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Abstract

We create a partition bijection that yields a partial result on a recent
conjecture by Schiffmann relating the problems of counting over a finite
field (1) vector bundles over smooth projective curves, and (2) represen-
tations of quivers.

1 Introduction

A vector bundle on a curve is a family of vector spaces, one associated with each
element of the curve, that is “continuous” in a certain way. A representation of
a quiver - that is, a directed graph - assigns one vector space to each vertex, and
one linear transformation from the source vector space to the destination vector
space for each edge. The analogy between the former and the latter quantity
is one motivation for Schiffmann’s work [4] in counting isomorphism classes of
geometrically indecomposable vector bundles on a curve over finite fields, since
in previous works Kac [2], Hua [1], and others have counted isomorphism classes
of absolutely indecomposable representations of quivers over finite fields.

Let Σg be the quiver with one vertex and g edges. Schiffmann conjectures [4]
that the quantity Ag,r,d(0), arising from the problem of counting isomorphism
classes of geometrically indecomposable vector bundles of rank r and degree
d over a smooth projective curve of genus g, is equal to the value at q = 1
of AΣg,r, Kac’s A-polynomial in the variable q counting the number of abso-
lutely indecomposable representations of Σg over Fq of dimension r. As further
motivation, Schiffmann notes that the only difference between the formulas for
Ag,r,d(0) and AΣg,r(1) is a term −l(λ) in an intermediate formula of the former
quantity.
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2 Basic definitions

We will use the definitions in a paper by Hua [1] for AΣg (α, q) and HΣg (α, q)
in Q[q], and power series PΣg (X1, . . . , Xn, q) in X1, . . . , Xn with coefficients in
Q[q]. Since Σg has only one vertex, the dimension vector α is simply a positive
integer and n = 1. For convenience we will not use n again in this context, and
will refer to PΣg

(X1, q) simply as PΣg
(X, q). Note that AΣg

(k, q) = AΣg,r(q).
We now state the formula for Ag,r,d(0) in a manner which mirrors Hua’s

formula for AΣg (k, q).

Definition. Following Hua [1] and Macdonald [3], let ϕl(q) = (1 − q)(1 −
q2) · · · (1−ql) for any l ≥ 0, and let bλ(q) =

∏
i≥1 ϕmi(q) for any λ = (1m

1

2m
2 · · · ) ∈

P.

Definition. Let P ′(X, q) be the generating function in X with coefficients in
Q(q) such that

P ′
Σg

(X, q) =
∑
π∈P

q(g−1)⟨π,π⟩−l(π)

bπ(q−1)
X |π|.

Remark. The only difference with PΣg
(X, q) is the −l(π) term, since we have

PΣg (X, q) =
∑
π∈P

q(g−1)⟨π,π⟩

bπ(q−1)
X |π|.

Definition. For any n > 0, let H ′
Σg

(n, q) be the rational function in q deter-
mined by

log(P ′
Σg

(X, q)) =
∑
n>0

H ′
Σg

(n, q)Xn/n.

Definition. For any n > 0, define

A′
Σg

(n, q) =
q − 1

n

∑
d|n

µ(d)H ′
Σg

(
n

d
, qd).

Remark. HΣg
(n, q) and AΣg

(n, q) are defined analogously to H ′
Σg

(n, q) and

A′
Σg

(n, q) but in terms of P (X, q) rather than P ′(X, q).

Schiffmann conjectures that A0
g,r(z) is regular outside z = 1; in this case we

have
Ag,n,d(0) = A′

Σg
(n, 1).

Motivated by this conjecture, from here on we will ignore Ag,n,d(0), and
attempt to show that A′

Σg
(n, 1) = AΣg

(n, 1).
We also define several quantities involving both papers.

Definition. Let fn,g(q) = qnA′
Σg

(n, q)−AΣg
(n, q).

Definition. Let hn,g(q) = qnH ′
Σg

(n, q)−HΣg
(n, q).

Definition. Let Bk be the rational function in q such that
∞∑
k=0

BkX
k =

P ′
Σg

(qX, q)

PΣg
(X, q)

.
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3 Schiffmann’s Little Conjecture

Conjecture 1. Schiffmann conjectures that AΣg (n, 1) = A′
Σg

(n, 1) for all n
and g.

Remark. Conjecture 5 is equivalent to the statement q− 1 | fn,g for all n and g.

Proposition 2. If Bk is a polynomial for all k, then fn,g is a multiple of q− 1
for all n.

Proof. Suppose that Bk is a polynomial for all k. This means that the coeffi-
cients of

P ′
Σg

(qX, q)

PΣg
(X, q)

are polynomials. Applying logarithm to this power series preserves the property,
since coefficients are only multiplied, scaled, and added. Hence,

∞∑
k=0

hk,g(q)X
k =

∞∑
k=0

(qkH ′
Σg

(k, q)−HΣg (k, q))X
k

=

∞∑
k=0

qkH ′
Σg

(k, q)Xk −
∞∑
k=0

HΣg
(k, q)Xk

=

∞∑
k=0

H ′
Σg

(k, q)(qX)k −
∞∑
k=0

HΣg (k, q)X
k

= logP ′
Σg

(qX, q)− logPΣg
(X, q)

= log
P ′
Σg

(qX, q)

PΣg
(X, q)

is also a power series of polynomials. In other words, hk,g(q) is a polynomial for
all k.
But then

fn,g(q) = qnA′
Σg

(n, q)−AΣg
(n, q)

= qn
q − 1

n

∑
d|n

(
µ(d)H ′

Σg
(
n

d
, qd)

)
− q − 1

n

∑
d|n

(
µ(d)HΣg

(
n

d
, qd)

)
=

q − 1

n

∑
d|n

(
qnµ(d)H ′

Σg

(n
d
, qd
)
− µ(d)HΣg

(n
d
, qd
))

=
q − 1

n

∑
d|n

µ(d)
(
qnH ′

Σg

(n
d
, qd
)
−HΣg

(n
d
, qd
))

=
q − 1

n

∑
d|n

µ(d)
((

q
n
d H ′

Σg

)(n
d
, qd
)
−HΣg

(n
d
, qd
))

=
q − 1

n

∑
d|n

µ(d)
(
q

n
d H ′

Σg
−HΣg

)(n
d
, qd
)
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=
q − 1

n

∑
d|n

µ(d)hn
d ,g(q

d)

is a multiple of q − 1.

Conjecture 3. Bk is a polynomial for all k.

Remark. Proposition 2 shows that our Conjecture 3 would imply Conjecture 5.
Computational evidence suggested that hk,g(q) is a polynomial for all k, which
is the equivalent statement to Conjecture 3 that we used in the proof of Propo-
sition 2.

Definition. We define for any partition π,

Cπ =
q(g−1)⟨π,π⟩

bπ(q−1)
.

We now obtain a more useful formula for Bk.

Proposition 4. For any k,

Bk =
∑

π0,...,πs

q|π0|−l(π0)(−1)s
s∏

i=0

Cπi

where π0 may be the empty partition but π1, . . . , πs are all nonempty, and∑s
i=0 |πi| = k.

Proof. We let

Ck =
∑

π
∣∣ |π|=k

Cπ

and
C ′

k =
∑

π
∣∣ |π|=k

qk−l(π)Cπ.

Then we have

∞∑
k=0

BkX
k =

P ′
Σg

(qX, q)

PΣg (X, q)

=

∑∞
k=0 C

′(k)Xk∑∞
k=0 C(k)Xk

=

∑∞
k=0 C

′(k)Xk

1 +
∑∞

k=1 C(k)Xk

=

( ∞∑
k=0

C ′(k)Xk

)1−

( ∞∑
k=1

C(k)Xk

)
+

( ∞∑
k=1

C(k)Xk

)2

− . . .


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=

∞∑
k=0

k∑
n=0

C ′(k − n)
∑

l1+···+ls=n
l1,...,ls>0

s∏
i=1

−C(li)

Xk

=

∞∑
k=0

 ∑
l0+l1+···+ls=k

l1,...,ls>0

C ′(l0)

s∏
i=1

−C(li)

Xk

=

∞∑
k=0


∑

π0,...,πs∈P
|π0|+···+|πs|=k
|π1|,...,|πs|>0

C ′
π0

s∏
i=1

−Cπi

Xk

This yields the desired result.

Definition. Based on the above formula, we define for any partition π,

Bπ =
∑

π0∪···∪πs=π
|π1|,...,|πs|>0

q|π0|−l(π0)(−1)s
s∏

i=0

Cπi
.

Conjecture 5. Bπ is in fact a polynomial for all partitions π.

Remark. The above conjecture implies Conjecture 3, since Bk is the sum of Bπ

over partitions π of size k. Once again, we made this (unexpected) conjecture
on the basis of computer evidence.

4 Combinatorial Interpretation of Bπ

4.1 Flat Partition Case

We are now ready to state and prove the main result which we have achieved
thus far.

Theorem 6. Let g ≥ 1 and π be the partition with b elements, each of size a.
Then Bπ is a polynomial.

Proof. We have

Bπ =
∑

l0+···+ls=b
l1,...,ls>0

qal0−l0(−1)s
s∏

i=0

q(g−1)al2i

(1− q−1) · · · (1− q−li)

=
∑

l0+···+ls=b
l1,...,ls>0

qal0−l0(−1)s
s∏

i=0

q(g−1)al2i q
li(li+1)

2

(q − 1) · · · (qli − 1)
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= q−(g−1)ab
∑

l0+···+ls=b
l1,...,ls>0

qal0−l0(−1)s
s∏

i=0

q(g−1)ali(li+1)q
li(li+1)

2

(q − 1) · · · (qli − 1)

= q−(g−1)ab
∑

l0+···+ls=b
l1,...,ls>0

qal0−l0(−1)s
s∏

i=0

q(2(g−1)a+1)
li(li+1)

2

(q − 1) · · · (qli − 1)

= (−1)bq−(g−1)ab
∑

l0+···+ls=b
l1,...,ls>0

qal0−l0(−1)s
s∏

i=0

q(2(g−1)a+1)
li(li+1)

2

(1− q) · · · (1− qli)

Guided by the above equation, we let d = 2(g − 1)a+ 1. We know that

1

(1− q) · · · (1− ql)

denotes the number of partitions (possible empty) of length at most l, where
the weight of a partition λ is q|λ|. Hence,

qd
l(l+1)

2

(1− q) · · · (1− ql)

denotes the number of partitions λ of length exactly l such that λi−λi+1 ≥ d for

each consecutive pair, and λl ≥ d. This is because the term qd
l(l+1)

2 essentially
adds d(l+ 1− i) to the ith term of λ. Again, the weight of a partition λ is q|λ|.
We call λ a d-stair partition.

It follows that (−1)bq(g−1)abBπ is a generating function in q that counts
the number of tuples of d-stair partitions where only the first partition may
be empty, and the total length of the tuple is b. The weight of a tuple p =
(p0, p1, p2, . . . , ps) is

w(p) = (−1)sq(a−1)l(p0)+|p0|+|p1|+···+|ps|.

To show that Bπ is a polynomial, it suffices to show that (−1)bq(g−1)abBπ is a
polynomial, since Bπ has no poles at q = 0. Let S0 = b(b+1)(g−1)a+ b(a−1).
Then we must show that for all S > S0, the tuples with absolute weight qS

cancel out. We fix S > S0. From here on we will only consider tuples of d-stair
partitions with total length b and weight S.

First, we cancel out partition tuples where the first partition is nonempty.
Consider any such tuple (p0, p1, p2, . . . , ps). The corresponding tuple is (( ), p0+
a−1, p1, p2, . . . , ps), where ( ) is the empty partition, and p0+a−1 is the partition
given by adding a − 1 to each element of p0. It is clear that this is a bijection
between tuples with first partition nonempty, and tuples such that the first
partition is empty and the second partition’s last element is at least d+ a− 1.
Furthermore, since we decreased the length of p0 by l(p0) but increased the total
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size by (a−1)l(p0), the weight of the original tuple is the same by absolute value
as the corresponding tuple. It also has opposite sign: we increased the number
of partitions by 1 (though the total length remains b). Thus these tuples cancel
out. We will refer later to this bijection as f0.

Now we are left with the tuples such that the first partition is empty, and
the second partition’s last element is less than d + a − 1. For convenience we
drop the initial empty partition, and consider all tuples of nonempty partitions
where the first partition’s last element is less than d+a−1. The absolute weight
is the total size of the partitions, and the sign is (−1)s+1, where s is the number
of partitions.

Before defining a bijection that cancels these out, we define two basic func-
tions on such partition tuples: unroll and tuck.

We unroll one partition (c1, . . . , cn, cn+1) of a partition tuple by replacing
this partition by two consecutive partitions (cn+1) and (c1, . . . , cn). This oper-
ation trivially preserves the d-stair property. Note that the total length of the
tuple is still b, and the last element of the first partition is unchanged.

For example, given the partition tuple

((5), (30, 10, 5))

we can unroll the second partition and obtain

((5), (5), (30, 10)).

We tuck one singleton partition (c) into the next partition (c1, . . . , cn) by re-
placing these two d-stair partitions by one d-stair partition (c1, . . . , cn, c). Thus,
we require that cn − c ≥ d. Once again, note that the total length of the tuple
is still b, and the last element of the first partition is unchanged.

For example, given the partition tuple

((6), (10), (20, 15), (25))

with d = 5 we may not tuck the first partition or third partition, but we may
tuck the second partition to obtain

((6), (20, 15, 10), (25)).

We are now ready to define the involution f on the set of tuples of nonempty
partitions with the last element of the first partition less than d+a−1. Consider
any tuple p = (p1, p2, . . . , ps). Let i be the index of the first partition which can
be tucked, and let j be the index of the first partition which can be unrolled. If
no such i or no such j exists, we assign i = s+ 1 or j = s+ 1.

Either i ≤ s or j ≤ s. Suppose not; then every partition is a singleton, and
the difference between consecutive elements is at most d− 1. Hence,

S = |p1|+ |p2|+ · · ·+ |pb|
≤ (a+ d− 2) + (a+ d− 2 + (d− 1)) + · · ·+ (a+ d− 2 + (b− 1)(d− 1))
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= b(a+ d− 2) +
b(b− 1)

2
(d− 1)

= b(a+ 2(g − 1)a− 1) + b(b− 1)(g − 1)a

= b(a− 1) + b(b+ 1)(g − 1)a.

= S0

Contradiction, since we assumed that S > S0.
Furthermore, note that i ̸= j, since only singleton partitions may be tucked

and only multiple partitions may be unrolled.
If i < j, we define f(p) to be the tuple p with pi tucked into pi+1. That is,

f(p) = (p1, p2, . . . , pi−1, pi+1 ∪ pi, pi+2, . . . , ps).

If i > j then we define f(p) to be the tuple p with pj unrolled. So if
pj = (c1, . . . , cn) then

f(p) = (p1, p2, . . . , pj−1, (cn), (c1, . . . , cn−1), p
j+1, . . . , ps).

Suppose i < j. Then f(p)i can be unrolled. Every earlier partition in p was
a singleton, so no earlier partition in f(p) can be unrolled. Furthermore, none of
f(p)1, . . . , f(p)i−2 can be tucked, since the first i− 1 elements of f(p) are equal
to the first i − 1 elements of p. Finally, f(p)i−1 = pi−1 cannot be tucked into
f(p)i = pi+1 ∪ pi, since otherwise pi−1 could have been tucked into pi. Hence,
in applying f to f(p) the partition f(p)i will be unrolled, so f(f(p)) = p.

Suppose i > j. Then f(p)j can be tucked. Every earlier partition in p was
a singleton, so no earlier partition in f(p) can be unrolled. Furthermore, none
of f(p)1, . . . , f(p)j−2 can be tucked, since the first j − 1 elements of f(p) are
equal to the first j − 1 elements of p. Finally, f(p)j−1 = pj−1 cannot be tucked
into f(p)j , the partition consisting of the last element of pj , since otherwise
pj−1 could have been tucked into pj . Hence, in applying f to f(p) the partition
f(p)j will be tucked, so once again f(f(p)) = p.

We conclude that f is an involution, so all tuples which were not cancelled
by f0 can be grouped in pairs {p, f(p)}. Furthermore, the weights in each pair
have opposite sign, since f either increases or decreases the number of partitions
in p by 1. It follows that all tuples of absolute weight qS cancel.

Thus, (−1)bq(g−1)abBπ represents a sequence with no nonzero elements be-
yond S0, so (−1)bq(g−1)abBπ is a polynomial and therefore Bπ is a polynomial.

Corollary. Let π be the partition with b elements, each of size a. Then the
degree of Bπ is b2(g − 1)a+ b(a− 1).

Proof. It immediately follows from the proof of Theorem 6 that

deg(−1)bq(g−1)abBπ ≤ b(b+ 1)(g − 1)a+ b(a− 1)

so
degBπ ≤ b2(g − 1)a+ b(a− 1).
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The reverse inequality follows since there is exactly one tuple with size n =
b(b + 1)(g − 1)a + b(a − 1) that cannot be unrolled nor tucked, so there is an
odd number of tuples of size n: thus the coefficient of qn in (−1)bq(g−1)abBπ is
necessarily nonzero.

4.2 General Case

We now generalize the combinatorial interpretation of Bπ to all partitions.

Definition. Let λ = (λ1, λ2, λ3, . . . ) be a sequence of partition tuples, where
each tuple has the same number of (possibly empty) partitions, some s+1. Set
ma

i = l(λa
i ) for each i and a, and set

tai = a+ (a− 1)ma−1
i + (a− 2)ma−2

i + · · ·+m1
i .

Suppose that the following conditions also hold:

1.
∑∞

a=1 m
a
i > 0 for each i > 0

2. in partition λa
i the difference between consecutive elements is at least

2(g − 1)a+ 1

3. in partition λa
i the smallest element is at least 2(g − 1)tai + 1

Then we call λ a stair sequence.

Theorem 7. Let π = (1m
1

2m
2

. . . ) be any partition. Then

Bπ

(−1)l(π)q−(g−1)|π|

is the sum over all stair sequences λ with
∑s

i=0 m
a
i = ma for each a > 0, of

w(λ) = (−1)s
∞∏
a=1

q(a−1)ma
0+|λa

0 |+···+|λa
s |.

Proof. Let π0, π1, . . . , πs be any partitions with π1, . . . , πs nonempty and π0 ∪
π1 ∪ · · · ∪ πs = π.

For each πi we let the exponential form be

πi = (1m
1
i 2m

2
i 3m

3
i . . . ).

And we let the exponential form of π be

π = (1m
1

2m
2

3m
3

. . . ).

Note that

⟨πi, πi⟩ =
l(π′

i)∑
j=1

(π′
ij )

2
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= −|πi|+
l(π′

i)∑
j=1

π′
ij (π

′
ij + 1)

= −|πi|+ 2

l(π′
i)∑

j=1

(π′
ij + · · ·+ 1)

= −|πi|+ 2

l(πi)∑
j=1

l(πi)∑
k=j

πik

= −|πi|+ 2

∞∑
a=1

ma
i∑

j=1

(aj + (a− 1)ma−1
i + (a− 2)ma−2

i + · · ·+m1
i )

= −|πi|+ 2

∞∑
a=1

ma
i∑

j=1

a(j − 1) + tai

= −|πi|+ 2

∞∑
a=1

ma
i −1∑
j=0

aj + tai

where
tai = a+ (a− 1)ma−1

i + (a− 2)ma−2
i + · · ·+m1

i .

Then the term in Bπ corresponding to (π0, . . . , πs) is

B(π0,...,πs) = q|π0|−l(π0)(−1)s
s∏

i=0

Cπi

= q
∑∞

a=1 ma
0 (a−1)(−1)s

s∏
i=0

q(g−1)⟨πi,πi⟩

bπ(q−1)

= q
∑∞

a=1 ma
0 (a−1)(−1)s

s∏
i=0

q−(g−1)|πi|+2(g−1)
∑∞

a=1

∑ma
i −1

j=0 a+tai∏∞
a=1(1− q−1) · · · (1− q−ma

i )

= q−(g−1)|π|q
∑∞

a=1 ma
0 (a−1)(−1)s

s∏
i=0

q
∑∞

a=1 2(g−1)
∑ma

i −1

j=0 a+tai∏∞
a=1(1− q−1) · · · (1− q−ma

i )

= q−(g−1)|π|q
∑∞

a=1 ma
0 (a−1)(−1)s

s∏
i=0

∞∏
a=1

q2(g−1)
∑ma

i −1

j=0 aj+tai

(1− q−1) · · · (1− q−ma
i )

= q−(g−1)|π|q
∑∞

a=1 ma
0 (a−1)(−1)s

s∏
i=0

(−1)l(πi)
∞∏
a=1

q2(g−1)
∑ma

i −1

j=0 aj+tai

(q−1 − 1) · · · (q−ma
i − 1)

= q−(g−1)|π|q
∑∞

a=1 ma
0 (a−1)(−1)s

s∏
i=0

(−1)l(πi)
∞∏
a=1

q
∑ma

i −1

j=0 2(g−1)aj+2(g−1)tai

(q−1 − 1) · · · (q−ma
i − 1)
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= q−(g−1)|π|q
∑∞

a=1 ma
0 (a−1)(−1)s

s∏
i=0

(−1)l(πi)
∞∏
a=1

q
∑ma

i −1

j=0 (2(g−1)a+1)j+2(g−1)tai +1

(1− q) · · · (1− qm
a
i )

= (−1)l(π)q−(g−1)|π|q
∑∞

a=1 ma
0 (a−1)(−1)s

s∏
i=0

∞∏
a=1

q
∑ma

i −1

j=0 (2(g−1)a+1)j+2(g−1)tai +1

(1− q) · · · (1− qm
a
i )

= (−1)l(π)q−(g−1)|π|(−1)s
∞∏
a=1

qm
a
0 (a−1)

s∏
i=0

q
∑ma

i −1

j=0 (2(g−1)a+1)j+2(g−1)tai +1

(1− q) · · · (1− qm
a
i )

The term inside the first product counts, for a fixed a, the partition tuples
λa = (λa

0 , . . . , λ
a
s) where l(λa

i ) = ma
i , and the difference between consecutive

elements of a partition is at least 2(g − 1)a + 1, and the smallest element of a
partition is at least 2(g − 1)tai + 1. The weight of λa is

w(λa) = q(a−1)ma
0+|λa

0 |+···+|λa
s |.

Thus, we see that
B(π0,...,πs)

(−1)l(π)q−(g−1)|π|

counts sequences of partition tuples λ = (λ1, λ2, λ3, . . . ) such that each tuple
satisfies the above conditions, with weight

w(λ) = (−1)s
∞∏
a=1

w(λa).

The theorem follows since Bπ is the sum of B(π0,...,πs) over all possible values
of the array ((ma

i )) with
∑∞

a=0 m
a
i > 0 for each i > 0 - that is, π1, . . . , πs are

nonempty - and ma =
∑s

i=0 m
a
i for each a > 0 - that is, π0 ∪ · · · ∪ πs = π.

5 Direct Interpretation of Bπ

Definition. Let the decomposition set of a partition π, denoted as S(π), be the
set of partition tuples (π0, π1, . . . , πs) for any s ≥ 0 where π0 ∪ · · · ∪ πs = π and
|πi| > 0 for 0 < i ≤ s.

Similarly, let the positive decomposition set of a partition π, denoted as S′(π),
be the set of partition tuples (π0, π1, . . . , πs) for any s ≥ 0 where π0∪· · ·∪πs = π
and |πi| > 0 for 0 ≤ i ≤ s.

Proposition 8. Let π be a partition with n distinct parts. Then

(q − 1)n

qn
Bπ =

∑
(π0,...,πs)∈S(π)

(−1)sq|π0|−l(π0)
s∏

i=0

q(g−1)⟨πi,πi⟩.

11



Proof. Note that for any (π0, π1, . . . , πs) ∈ S(π) we have

s∏
i=0

bπi(q
−1) = (1− q−1)n.

Therefore multiplying the definition of Bπ by this product yields the desired
result.

Hence (q−1)n

qn Bπ is a polynomial. To show that Bπ is a polynomial, we must

show that (q−1)n

qn Bπ is a multiple of (q − 1)n. If n = 1 there is a trivial test for

the divisibility of a polynomial f(q)—just check whether f(1) = 0. For n > 1,
a more complex test is required.

Lemma 9. Let

f(q) =

∞∑
i=0

aiq
i

be an arbitrary generating function in q. Then for each n > 0,

f(q)

(1− q)n
=

∞∑
i=0

 i∑
j=0

aj

(
i− j + n− 1

n− 1

) qi.

Proof. For n = 1 we have:

f(q)

1− q
= f(q)(1 + q + q2 + . . . )

=

( ∞∑
i=0

aiq
i

) ∞∑
j=0

qj


=

∞∑
i=0

i∑
j=0

ajq
jqi−j

=

∞∑
i=0

 i∑
j=0

aj

 qi.

Now suppose that the equation holds for some n > 0. Then:

f(q)

(1− q)n+1
=

 ∞∑
i=0

 i∑
j=0

aj

(
i− j + n− 1

n− 1

) qi

( ∞∑
i=0

qi

)

=

∞∑
i=0

 i∑
k=0

k∑
j=0

aj

(
k − j + n− 1

n− 1

) qi

=

∞∑
i=0

 i∑
j=0

aj

i∑
k=j

(
k − j + n− 1

n− 1

) qi

12



=

∞∑
i=0

 i∑
j=0

aj

i−j+n−1∑
k=n−1

(
k

n− 1

) qi

=

∞∑
i=0

 i∑
j=0

aj

(
i− j + n

n

) qi.

By induction, the equation holds for all n > 0.

Lemma 10. Let
f(q) = amqm + · · ·+ a1q + a0

be an arbitrary polynomial in q and let n ≥ 0. Then (1− q)n | f(q) if and only
if

m∑
i=0

ai

(
i

k

)
= 0

for all k with 0 ≤ k < n.

Proof. ( =⇒ ) Suppose that (1− q)n | f(q). Then we also know that (1− q)n |
qmf(q−1) where

qmf(q−1) = a0q
m + · · ·+ am−1q + am.

Let k < n; then

qmf(q−1)

(1− q)k+1
=

∞∑
i=0

 i∑
j=0

am−j

(
i− j + k

k

) qi

is a polynomial with degree m− k − 1. Hence,

m−k∑
j=0

am−j

(
m− j

k

)
= 0

and therefore
m∑
i=k

ai

(
i

k

)
= 0.

With the convention that
(
i
k

)
= 0 if i < k, it follows that

m∑
i=0

ai

(
i

k

)
= 0.

( ⇐= ) Now suppose that

m∑
i=0

ai

(
i

k

)
= 0

13



for all k with 0 ≤ k < n. Define

g(p, k) =

m∑
j=0

aj

(
j + p− 1

k − 1

)
for p ≥ 1 and 1 ≤ k ≤ n. Then

g(1, k) = 0

and

g(p, 1) =

m∑
j=0

aj

by the assumption, and

g(p, k) = g(p− 1, k) + g(p− 1, k − 1)

if p, k > 1. Therefore by induction, g(p, k) = 0 for all p and k. In particular, we
have for all p ≥ 1:

0 = g(p, n)

=

m∑
j=0

aj

(
j + p− 1

n− 1

)

=

m∑
j=n−p

aj

(
j + p− 1

n− 1

)

=

m−n+p∑
j=0

am−j

(
m− j + p− 1

n− 1

)
.

Therefore

qmf(q−1)

(1− q)n
=

∞∑
i=0

 i∑
j=0

am−j

(
i− j + n− 1

n− 1

) qi

is a polynomial with degree at most m− n. It follows that (1− q)n | f(q).

Applying this lemma to Bπ yields the following equivalency.

Proposition 11. Let π be a partition with n distinct parts. Then Bπ is a
polynomial if and only if∑

(π0,...,πs)∈S(π)

(−1)s
(
|π0| − l(π0) + (g − 1)(⟨π0, π0⟩+ · · ·+ ⟨πs, πs⟩)

k

)
= 0

for all k with 0 ≤ k < n.
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Proof. Let
(q − 1)n

qn
Bπ = amqm + · · ·+ a1q + a0.

We have

(q − 1)n

qn
Bπ =

∑
(π0,...,πs)∈S(π)

(−1)sq|π0|−l(π0)
s∏

i=0

q(g−1)⟨πi,πi⟩

=
∑

(π0,...,πs)∈S(π)

(−1)sq|π0|−l(π0)+(g−1)
∑s

i=0 ⟨πi,πi⟩.

For any tuple α = (π0, . . . , πs) let coef(α) = (−1)s and let exp(α) = |π0| −
l(π0) + (g − 1)

∑s
i=0 ⟨πi, πi⟩. Then

m∑
i=0

ai

(
i

k

)
=

m∑
i=0

 ∑
α∈S(π)|exp(α)=i

coef(α)

( i

k

)

=

m∑
i=0

 ∑
α∈S(π)|exp(α)=i

coef(α)

(
exp(α)

k

)
=

∑
α∈S(π)

coef(α)

(
exp(α)

k

)

=
∑

(π0,...,πs)∈S(π)

(−1)s
(
|π0| − l(π0) + (g − 1)(⟨π0, π0⟩+ · · ·+ ⟨πs, πs⟩)

k

)
.

Applying Lemma 10 completes the proof.

If we consider any particular pair (π, g), where π is a partition of length n,
to be a point in Rn+1, then the left-hand side of the condition in Proposition 11
is a particular polynomial in n + 1 variables, evaluated at (π, g). Thus we can
rephrase the infinite conjectured scalar equalities of Proposition 11 into one
polynomial equality.

Proposition 12. Let n be a positive integer. Then Bπ is a polynomial for each
partition with n distinct elements and each g > 0, if and only if∑

(π0,...,πs)∈S(π)

(−1)s
(
|π0| − l(π0) + (g − 1)(⟨π0, π0⟩+ · · ·+ ⟨πs, πs⟩)

k

)
= 0

where 0 ≤ k < n, and π and g are variables.

Proof. The sum can be interpreted as a polynomial provided that the combina-
torial definition of the binomial coefficient matches the algebraic definition(

n1

n2

)
=

n1(n1 − 1) · · · (n1 − n2 + 1)

n2(n2 − 1) · · · 1

15



for all coefficients of the form(
|π0| − l(π0) + (g − 1)(⟨π0, π0⟩+ · · ·+ ⟨πs, πs⟩)

k

)
where π is a partition of n distinct elements, g is a positive integer, k is an
integer between 0 and n − 1, and (π0, . . . , πs) ∈ S(π). But since k and |π0| −
l(π0) + (g − 1)(⟨π0, π0⟩ + · · · + ⟨πs, πs⟩) are always nonnegative integers, the
definitions do indeed match.

Now we convert the binomial coefficients in Proposition 11 into exponentials,
which allow further simplifications, using the following lemma essentially stating
that the binomial coefficients(

x

0

)
,

(
x

1

)
, . . . ,

(
x

k

)
span the space of polynomials with degree at most k.

Lemma 13. For any integer k ≥ 0,

xk ∈ span

{(
x

0

)
,

(
x

1

)
, . . . ,

(
x

k

)}
and (

x

k

)
∈ span{1, x, . . . , xk}.

Proposition 14. Let n be a positive integer. Then Bπ is a polynomial for each
partition with n distinct elements and each g > 0, if and only if∑

(π0,...,πs)∈S(π)

(−1)s (|π0| − l(π0) + (g − 1)(⟨π0, π0⟩+ · · ·+ ⟨πs, πs⟩))k = 0

for all k with 0 ≤ k < n.

Proposition 15. Let n be a positive integer. Then Bπ is a polynomial for each
partition with n distinct elements and each g > 0, if and only if∑

(π0,...,πs)∈S′(π)

(−1)s(|π0| − l(π0))
i(⟨π0, π0⟩+ · · ·+ ⟨πs, πs⟩)k−i = 0

for all i and k with 0 < i ≤ k < n.

Proof. The condition in Proposition 14 is equivalent to the following conditions
together, which are the result of applying the binomial theorem and grouping
terms with the same power of g − 1:∑

(π0,...,πs)∈S(π)

(−1)s(⟨π0, π0⟩+ · · ·+ ⟨πs, πs⟩)k = 0
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∑
(π0,...,πs)∈S(π)

(−1)s(|π0| − l(π0))
1(⟨π0, π0⟩+ · · ·+ ⟨πs, πs⟩)k−1 = 0

...∑
(π0,...,πs)∈S(π)

(−1)s(|π0| − l(π0))
k−1(⟨π0, π0⟩+ · · ·+ ⟨πs, πs⟩)1 = 0

∑
(π0,...,πs)∈S(π)

(−1)s(|π0| − l(π0))
k = 0.

The first condition may be removed; it is trivially true, since adding an
empty first partition to a partition tuple flips the sign (−1)s and does not
change the inner product sum. For each of the remaining k conditions, a tuple
(π0, . . . , πs) ∈ S(π) \ S′(π) has contribution 0, since |π0| − l(π0) = 0. Therefore
it suffices to consider only the tuples in S′(π). This completes the proof.

Now ∑
(π0,...,πs)∈S′(π)

(−1)s(|π0| − l(π0))
i(⟨π0, π0⟩+ · · ·+ ⟨πs, πs⟩)k−i

is an element of R[a0, . . . , an−1] where π = (a0, . . . , an−1). For generating par-
tition tuples and calculating inner products, it is assumed that ai > aj when-
ever i < j. Thus if n = 5, π0 = (a0, a4, a1) is not a valid subpartition, but
π0 = (a0, a1, a4) is valid, and ⟨π0, π0⟩ = a0 + 3a1 + 5a4.

Proposition 16. Let n and i be integers with 0 < i < n. The polynomial∑
(π0,...,πs)∈S′(π)

(−1)s(|π0| − l(π0))
i

is zero.

Proposition 17. Let n and k be integers with 0 < k < n. The polynomial∑
(π0,...,πs)∈S′(π)

(−1)s(|π0| − l(π0))(⟨π0, π0⟩+ · · ·+ ⟨πs, πs⟩)k−1

is zero if and only if the polynomial∑
(π0,...,πs)∈S′(π)

a0∈π0

(−1)s(⟨π0, π0⟩+ · · ·+ ⟨πs, πs⟩)k−1

is zero.

Proposition 18. Let n and k be integers with 0 < k < n. If the polynomial∑
(π0,...,πs)∈S′(π)

a0∈π0

(−1)s(⟨π0, π0⟩+ · · ·+ ⟨πs, πs⟩)k−i

17



is zero for all i such that 0 < i ≤ k, then the polynomial∑
(π0,...,πs)∈S′(π)

(−1)s(|π0| − l(π0))
i(⟨π0, π0⟩+ · · ·+ ⟨πs, πs⟩)k−i

is zero for all i such that 0 < i ≤ k.

Now let π = (a0, . . . , an−1). Note that the coefficient of ai in ⟨π, π⟩ is

1 +
∑
aj∈π
j<i

2.

We can generalize this definition of the inner product.

Definition. Let n > 0 and let π = (a0, . . . , an−1). Let W be an n×n matrix of
positive integers, and let c be a positive integer. Then we define the (W, b)-inner
product of π to be

⟨π, π⟩W,b =
∑
ai∈π

ai

b+
∑
aj∈π

Wji

 .

Note that ⟨π, π⟩ = ⟨π, π⟩Z,1 where Z is the n × n matrix with twos above
the diagonal and zeros everywhere else.

Definition. Let n be a positive integer, and let i0, i1, . . . , ik be integers such
that 0 ≤ i0 < i1 < · · · < ik < n. For some nonnegative integer j with j ≤ k,
define u = (i1, . . . , ij) and v = (ij+1, . . . , ik). Then define T (n, i0, u, v, a) to be
the coefficient of i1 · · · ik, scaled down by k!, in the polynomial∑

(π0,...,πs)∈S′(π)
a0∈π0

s≡0 (mod 2)

(⟨π0, π0⟩W,0 + · · ·+ ⟨πs, πs⟩W,0)
k

where W is the n × n matrix with entries Wi0il = a for j < l ≤ k and ones
everywhere else.

Define T ′(n, i0, u, v, a) identically except with s ≡ 1 (mod 2).

Proposition 19. Both T (n, i0, u, v, a) and T ′(n, i0, u, v, a) are equal to

F (1, n− k − 1)i1i2 · · · ij(ij+1 + a− 1) · · · (ik + a− 1).

Proof. We show the proof for T , but it is almost identical for T ′—identical, in
fact, for all steps except the k = 0 case.

First we induct on k. Suppose k = 0. Then T (n, i0, u, v, a) is simply the
number of partition tuples of π = (a0, . . . , an−1) of even length with a0 contained
in π0. This is equal to the number of partition tuples of (a1, . . . , an−1), since
for each of the latter set we can construct an even-length tuple of π in exactly
one way: if the original tuple has even length, we include a0 at the beginning
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of π0, and otherwise we add a new partition to the tuple containing only the
element a0. But the number of partition tuples of (a1, . . . , an−1) is F (1, n− 1)
as desired.

Now let k > 0 and suppose that the statement is true for all smaller values.
To prove that the statement is true for k, we induct on |v|. Suppose |v| = 0.
Then T (n, i0, u, v, a) is the coefficient of i1 · · · ik, scaled down by k!, in the
polynomial ∑

(π0,...,πs)∈S′(π)
a0∈π0

s≡0 (mod 2)

(⟨π0, π0⟩W,0 + · · ·+ ⟨πs, πs⟩W,0)
k

where W is the n×n matrix with ones above the diagonal and zeros everywhere
else. Let u′ = (i1−1, i2, . . . , ik). Let u

′′ be empty, and let v′′ = (i2−1, . . . , ik−1).
Then

T (n, i0, u, v, a)− T (n, i0, u
′, v, a) = T (n− 1, i1, u

′′, v′′, 2).

This arises from the fact that in any partition tuple where ai1 and ai1−1 are in
different partitions, the contribution of this tuple to T (n, i0, u, v, a) is cancelled
out by the contribution of the tuple to T (n, i0, u

′, v, a) when ai1 and ai1−1 are
swapped. Therefore in the remaining tuples, ai1 and ai1−1 are in the same
partition, and as they are adjacent, the difference in their coefficients is 1.
Hence the tuple’s difference in contributions is the product of the coefficients
of the remaining variables: ai2 , . . . , aik . Grouping ai1 and ai1−1 as one variable
with a weight of 2 on the other variables, we can establish a bijection with
T (n− 1, i1, u

′′, v′′, 2). But then by the inductive hypothesis

T (n, i0, u, v, a) = T (n, i0, u
′, v, a) + T (n− 1, i1, u

′′, v′′, 2)

= F (1, n− k − 1)(i1 − 1)i2 · · · ik + F (1, n− k − 1)(i2 − 1 + 2− 1) · · · (ik − 1 + 2− 1)

= F (1, n− k − 1)i1i2 · · · ik.

Now let |v| > 0 and suppose that the statement is true for all smaller sets.
We have

T (n, i0, u, v, a)− T (n, i0, u ∪ {ij+1}, v \ {ij+1}, a)

is equal to (a− 1) times the portion of

T (n, i0, u, v \ {ij+1}, a)

contributed by tuples where i0 is in the same partition as ij+1. This is because
changing wi0ij+1

from a to 1 affects only tuples with i0 and ij in the same
partition, and the resulting contribution is (a − 1) times the coefficients of the
remainder of u and v. But the portion of

T (n, i0, u, v \ {ij+1}, a)

with i0 and ij+1 in the same partition is exactly

T (n− 1, i0, u, v
′, a+ 1)
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where v′ = (ij+2 − 1, . . . , ik − 1). This is obtained by assimilating the variable
ij+1 into i0, which increases the weight by 1 but decrements all indices after
j + 1. Hence, by the inductive hypothesis,

T (n, i0, u, v, a) = T (n, i0, u ∪ {ij+1}, v \ {ij+1}, a) + (a− 1)T (n− 1, i0, u, v
′, a+ 1)

= F (1, n− k − 1)i1i2 · · · ij+1(ij+2 + a− 1) · · · (ik + a− 1)

+ F (n− k − 1)(a− 1)i1i2 · · · ij(ij+2 + a− 1) · · · (ik + a− 1)

= F (n− k − 1)i1i2 · · · ij(ij+1 + a− 1)(ij+2 + a− 1) · · · (ik + a− 1).

This completes the induction.

For the general case, we must generalize our definition of T . Let W be an
upper triangular n× n matrix of positive integers. Let k ≥ 0, let i be a vector
of k nonnegative integers, with i1 < i2 < · · · < ik < n, and let e be a vector of
k positive integers. Then let [ae1i1 · · · aekik ]T (W ) be the coefficient of

k∏
j=1

a
ej
ij

in ∑
(π0,...,πs)∈S′(π)

a0∈π0

(−1)s (⟨π0, π0⟩W + · · ·+ ⟨πs, πs⟩W )
e1+···+ek .

From here on, we will assume that this is divided by the number of distinct
permutations of ae1i1 · · · aekik , so that we are in fact counting the cases when ai1
is chosen from the first factor, aik from the last factor, and so forth.

Similarly, for any j1 and j2 with 0 ≤ j1 < j2 < n, let [ae1i1 · · · aekik ]Tj1,j2(W )
be equal to [ae1i1 · · · aekik ]T (W ) restricted to the partition tuples where aj1 and
aj2 are in the same partition.

Proposition 20. For all valid parameters where W is strictly upper triangular,

[ae1i1 · · · aekik ]T (W ) = 0.

Proof. We induct on the index-exponent sum
∑k

j=1 ij +ej . If the sum is 0, then
[ae1i1 · · · aekik ]T (W ) is simply the value∑

(π0,...,πs)∈S′(π)
a0∈π0

(−1)s

which is 0.
Now suppose the index-exponent sum is positive. Then k ≥ 1. If i1 = 0,

then [ae1i1 · · · aekik ]T (W ) is trivially 0, since for any partition tuple the coefficient
of a0 within its inner product is W0,0 = 0.

If i1 > 0, note that most contributions in [ae1i1 · · · aekik ]T (W ) can be placed
in bijection with equal contributions from [ae1i1−1 · · · a

ek
ik
]T (W ′), where W ′ is
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the matrix obtained from W by swapping all corresponding entries of rows
i1 − 1 and i1 except for entry Wi1−1,i1 . In particular, let α = (π0, . . . , πs)
be a partition tuple with ai1 and ai1−1 in different partitions. Let α′ be the
tuple constructed from α by swapping ai1 and ai1−1. Then α has the same
contribution in [ae1i1 · · · aekik ]T (W ) as α′ has in [ae1i1−1 · · · a

ek
ik
]T (W ′).

Hence, the only tuples with a nonzero contribution to

[ae1i1 · · · aekik ]T (W )− [ae1i1−1 · · · a
ek
ik
]T (W ′)

are those tuples where ai1 and ai1−1 are in the same partition. Let α be such
a tuple. The last e2 + · · · + ek factors in the power can be factored out of
the difference, since we are looking at the coefficients of the same monomial
ae2i2 · · · aekik , and although the weights of i1 and i1 − 1 have been swapped, this
makes no difference since they are both in the same partition. Then if x is the
coefficient of ai1 in the inner product sum, the difference is

xe1 − (x−Wi1−1,i1)
e1 =

e1−1∑
j=0

(
e1
j

)
(−Wi1−1,i1)

e1−1−jxj

times the coefficients due to the remaining variables ai2 , . . . , aik . But for each
j, the product of xj and the coefficients of the remaining variables, is exactly
the coefficient of aji1a

e2
i2
. . . aekik . Hence,

[ae1i1 · · · aekik ]T (W )− [ae1i1−1 · · · a
ek
ik
]T (W ′)

=

e1−1∑
j=0

(
e1
j

)
(−Wi1−1,i1)

e1−1−j [aji1a
e2
i2
· · · aekik ]Ti1−1,i1(W ).

By the inductive hypothesis, [ae1i1−1 · · · a
ek
ik
]T (W ′) = 0. For the remaining

terms, note that

[ae1i1 · · · aekik ]Ti1−1,i1(W ) = [ae1i1−1 · · · a
ek
ik−1]T (W

′)

where W ′ is the n− 1×n− 1 matrix constructed from W by adding Wi1,ij into
Wi1−1,ij for each j, and adding Wi1−1,i1 into Wi1−1,i1−1, and then removing row
i1 and column i1. Essentially we are removing variable i1−1, but so as to avoid
affecting the coefficients of other variables, we must somehow keep the weights
of i1 − 1 on other variables. Since variable i1 is always in the same partition, it
suffices to simply add each weight of i1 − 1 into the corresponding weight of i1.
But now the entry Wi1−1,i1−1 is nonzero, so the matrix W is not strictly upper
triangular. This may be fixed by applying the binomial theorem again; we have

[ae1i1−1 · · · a
ek
ik−1]T (W

′) =

e1∑
j=0

(
e1
j

)
W e1−1−j

i1−1,i1
[aji1−1 · · · a

ek
ik−1]T (W

′′)
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where W ′′ is obtained from W ′ by setting entry W ′
i1−1,i1−1 to 0. But W ′′ is

strictly upper triangular, so by the inductive hypothesis, this sum is 0. It follows
that

[ae1i1 · · · aekik ]T (W ) = 0.
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