.e. it guaranteed to produce the shortest encoded text of 0s and
1s from which the original text can be decoded) if the frequency of letters in
the text is the same as the letter frequencies used to compute the Huffman
codes. Experiment with different English texts to see how close to the optimal
length you get in practice. You are allowed to use any English text of at least
1000 letters available online (make sure to include the link and clearly indicate
what part of it you are using). Your goal is to determine how far from optimal
encoding (in percentages) do various texts deviate. Use three texts, try to come
up with interesting examples.

Problem 12. Suppose you are given an alphabet of N letters in which all
letters have the same frequency. What is the Huffman encoding of this alphabet?
Clearly explain why. How does the encoding with Huffman codes compare to
the equal-length encoding that you studied in Problem 1? Be specific. Assume

8

that in any text that you encode all letters appear with equal frequencies.
Problem 13. Continue your study of how Huffman encoding efficiency

depends on letter frequency distributions. Consider the following cases for 8-
letter alphabet:

• One letter has 50% frequency, the other seven are equally distributed
(disregard rounding errors),

• Four letters have 20% frequency each, the remaining four have 5% fre-
quency each,

• The frequencies are, in percentages: 50, 25, 12.5, 6.25, 3.125, 1.5625, 0.78125,

0.78125.

In each of the cases compute the efficiency of Huffman coding compared to
the equal-length coding in Problem 1. Which of these cases give you a better
ratio? Come up with a hypothesis of what frequency distribution produce better
efficiency. Can you come up with an 8-letter alphabet with Huffman encoding
more efficient than the best case above? Show the alphabet or explain why it’s
not possible.

Problem 14. Of the languages listed here
http://practicalcryptography.com/cryptanalysis/letter-frequencies-various-languages/,
are there any that are more efficient than English in terms of Huffman encod-
ing? Compute efficiency of at least one language other than English that you
consider a good efficiency candidate, show the Huffman codes and the compu-
tation of efficiency. You don’t need to encode/decode texts in this alphabet. If
your program does not read unicode characters, feel free to denote your extra
letters with numbers or any other ASCII symbols.

Problem 15. Consider the following enhancement of Huffman codes: in
addition to individual letters, common pairs of letters (known as bigrams), such
as th in English, are each given their own Huffman code. Consider bigram fre-
quencies given here, would this enhancement be beneficial? How many bigrams
would you include in Huffman codes, if any at all? Show all your computations.
You may perform your computations by hand, but it’s better to include them
in your program. Once again, you don’t need to encode/decode texts using the
alphabet, just compute the Huffman codes and efficiency.

9

http://practicalcryptography.com/cryptanalysis/letter-frequencies-various-languages
http://practicalcryptography.com/cryptanalysis/letter-frequencies-various-languages/english-letter-frequencies/

	ent-CS-1st
	entpro15CS
	entpro15CS
	entpro15CS
	CS2015
	ent-CS-1st

	CSproblems2014

