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ABSTRACT
Logging is crucial to performance in modern multicore main-memory
database management systems (DBMSs). Traditional data logging
(ARIES) and command logging algorithms enforce a sequential
order among log records using a global log sequence number (LSN).
Log flushing and recovery after a crash are both performed in the
LSN order. This serialization of transaction logging and recovery
can limit the system performance at high core count.

In this paper, we propose Taurus to break the LSN abstraction
and enable parallel logging and recovery by tracking fine-grained
dependencies among transactions. The dependency tracking lends
Taurus three salient features. (1) Taurus decouples the transaction
logging order with commit order and allows transactions to be
flushed to persistent storage in parallel independently. Transactions
that are persistent before commit can be discovered and ignored by
the recovery algorithm using the logged dependency information.
(2) Taurus can leverage multiple persistent devices for logging. (3)
Taurus can leverage multiple devices and multiple worker threads for
parallel recovery. Taurus improves logging and recovery parallelism
for both data and command logging.

Our evaluation on a 32-core machine with four persistent devices
shows that Taurus can improve the data (command) logging perfor-
mance by up to 3.8× (2.67×) and reduce recovery time by 4.9×
(9.8×) compared to baseline algorithms.

1. INTRODUCTION
Logging is an important component for on-line transaction pro-

cessing (OLTP) database management systems (DBMSs). It enables
the system to guarantee that if a transaction commits that its changes
are persistent and recoverable after a system crash. The changes are
written to persistent storage (e.g., HDD, SSD, NVM) as an append-
only log that contains enough information to restore the database to
a consistent state as it existed before the crash.

ARIES [19] is the most popular logging algorithm and has been
widely implemented in both disk-based and in-memory database
systems. Command logging [18] was recently proposed to reduce
the amount of log data by logging transactions commands instead

of actual modifications. In both ARIES and command logging,
each transaction acquires a unique and monotonically increasing log
sequence number (LSN) that determines the order that the DBMS
flushes log records to persistent storage. All the transactions need to
be written to persistent storage sequentially in a single stream.

But the LSN allocation and the single I/O stream become a per-
formance bottleneck when executing highly concurrent OLTP work-
loads on a DBMS with multiple CPU cores [13]. Furthermore,
during crash recovery, replaying logs the LSN order limits the level
of parallelism. We observe that using a global LSN to determine the
order of logging is not necessary. If two transactions access com-
pletely disjoint set of data, in theory, they can perform logging and
recovery in parallel (potentially to/from different log files) without
communicating with each other. Which transaction becomes durable
and commits first does not affect the recoverability of the system.
In serial logging algorithms, however, these two transactions will
be assigned different LSNs that unnecessarily serialize the logging
process.

To overcome this artificial bottleneck, we propose Taurus, a
logging algorithm that can perform both logging and recovery in
parallel. Taurus removes the global LSN bottleneck by explicitly
maintaining dependency information between different transactions.
And the dependency information is written to log records. This
provides two major benefits. First, the commit and recovery or-
der is enforced only for transactions with true dependency but not
for independent transactions. For workloads with ample inherent
parallelism, Taurus is able to perform both logging and recovery
in parallel. Second, the logging and commit processes are decou-
pled. A transaction can write to a log in any order with respect to
its predecessor transactions; the dependency information is able to
determine the proper commit and recovery order regardless of the
logging order.

A key idea behind Taurus that makes the dependency tracking
efficient is that only read-after-write (RAW) and write-after-write
(WAW) dependencies need to be tracked but not the write-after-read
(WAR) dependencies. Therefore, it suffices to only maintain the
last writer of each object (to detect RAW and WAW) but not the
readers. This simplifies the dependency tracking during logging and
recovery.

Recent work has also tried to improve the scalability of logging.
Some focused on optimizing ARIES but still suffer from the LSN
allocation bottleneck [13]; others allocate LSN at coarse temporal
granularity and perform logging in batches to trade latency for
throughput [23, 27, 24]. Taurus is unique as it breaks the LSN
abstraction to track dependency graph explicitly at a fine granularity.
Taurus is completely compatible with other design dimensions. For
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example, it parallelize the logging and recovery for both data and
command logging.

To evaluate our approach, we implemented our Taurus logging
scheme in the DBx1000 [2] open source database. We compare
our methods with other state-of-the-art approaches and show that
they enable the DBMS to achieve up to 4.9× higher throughput
across different OLTP workloads. We also demonstrate that Taurus
allows the DBMS to reduce its recovery time by 9.9× for command
logging.

The remainder of this paper is organized as follows. We first
provide an overview of logging in OLTP DBMSs and our target
operating environment in Section 2. Next, in Section 3, we describe
the key idea of Taurus, the dependency tracking. Section 4 explains
the details of Taurus with data logging. Section 5 extends the Taurus
to command logging. We present our experimental evaluation in
Section 6, discuss the related work in Section 7 and conclude the
paper in Section 8.

2. BACKGROUND
A transaction is a sequence of actions that executes on a shared

database to perform some higher-level function. Ideally, an OLTP
DBMS provides the ACID guarantees for transactions [12]. Atomic-
ity guarantees that a transaction either succeeds or fails, leaving the
database unchanged if it does fail. Consistency implies that every
transaction will bring the database from one valid state to another
and isolation ensures that the result obtained from a set of concurrent
transactions will be the same as if those transactions were executed
serially.

Durability is also essential to a system because it guarantees that
a committed transaction can be recovered after a system crash. In
this paper, we consider main memory DBMSs which do not store
database states on persistent storage besides the log. The original
ARIES algorithm can be significantly simplified in this setting [18].

To simplify the discussion, we define some terminologies and
make a few assumptions of the DBMS. We assume it is a main
memory database with all uncommitted data staying in DRAM.
Therefore, a transaction only needs REDO data but not UNDO
data. We further assume that each transaction only creates a single
log record which is flushed to persistent storage at the end of its
execution. Log records are sequentially flushed to storage devices
in batches. The machine contains multiple storage drives that it can
write logs to.

The execution of a transaction contains two phases. In the execu-
tion phase, it reads and writes tuples and executes the transaction
logic. For simplicity, we only consider serializable isolation in
this paper. If the transaction is successfully executed, it will pre-
commit meaning that the transaction will not abort unless the system
crashes [21]. However, the transaction can only commit (i.e., be
returned to the end users) after it becomes committable. Commit-
tability and the theory of durability will be discussed in the next
section.

2.1 Durability Theory
The theory of recoverability was first established as part of the

serializability theory by Bernstein et al [6]. According to the theory,
a history is recoverable if each transaction commits after the com-
mitment of all transactions (other than itself) from which it reads.
Essentially, this requires the commit order of transactions to follow
the Read-After-Write (RAW) dependencies. However, other types
of dependencies, Write-After-Read (WAR) and Write-After-Write
(WAW), do not have any constraint on the commit order. We can
therefore define the committability of a transaction.

T1
Read(X)
Write(Y)

T2
Read(Y)
Write(Z)

T3
Write(X)

RAW

WAR
T4

Write(X)
WAW

Figure 1: A example of a set of transactions with different types of data
dependencies.

DEFINITION 1 (COMMITTABLE TRANSACTION). A transac-
tion is committable if (1) all of objects that it reads were updated by
transactions that are committable and (2) its REDO log is persistent.

A transaction can commit once it is committable. During recovery
after a crash, all and only committable transactions should be recov-
ered. A correct recovery algorithm should identify all transactions
that successfully committed before the crash, and recover them in
the proper order such that the recovered state is the same as that
before the crash.

Figure 1 shows an example of a set of four transactions (T1 to T4)
executed in a DBMS. The types of data dependency between dif-
ferent transactions are shown as arrows. For simplicity, we assume
that all the transactions have pre-committed but none is persistent
and therefore none has committed yet.

In the example, T1 is committable after its log record is written
to persistent storage. For T2, according to Definition 1, it needs to
wait for T1 to be committable before it can commit due to the RAW
dependency between T1 and T2. If we ignore this constraint and
commit T2 before T1 is persistent, then if the system crashes, only
T2 will be recovered but T1 will not. This leads to inconsistent state
as T2’s read(Y) observes a value that does not exist in the recovered
system.

Unlike RAW dependency, WAR dependency does not constrain
the commit order. T3 in Figure 1, for example, can commit before
T1 regardless of the WAR dependency between them. If a crash
happens and T3 is recovered but T1 is not, the recovered system
is still in a consistent state as if T1 has never existed. This is
correct because a read does not leave side effects in the system, and
therefore does not affect a following write.

Similarly, WAW dependency does not constrain the commit order
either. A WAW dependency without a RAW means the second
transaction blindly overwrites the value without reading it first. In
the example, this means that T4 completely overwrites the value
of X previously written by T3. According to Definition 1, T4 can
commit before T3. If after a crash only T4 is recovered but T3 is
not, the database state is perfectly consistent. As if only T4 has
been executed and T3 has never existed.

Note that the concurrency control algorithm has stronger require-
ment than the logging algorithm, where all the three types of data
dependencies need to be taken care of. We will leverage this relaxed
requirement in the design of Taurus.

We observed that some previous work on database logging ig-
nored the fact that WAR and WAW dependencies do not enforce
commit order [21, 24, 23, 13, 10]. Therefore, all three types of
dependencies were treated the same way. We will show later how
ignoring WAR and WAW can substantially improve the scalability
of database logging and recovery.

2.2 Serial Data and Command Logging
Traditional logging algorithms like ARIES log the modification

made by a transaction as REDO information to persistent storage.
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Figure 2: Logging and recovery performance for serial data and command
logging on TPCC workload (32 warehouses).

For transactions that modify a large number of tuples, this method
will generate a large amount log data leading to high pressure at the
I/O. As shown in Figure 2, the performance of serial data logging
can saturate at very low thread count due to the I/O bottleneck.

Command logging was recently proposed [18] to mitigate the I/O
pressure during the forward execution phase of a DBMS. Instead of
logging the actual modification made by a transaction, the database
logs the command of the transaction instead, which includes the
store procedure name and the input parameters. Compared to data
logging, command logging can reduce the size of logs by an order
of magnitude, therefore significantly mitigate the I/O pressure. As
can be seen in Figure 2, command logging significantly improves
the performance during forward processing. The throughput, how-
ever, still saturates at high thread count when the I/O becomes the
bottleneck.

In both serial data and command logging algorithms, a transaction
is assigned a unique Log Sequence Number (LSN). The LSN order is
the global serial order of transactions and therefore is in accordance
with all data dependencies. Namely, if T1 depends on T2 (regardless
of RAW, WAW and WAR), T1’s LSN must be greater than T2’s.
This property can be achieved through the concurrency control
algorithms. For examples, two-phase locking algorithms would
allocate the LSN after precommitting but before releasing any locks,
while timestamp ordering algorithms can use the logical commit
timestamp as the LSN.

Transactions using serial logging algorithms must flush their
log records to persistent storage in the LSN order. According to
Definition 1, a transaction becomes committable after flushing its
log record, because all transactions that it RAW depends on must
have been flushed as well. During a crash recovery, all complete
persistent log records must have been committed and therefore
should be recovered. The recovery will following the LSN order,
making sure that updates from conflicting transactions are applied
in the correct sequence.

A major scalability bottlenecks in serial logging algorithms are
the LSN allocation and the serial log writing. For modern multicore
systems where a large number of transactions can commit at the
same time, these bottlenecks will significantly limit performance.
We observe, however, that LSN overly constraining the commit
order of transactions. According to Definition 1, one prerequisite
of committability is that “all transactions it reads from are com-
mittable”. In ARIES, however, this prerequisite becomes that “all
transactions before it in the serial order are committable”. Clearly,
the commit and recovery order constraint in serial logging is much
stronger than what is actually required.

3. TAURUS DEPENDENCY TRACKING
We propose Taurus to improve the efficiency and scalability of

database logging. Taurus is able to exploit mulitple persistent stor-
age devices by logging to them in parallel. It can also exploit
multiple recovery threads to replay transactions in parallel. Taurus
achieves this by tracking down and log the dependency between
different transactions and enforce the commit and recovery order
based on such dependency. Taurus maximize parallelism for both
data and command logging schemes.

A key feature of Taurus is that it decouples transactions’ logging
with their commit. In Taurus, a transaction can write to any logger
and different loggers can flush to persistent storage in any order.
This provides great parallelism and flexibility as no logging order
needs to be enforced. However, this means that a transaction T may
become persistent before its predecessors which is not allowed in
traditional logging algorithms. Therefore, not all persistent trans-
actions have committed and a separate software module is required
to determine the committability of each transaction. After a sys-
tem crash, the recovery process needs to identify transactions that
haven’t committed before the crash and ignore them for recovery.
Taurus achieves these using the logged dependency information in
each transaction.

In Taurus, a transaction collects its RAW and WAW predecessors
(which are the IDs of last writing transactions of accessed tuples)
during normal execution. After a transaction pre-commits, it picks
a logger and writes its log record which contains the REDO data
as well as the RAW and WAW predecessor list. A transaction
can commit only if the two conditions in Definition 1 are met.
Namely, all RAW predecessors are committable (condition 1) and
its REDO data has been persistent (condition 2). Checking the
second condition is straightforward, the transaction simply wait
for log file flush. Checking the first condition, however, requires
a transaction to check committability of transactions it depends
on. We will discuss more details of the committability check in
Section 4.2.

During a crash recovery, Taurus constructs the recovery depen-
dency graph using the predecessor list from each log record. The
transactions are recovered in a dataflow fashion following the graph.
Taurus determines that a transaction T has committed (i.e., recov-
erable) if all its RAW predecessors are recoverable. Unrecoverable
transactions are ignored. For data logging, a recoverable transaction
starts recovery after all its WAW predecessors have been recovered.
For command logging, recovery starts when both RAW and WAW
predecessors of a transaction are recovered. Independent transaction
can be recovered in parallel.

Specifically, if a RAW predecessor of a transaction T is not found
in any log file, the predecessor must have not committed before
the crash and therefore T has not committed either according to
Definition 1. In this case, T and all RAW successors of T are not
recoverable and ignored by Taurus. In contrast, if a WAW predeces-
sor of T is not found in any log file but all RAW predecessors have
been found and recovered, T can still be recovered. The fact that a
WAW predecessor did not commit does not affect its committability
and recoverability.

3.1 Example
Figure 3 shows the log records of transactions in the example of

Figure 1. A log record contains both the REDO information and the
predecessor list (if any). During normal execution, if the log record
of T1, T3, or T4 is flushed to any logger, they can immediately
commit and return to the end users. This is because they do not RAW
depend on any other transactions and condition 2 in Definition 1 is
always true.
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T2T1

REDO Log REDO Log
RAW={T1}

REDO Log

T3

REDO Log
WAW={T3}

T4

Figure 3: Taurus log records for transactions in Figure 1. A log record
contains both REDO data and predecessor list.

To commit T2, however, we also needs to check that T1 has
committed because of the RAW dependency. But as discussed above,
this only limits their commit order but not the logging order. T1
and T2 can log to any logger in any order. The commit dependency
logic guarantees that T2 commits after T1 is committable regardless
of their logging order.

During recovery, Taurus first uses RAW edge to determine recov-
erability of each transaction. T1, T3 and T4 are always recoverable
due to the lack of RAW predecessors. But T2 is recoverable only
if T1 is recoverable. For data logging, the actual recovery follows
the WAW edges. T1, T2 and T3 can be recovered in parallel. But
T4 should be recovered after T3. For command logging, T1 and
T3 will be first recovered in parallel, and then T2 and T4 can be
recovered.

4. DATA LOGGING IN TAURUS
In this section, we focus on the discussion of data logging and

recovery of Taurus. Command logging and recovery will be dis-
cussed in Section 5. Specifically, we first explain data structures
required in Taurus’s implementation in Section 4.1. We explain the
committability test in Section 4.2 and the full logging algorithm in
Section 4.3.

4.1 Data Structures
In order to track dependency between transactions, the following

data structures are added/modified in Taurus.

4.1.1 Tuple
A data tuple consists of the stored data and concurrency control

information (assuming tuple level concurrency management). In
Taurus, a last writer field is added to each tuple to detect RAW and
WAW dependencies. The last writer is the ID of the last transaction
in the system writing to the data tuple. It is updated when the
tuple is modified. A transaction maintains lists of RAW and WAW
predecessors in its local storage.

Note that a last writer field is enough for RAW and WAW depen-
dency tracking but not enough for WAR dependencies. As discussed
in Section 2.1, however, WAR does not need to be tracked for log-
ging. This is the key to the efficiency of parallel logging in Taurus.

4.1.2 Log Record
In our execution model, the system generates a log record at the

end of each transaction. The log record consists of the following
fields.

Txn_id. The transaction ID is the unique identification informa-
tion of each transaction in the system. It is similar to LSN in ARIES,
but it does not have to reflect the global sequential order. In this
paper, it is the address of a transaction in a log file concatenated
with the logger ID.

REDO data. This field stores the necessary information that
allows the system to recover a transaction after a crash. It is the same
information as in traditional logging algorithms. In data logging, it
includes the tables ids, primary keys, before and after images, etc.
In command logging, it includes the store procedure name and input
parameters required to rerun the transaction.

Predecessors. This field contains the last_writers of all tuples
read/written by the current transaction. It consists of RAW and
WAW predecessors separately. From the discussion in the previous
section, only RAW predecessors are necessary to determine recov-
erability, but WAW predecessors are also needed to determine the
recovery order.

4.1.3 Commit Dependency Table
We use the commit dependency table to determine the committa-

bility of each transaction. The table contains transactions that have
pre-committed but not committed yet. For each transaction in the
table, it stores a predecessor vector which is a vector of addresses of
all loggers that have to be flushed before the transaction is commit-
table. A predecessor vector of (100, 200), for example, means that
the transaction is committable if address up to 100 is persistent in the
first logger and address up to 200 is persistent in the second logger.
An entry is inserted to the table when a transaction pre-commits and
removed when it commits. The predecessor vector will propagate
among dependent transactions and the detailed algorithm will be
explained in Section 4.2.

4.1.4 Recovery Dependency Graph
Taurus supports parallel recovery of independent transactions.

The recovery dependency graph maintains the pairwise dependen-
cies between transactions. A transaction is recoverable if all its RAW
predecessors are also recoverable. For data logging, a transaction
starts recovery after all WAW predecessors are recovered.

We use nodes to represent transactions and edges directed from a
transaction to its dependents to indicate the pairwise dependencies.
Having edges in this direction allows a recovered transaction to
quickly notify its dependents following the edges. It is also possible
to have edges pointing to the other direction. With this alternative
design, a recovered transaction cannot notify dependents; and the
dependents need to periodically check whether a predecessor has
been recovered or not, which would incur more computation and
latency.

The recovery dependency graph is constructed and maintained
in main memory. Our current implementation stores the graph in a
hash table which is very scalable as operations to different buckets
can be performed in parallel. But any data structure supporting
insert, delete and lookup will work. Each node in the recovery
dependency graph contains the following fields.

REDO data. The necessary information to recover the trans-
action. This field is copied from the REDO data field in the log
record.

Pred_size. A node maintains both raw_pred_size and waw_pred_size.
raw_pred_size is the number of unrecoverable RAW predecessors
and waw_pred_size is the number of unrecovered WAW predeces-
sors. raw_pred_size (or waw_pred_size) is decremented when a
RAW (or WAW) predecessor becomes recoverable (or be recov-
ered). A transaction is recoverable if raw_pred_size is 0. After
being recoverable, it can start recovery if waw_pred_size becomes
0.

Successors. raw_successors and waw_successors are lists of the
IDs of the transactions that RAW and WAW depend on the current
transaction, respectively. When a transaction is inserted to the graph,
it is responsible for adding itself to all predecessors’ successors list.
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When a transaction changes it state, it is responsible to notify all
transactions in its corresponding successors list by decrementing
their pred_size.

4.2 Committability Test
A transaction is committable when the two conditions in Defi-

nition 1 are true. The challenge is to enforce the first condition,
namely, all transactions it reads from are committable. We want to
enforce it without serializing the commit order of all transactions as
done in serial logging algorithms.

A generic solution is to maintain all the transactions in a depen-
dency graph where each node represents a transaction and each edge
represents a RAW relationship. A transaction can commit after all
its RAW predecessors commit. The checking of different transac-
tions can be performed in parallel and independent transactions can
commit in parallel.

Although this solution is viable and provides more parallelism
than serial logging, maintaining the dependency graph explicitly can
be expensive, adding overhead to the logging process. For workloads
that generate small amount of log records where a single log stream
performs well, the extra complexity of dependency tracking can hurt
performance.

We observe, however, that the dependency graph can be largely
compressed by leveraging the fact that a log file is flushed to persis-
tent storage sequentially. Therefore, if a record becomes persistent,
all records before it in the same log file must be persistent as well.
In Taurus, instead of tracking the whole dependency graph, we only
track the position in each log file that has to be persistent for a trans-
action to commit. We use a per-tuple predecessor vector (similar to
version vector [20]) to achieve this goal.

If a transaction T RAW depends on a list of other transactions, T
calculate its predecessor vector by taking the maximum of all prede-
cessors’ predecessor vector and the position of its own log record.
The maximum of two predecessor vector is just their component-
wise maximum. Each logger maintains a buffer in main memory
which is flushed to persistent storage sequentially. A logger’s per-
sistent point is the position in the logging stream up to which has
been persistent already. Each persistent point only moves up in the
buffer. The persistent vector is the vector of all loggers’ persistent
point. A transaction is committable if the persistent vector is greater
than its predecessor vector.

T3

T2

T1
RAW

RAW

Logger1 Logger2

T1

T2

T3

100 100

200

300

Transaction ID Predecessor Vector
1 (100, 0)
2 (100, 200)
3 (100, 300)

… …

Commit Dependency Table

Figure 4: Determine committability of a transaction in Taurus.

Figure 4 shows an example of three transactions where T2 RAW

depends on T1 and T3 RAW depends on T2. We have two loggers
in this example. When T1 pre-commits, it allocates an entry in
logger 1 to position 100. Since T1 has no RAW predecessors, its
predecessor vector is (100, 0). The vector is written to the commit
dependency table. T1 is committable when Logger 1’s persistent
point reaches 100, in other words, the persistent vector is greater
than (100, 0).

When T2 reaches the pre-commit point, it computes its own
predecessor vector. Because it allocates an log entry in logger
2 to position 200, its predecessor vector is no less than (0, 200).
Also since it RAW depends on T1, it looks for T1 in the commit
dependency table. If the entry is found (i.e., T1 has not committed
yet), T2 updates its predecessor vector to be the maximum of its
current predecessor vector and T1’s predecessor vector, namely
(100, 200) = Max((0, 200), (100, 0)). This is inserted to the commit
dependency table for T2. Similarly, the predecessor vector of T3
will be computed as (100, 300) since it depends on T2 and its log
record is in logger 2 at address 300.

Note that it is possible that T1 commits before T2 or T3 pre-
commits. In this case, T1 will be removed from the commit de-
pendency table and following dependent transactions will ignore
it when computing their predecessor vector. However, since T1
has already committed, persistent vector is already greater than its
predecessor vector and therefore there is no need to keep it any
more.

Predecessor vectors simplify testing of committability of trans-
actions. A transaction is committable if and only if the persistent
vector is no less than the predecessor vector of the transaction. If the
persistent vector is (100, 250), for example, T1 and T2 are able to
commit while T3 is not. No dependency graph needs to be explicitly
tracked with this approach.

4.3 Parallel Logging Algorithm
In this section, we discuss how Taurus performs parallel logging

during normal execution. The recovery algorithms after a system
crash will be discussed in Section 4.4.

When a transaction T accesses a tuple during its execution,
besides the data reads/writes and concurrency control metadata
management, the routine shown in Algorithm 1 is executed. The
last_writer of each data tuple accessed by T is recorded in
raw_predecessors or waw_predecessors for a read or write respec-
tively.

Algorithm 1 Transaction T accesses tuple.
1: function ACCESS(type, tuple)
2: if type = Read then
3: raw_predecessors.push(tuple.last_writer)
4: else if type = Write then
5: waw_predecessors.push(tuple.last_writer)
6: end if
7: end function

If transaction T reaches the pre-commit point, the logging process
shown in Algorithm 2 is executed. We first updates the last_writer
fields of all the tuples updated by T (line 1-3). Then, a log record
is created and written to a logger (line 4-5). The logger thread will
flush the records to persistent storage in the background. In Taurus,
any transaction can write to any logger without affecting correctness.
In our implementation, we use a static mapping between worker
threads and loggers.

The predecessor vector management is handled in line 6-13 where
T updates its pred_vector based on its own log record position as
well as its RAW predecessors. T is able to pre-commit and release
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locks after that (line 14). Finally, when the persistent vector is
greater than or equal to a transaction’s predecessor vector, the trans-
action can be committed and removed from the commit dependency
table (line 15-20).

Algorithm 2 Logging routine for transaction T .
# When Transaction T is able to pre-commit

1: for all t in T .WriteSet do
2: t.last_writer← T .id
3: end for
4: log_record← T .createLogRecord()

# T’s log entry is written to position addr in a logger
5: addr← loggers[logger_id].write(log_record)
6: pred_vector← [0] × num_loggers
7: pred_vector[logger_id] = addr

# CDT: Commit Dependency Table
8: for all id in T .raw_predecessors do
9: if CDT.find(id) then

10: pred_vector←Max(pred_vector, CDT[id])
11: end if
12: end for
13: CDT.insert(T .id, pred_vector)
14: T .preCommit() # e.g., release locks
15: pending_queue.push(T )
16: while pending_queue.head.pred_vector ≤ persistent_vector do
17: T ← pending_queue.pop()
18: T .commit()
19: CDT.remove(T .id)
20: end while

In our current implementation, pending transactions that have pre-
committed but not committed yet are stored in a thread local queue.
And the thread is responsible for committing these transactions once
they are committable. We chose a queue-based implementation for
simplicity, more sophisticated data structures might allow pending
transactions to be flushed out of order leading to potentially better
performance.

4.4 Parallel Recovery Algorithm
According to our discussion in Section 4.2, a correct recovery

process should (1) recover all and only transactions that were com-
mittable before the crash (i.e., recoverable transactions), and (2)
recover transactions in the same logical order in which they were
originally executed.

In traditional logging algorithms like ARIES, the recoverability
check is trivial since all persistent transactions were committable
before the crash. Taurus, however, allows non-committable trans-
actions to be logged first. Therefore, Taurus requires non-trivial
recoverability check. Using the dependency information logged in
each transaction, Taurus can perform both the recoverability check
and the recovery process in parallel. The parallelism comes from
two factors. First, Taurus is able to read from multiple log files in
parallel. Second, Taurus is able process independent transactions
using different worker threads in parallel.

In Taurus, we use the RAW predecessors in each log record to de-
cide recoverability of a transaction; and use the WAW predecessors
to decide the recovery order. We maintain the dependency informa-
tion in a graph called the recovery dependency graph and determine
recoverability and recovery order using it. In Section 4.4.1, we
present a basic parallel recovery algorithm for data logging. We then
propose optimizations to it for better performance in Section 4.4.2.

4.4.1 Basic Parallel Recovery

A simple way of implementing parallel recovery is to break the
algorithm into three phases to construct the graph, determine recov-
erability and then recover transactions. The system first recovers the
latest checkpoint. Then the logging threads read log records from
the files and do some preprocessing. The recoverability check and
transaction recovery are performed by worker threads. Specifically,
each phase performs the following logic.

Phase 1 (Construct dependency graph). The logging threads
scan log files in parallel and construct the recovery dependency
graph using the RAW and WAW predecessor information in each
log record.

Phase 2 (Remove unrecoverable transactions). Since not all
persistent transactions are recoverable in Taurus, we have to iden-
tify and discard unrecoverable ones. This is done by scanning the
recovery dependency graph following RAW edges and remove all
non-reachable transactions, i.e., transactions with some RAW prede-
cessors not found in the log files. These transactions did not commit
before the crash and therefore are unrecoverable.

Phase 3 (Recover transactions). Similar to Phase 2, worker
threads scan the recovery dependency graph again but follows WAW
edges this time. A transaction can start recovery if all its WAW
predecessors have been recovered.

We use the example in Figure 1 to illustrate the mechanism of our
algorithm. We consider the case where all the four transactions are
persistent (and therefore committable) before the crash.

After running phase 1, the dependency graph shown in Figure 1
will be constructed (except the WAR edge between T3 and T1).
The second phase first marks T1, T3 and T4 as recoverable, since
they have no RAW predecessors. Then T2 is also marked as recov-
erable following its RAW predecessors (i.e., T1). The third phase
recovers T1, T2, and T3 in parallel and then recovers T4 after T3
is recovered.

Another interesting case to consider is that only T2 and T4 are
found in the log files. In this case, phase 1 only constructs the graph
with T2 and T4. During Phase 2, T2 will be discarded since its
RAW predecessor (i.e., T1) is not found in any log file. T4, however,
is recoverable since it has no RAW predecessor. Finally in the third
phase, T4 will be recovered. The fact that T3 is not found does not
affect its recovery.

4.4.2 Optimized Parallel Recovery
One downside of the basic recovery algorithm discussed in the

previous section is the size of the recovery dependency graph. The
graph contains all transactions in the log files since the last check-
point, and therefore can occupy significant DRAM capacity leading
to performance degradation. We observe, however, that it is not
necessary to construct the whole graph before recovering the trans-
actions. We can merge the three phases in the previous section
and process Phase 2 and 3 as the graph is constructed, and garbage
collect nodes from the graph as transactions get recovered. This
way, the graph can remain small which leads to better cache hit rate
and higher performance.

The optimized parallel recovery algorithm is shown in Algo-
rithm 3. Specifically, the logging threads read from the log files
and insert records to the recovery dependency graph (line 1-2). The
logging threads also handle garbage collection of recovered nodes
(line 3). All transactions that are ready for recovery are inserted into
the recover_queue. Transactions in the queue do not have WAW
conflicts with each other and thus can be recovered in any order.
The worker threads grab transactions from the queue and recovery
them (line 6-8). Finally, a recovered transaction notifies its WAW
dependents (line 9-15). If any WAW dependent has no pending
predecessors, it is inserted to the recovery_queue.

6



Algorithm 3 Recovery routine for transaction T .
# I/O Thread

1: while R← readNextLogRecord() do
2: recovery_dependency_graph.Insert(R)
3: GarbageCollect(R)
4: end while

# Worker Thread
5: while recoveryNotDone() do

# recover_queue keeps transactions ready for recovery
6: if R← recover_queue.pop() then
7: recover(R.redo_info)
8: R.state← Recovered
9: for all S in R.node.waw_successors do

10: S.waw_pred_size −−
11: if S.raw_pred_size = S.waw_pred_size = 0 then
12: N .state← ReadyForRecovery
13: recover_queue.push(S)
14: end if
15: end for
16: end if
17: end while

For the rest of this section, we discuss in details how each part of
Algorithm 3 is implemented in Taurus. Each transaction is in one of
four states during recovery. Unrecoverable means the transaction
has some unrecoverable RAW predecessors (e.g., not read from the
log files yet); newly inserted transactions are in this state. Recover-
able means all RAW predecessors of the transaction are recoverable,
but some WAW predecessors have not been recovered yet. These
transactions will be recovered eventually after its WAW predeces-
sors. ReadyForRecovery means the transaction is recoverable and
all WAW predecessors are also recovered; these transactions are
put into the recover_queue and can start recovery at any time. Fi-
nally, Recovered means the transaction has already been recovered
and therefore can be considered for garbage collection. These four
states correspond to where a transaction is in the three phases in
Section 4.4.1. In an actual implementation, the four states do not
need to be explicitly maintained. But we have them in the algorithms
to help understanding.

The I/O threads construct the recovery dependency graph by call-
ing the Insert() method shown in Algorithm 4. All the nodes in the
graph are stored in Nodes which is a lookup table. We implemented
it using a hash table but any data structure supporting lookup, insert
and delete should work. A node is created for the transaction if it
does not exist already (line 2-7). The redo_info is copied from the
log record to the node (line 8). The algorithm than goes through all
the predecessors of the transaction to handle RAW and WAW de-
pendency. If a predecessor has been garbage collected, it is ignored
(line 10). Otherwise, the node representing the predecessor is found
or inserted if it does not exist already (line 11-16). The current node
N is inserted to the predecessor’s successors list and the pred_size is
incremented accordingly. RAW and WAW dependencies are handle
separately (line 17-23). Finally, CheckRecoverability() is called on
the node to test whether it is recoverable and if so, whether it is
ready for recovery right now (line 26).

The implementation of CheckRecoverability() is shown in Algo-
rithm 5. Node N first checks whether all its RAW predecessors are
recoverable (line 2). If so, N is recoverable and all its RAW succes-
sors should be notified (line 3-7). A whole subgraph of transactions
may become recoverable as a consequence. The function also checks
whether N is ready for recovery by checking if its waw_pred_size
is 0. If so, the transaction is inserted to recover_queue and will be

Algorithm 4 Insert() method of the recovery dependency graph.

# Active transactions are stored in a set called Nodes.
1: function INSERT(R)
2: N ← Nodes.find(R)
3: if N = NULL then
4: N ← new Node(R)
5: N .state← Unrecoverable
6: Nodes.insert(N )
7: end if
8: N .redo_info = R.redo_info
9: for all P in T .predecessors do

# P can be ignored if it has been garbage collected
10: if P .id ≥ P .logger.min_gc_id then
11: NP ← Nodes.find(P )
12: if NP = NULL then
13: NP ← new Node(P )
14: NP .state← Unrecoverable
15: Nodes.insert(NP )
16: end if
17: if P in R.raw_predecessors then
18: N .raw_pred_size ++
19: NP .raw_successors.insert(N )
20: else if P in R.waw_predecessors then
21: N .waw_pred_size ++
22: NP .waw_successors.insert(N )
23: end if
24: end if
25: end for
26: CheckRecoverability(N )
27: end function

recovered by a worker thread (line 8-11).
The garbage collection process removes nodes from the graph

after they are recovered. However, removing a node immediately
after recovery leads to incorrect behavior. Consider T1 and T2 in
Figure 1 where T2 RAW depends on T1. During recovery, assume
T1 is recovered and garbage collected before T2 is read from the
log file. Now when T2 is inserted to the graph, the system does not
know whether T1 has been garbage collected or has not been read
from its log file yet. In the first case, we can ignore T1 while in the
second case we have to insert a node for T1. Failing to detect the
correct state of T1 causes incorrect recovery.

To resolve this uncertainty, we need an efficient way to tell
whether a transaction has been garbage collected or not. We achieve
this by garbage collecting transactions from the same log file in the
transaction ID order. Since the ID of a transaction is its position in
the log file, the transactions are garbage collected in the same order
as they are read from the log file. The system only remembers a
Algorithm 5 Checking recoverability and enforcing recovery order.

1: function CHECKRECOVERABILITY(N )
2: if N .raw_pred_size = 0 then
3: N .state← Recoverable
4: for all S in N .raw_successors do
5: S.raw_pred_size −−
6: CheckRecoverability(S)
7: end for
8: if N .waw_pred_size = 0 then
9: N .state← ReadyForRecovery

10: recover_queue.push(N.record)
11: end if
12: end if
13: end function
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Algorithm 6 Each logger garbage collects recovered nodes in the
recovery dependency graph.

1: function GARBAGECOLLECT(R)
2: gc_queue.enqueue(R)
3: while gc_queue.head.state = Recovered do
4: Nodes.delete(gc_queue.head)
5: min_gc_id = gc_queue.head.id
6: gc_queue.pop()
7: end while
8: end function

minimal garbage collect ID (min_gc_id) for each log file, all and
only transactions with smaller IDs have been garbage collected.
This way, if T2 does not find T1 during insertion, it compares T1’s
ID with min_gc_id (line 10 in Algorithm 4). If T1’s ID is smaller, it
can be ignored, otherwise a new node is inserted for T1.

The garbage collection algorithm is shown in Algorithm 6. Each
logger maintains a FIFO queue (gc_queue) of transactions that have
been read from its corresponding log file but have not been garbage
collected yet. Whenever the transaction at the head of the queue
becomes Recovered, the node is deleted from the recovery depen-
dency graph and the min_gc_id is updated (line 3-7). min_gc_id
only monotonically increase since the log records are inserted to the
gc_queue in order.

5. COMMAND LOGGING IN TAURUS
Command logging was proposed [18] to reduce the amount of

REDO data in log records. Instead of logging the data modification
made by a transaction, the database can log the command of the
transaction instead. The command include the store procedure name
of the transaction and the input parameters. Compared to data
logging, command logging can reduce the size of logs by an order
of magnitude, therefore significantly mitigate the I/O pressure.

Existing command logging algorithms, however, still use a single
LSN to order all the transactions. Therefore, they cannot leverage
multiple I/O drives unless the database is partitioned and a majority
of transactions access a single partition. Furthermore, during a crash
recovery, all the transactions from a log have to be sequentially
executed, making the recovery time long.

In this section, we discuss how the dependency tracking in Taurus
can increase parallelism in command logging and recovery. The
parallel logging algorithm for data and command logging are iden-
tical. The only difference is that the REDO information contains
commands instead of data. We will present the changes made to the
parallel recovery algorithm.

5.1 RAW and WAR Dependency
In Section 4.4, we have proposed an algorithm of parallel recovery

for data logging. However, the same algorithm does not work
with command logging. To recover a command log record, the
transaction needs to be re-executed. Therefore, it not only writes
to the database, but also needs to read tuples from the database.
Therefore, a transaction can start recovery only after all its WAW
and RAW predecessors have been recovered. In contrast, recovery
in data logging only requires WAW predecessors be recovered.

Furthermore, WAR dependencies also need special attention in
command logging, as a transaction should not write to a tuple if
some other transactions need to read the previous version of the
tuple. One possible implementation is to enforce the recovery or-
der for all the three types of dependencies (RAW, WAW, WAR).
For most workloads, this should still expose large amount of paral-
lelism during recovery. The downside, however, is that we need to
explicitly track WAR dependencies.

One way of tracking WAR is to write a transaction’s WAR pre-
decessors to its log record. For each tuple a transaction modifies,
it needs to find all the transactions reading the previous version of
the tuple. This cannot be done as efficiently as tracking RAW and
WAW, which only requires a single last_writer field. Alternative,
WAR can also be inferred using RAW and WAW dependencies. If
T2 RAW depends on T1 and T3 WAW depends on T1, then we may
have T3 WAR depends on T2. This solution is more efficient than
the first one, but still requires analysis over the whole graph. This
makes it challenging to exploit the garbage collection idea discussed
in Section 4.4.2.

5.2 Multi-version Parallel Recovery
In Taurus, we get around the tracking of WAR dependencies by

maintaining multiple versions of each tuples during the recovery
process. This way, transactions with WAR dependencies can be
recovered in parallel. Since no tuples are overwritten, the reading
transaction can always find the tuple it needs.

There are two ways to identify which version to read for a transac-
tion. One approach is to use a timestamp-based concurrency control
algorithm and include the commit timestamp in each transaction’s
log record. A transaction reads the tuple with the largest timestamp
which is smaller than its commit timestamp. For concurrency control
algorithm that do not have timestamps (e.g., Two-Phase Locking),
the transaction can read the latest version whose last writer is in its
RAW predecessor.

The recovery algorithm for command logging largely remains the
same as for data logging discussed in Section 4.4.2. However, the
recovery order has to following both RAW and WAW constraints.
So a transaction is ReadyForRecovery when all its RAW and WAW
predecessors are recovered.

We illustrate our algorithm, i.e. the multiversioning part, with
the example from Figure 1. We consider the case where all the four
transactions are found in log files.

The reconstructed graph will have look like Figure 1 without the
WAR edge between T1 and T3. Then T1 and T3 can be recovered in
parallel. T1 creates a new version of Y but T3 will read the previous
version. T2 and T4 will be recovered after T1 and T3 are done,
respectively.

5.3 Garbage Collection
The garbage collection in the recovery dependency graph is the

same for both command and data logging. For command logging,
however, we also need to garbage collect the stale versions of tuples
to keep the memory footprint small. Therefore, the system needs to
know when a version will never be accessed by a future transaction
which may still stay in a log file right now.

Our solution to this problem is very similar to the garbage collec-
tion in a normal multiversion concurrency control algorithms. Let’s
first consider a timestamp-based solution. During normal execution,
we may collect the minimal commit timestamp of active transactions
and flush this min commit timestamp to log files periodically as sync
timestamp. During recovery, if transactions from all log files have
been recovered up to a particular sync timestamp, all the records
with smaller timestamps (except the last version of each tuple) can
be garbage collected.

The garbage collection algorithm can also be implemented with-
out timestamps. In this case, threads should periodically synchronize
to write a sync record to each log file, and promise all transactions
after the synchronization should read the latest version of data before
the synchronization. Namely, the sync records create a consistent
cut of all the transactions in the system. After transactions from all
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Figure 5: YCSB Logging Performance – Throughtput, latency, and I/O traffic of different logging algorithms with different number of worker threads.
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Figure 6: TPC-C Logging Performance – Throughtput, latency, and I/O traffic of different logging algorithsm.

log files are recovered to a particular sync record, all versions except
the latest one can be garbage collected.

6. EXPERIMENTAL EVALUATION
We now provide an evaluation of Taurus. We implemented Taurus

on the DBx1000 open-source DBMS [2]. DBx1000 uses the scalable
timestamp ordering-based concurrency control algorithm [26].

We first present the experimental setup in Section 6.1 and work-
loads in Section 6.2. Then we compare the performance of Taurus
to baseline data and command logging algorithms. Logging perfor-
mance will be discussed in Section 6.3 and recovery performance
in Section 6.4. We sweep the number of loggers in Section 6.5 and
discuss the overhead of dependency tracking in Section 6.6.

6.1 Experimental Setup
All the experiments are executed on a server with four Intel

Xeon E7-4830 processors with 32 physical cores in total. With
hyperthreading turned on, the server supports 64 logical cores. The
server contains three Fusion IO ioDrive2 flash drives [1] and one
disk array with RAID-5. Together, they provide a combined I/O
write throughput of about 2 GB/s. Taurus will write to all the devices
through multiple loggers while a serial logging algorithm only writes
to a single Fusion IO device.

We use group commit for each logger which maintains a in-
memory buffer of size 16 MB. The buffer is flushed every 5 ms or if
the buffer is half full, whichever happens first. Worker threads can
write to the rest of the buffer when parts of it is being flushed. For
each experiment, we execute 400 K transactions per thread for data
logging and 1 M transactions per thread for command logging.

We compare the following logging schemes:

No Logging has no logging component. A transaction commits
immediately after it pre-commits. This is the performance upper
bound of any logging algorithm.

Serial Data is the ARIES [19] algorithm optimized for main
memory DBMS. Each transaction creates a data log record using
the after-images of tuples it modified. Transactions are logged to
a single IO device. During recovery, all transactions are recoverd
sequentially in the LSN order.

Serial Cmd is the algorithm proposed in [18]. Each transaction
logs the command of the transaction (store procesure name and input
parameters). During recovery, all the transactions are reexecuted
sequentially in the LSN order.

Taurus Data and Taurus Cmd are the two versions of Taurus
presented in Section 4 and Section 5. They both log to multiple log
files during normal execution.

6.2 Workloads
We evaluate logging performance using two workloads.

YCSB (Yahoo! Cloud Serving Benchmark) is representative of
large-scale on-line services [8]. Each data tuple in YCSB has 10
fields, each of which is 100 bytes in size. In our evaluation, each
transaction reads and writes to two random tuples and each query
touches a single field of that tuple. All tuples are accessed with
uniformly random distribution. This way we can eliminate the effect
of other contention (e.g., concurrency control) and focus on the
evaluation of the logging subsystem. Since the value written to a
tuple is an input parameter, both data and command logging have
the same log record size.

TPC-C is the industry standard for evaluating OLTP systems [22].
It consists of nine tables that simulate a warehouse-centric order pro-
cessing application. We only model two (Payment and NewOrder)
out of the five transactions in TPC-C since they make up the majority
(88%) of the default TPC-C mix. Each transaction type comprises
50% of the transactions. Different from YCSB, the command log
record of TPC-C is much smaller (10× on average) than the data
log record. For each experiment, we populate the database with 32
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Figure 7: Logging runtime breakdown at 64 threads.

warehouses with an initial size of 4 GB.

6.3 Logging Performance
Figure 5 shows the logging performance of YCSB in terms of

throughput, latency and I/O traffic. The number of worker threads
are swept on the x-axis. Ideally, a scalable algorithm sees an increase
in its throughput as the thread count increases. For No Logging,
this is achieved because there is no overhead involved in analyzing
and writing log files. The performance of Serial Data and Serial
Command, however, stops scaling after 2 million transactions per
second. As shown in Figure 5b, they saturate the I/O bandwidth of
a single Fusion IO card which is about 500 MB/s. Taurus Data and
Taurus Cmd, in contrast, scale much better than serial algorithms
by leveraging multiple I/O devices. Figure 5b shows that they
never saturate the I/O bandwidth of all storage devices. Therefore,
performance can further increase given more cores in the processor.
After 32 cores, however, performance increasing slows down due
to hyperthreading where two threads running on a single hardware
core contend for hardware resources.

Figure 5c shows the latency of all the logging algorithms. The
latency of No Logging stays less of 10 us and therefore is too small
to be seen in this graph. Taurus algorithms have reasonably low
latency which stays around 5 ms which is the group commit time
interval. Serial algorithms have higher latency compared to Taurus
due to I/O bandwidth saturation. When the thread count is large, the
logging buffer quickly fills up which makes the flushing time to be
more than 5 ms. This significantly increases the transaction latency.

Figure 6 shows the performance of TPC-C running on the same
set of logging algorithms. Compared to our YCSB configuration,
data logging in TPC-C has much larger log records and therefore
generates more I/O traffic. As a result, Serial Data quickly saturates
at 0.29 million transactions per second. Taurus Data can improve
this performance by almost a factor of four (saturating at 1.09 million
transactions per second). The performance difference can be better
understood by looking at Figure 6b, where both Serial Data and
Taurus Data saturate the bandwidth capacity of their I/O devices.
Taurus Data performs better since it leverages four I/O devices but
Serial Data only uses one I/O device.

Command logging on TPC-C has much better performance than
data logging due to the significant reduction in logging traffic. In-
deed, neither Serial Cmd nor Taurus Cmd saturate the I/O bandwidth.
The performance of Serial Cmd, however, still stops increasing after
2 million transactions per second. Our scrutiny shows that the bottle-
neck is not because of the I/O traffic, but comes from the contention
in the global LSN allocation and the shared in-memory buffer. The
performance does not change even if we do not write to log files.
Taurus Cmd removes this bottleneck by spreading it to four separate
loggers. As a result, the per-device I/O traffic is also much low

than the Serial Cmd. Note that at small thread counts where the
contention on the logging subsystem is low, the performance of
Taurus Cmd is slightly worse than Serial Cmd due to the cost of
dependency tracking (i.e., last writer and predecessor vector). But
the overhead is small in general.

Figure 6c shows the latency of all the logging configurations.
Again, No Logging has an average latency less than 25 us and thus
cannot be seen in the graph. At high thread count, both Serial Data
and Taurus Data have high latency since they both saturate the I/O
bandwidth. But name Data has lower latency at low thread count
when the I/Os are not saturated yet. Serial Cmd and Taurus Cmd
have much lower latency than the other two algorithms, and between
them, Taurus Cmd has slightly lower latency as it has lower pressure
on I/Os.

Figure 7 shows the logging time breakdown of different algo-
rithms at 64 threads for both YCSB and TPC-C. The execution time
is broken down to Logging, CC (Concurrency Control), Index and
Other (which is the actual transaction logic). Taurus significantly
reduces the logging time for both data and command logging as it
spread the I/O contention across more devices.

6.4 Recovery Performance
Figure 8 shows the recovery performance of different logging

algorithms for YCSB and TPC-C when changing the number of
worker threads. For Serial Data and Serial Cmd, a single I/O thread
reads log records from the log file, and another worker thread recov-
ers all the transactions in the LSN order. For these two algorithms,
having more than one worker thread does not affect performance
since the extra threads are not in use. The recovery throughput of
Serial Data is slightly higher than Serial Cmd. This is because data
recovery only requires copying the after images to the corresponding
tuples while command recovery has to re-execute the logic of the
transaction again, which is typically more expensive.

Both Taurus Data and Taurus Cmd have much higher throughput
than the serial algorithms. Taurus Data is slightly better due to
cheaper recovery cost. At high thread count, performance of both
algorithms saturate. The bottleneck here are the I/O threads which
need to read log records from the corresponding storage devices and
update the dependency graph.

Figure 8 shows the recovery performance on TPC-C workload.
The general trend is the same as with YCSB. However, Taurus Cmd
outperforms Taurus Data when thread count is large. We found that
Taurus Data almost saturates the I/O bandwidth with more than 32
threads. For Taurus Cmd, since the log records are much smaller,
the I/O bandwidth does not saturate and thus performance scales
better. At 64 threads, performance of both Taurus Data and Taurus
Cmd drop slightly due to resource contention from hyperthreading.

6.5 Scaling the number of loggers
Figure 9 shows the performance of Taurus as we increase the

number of loggers for both YCSB (Figure 9a) and TPC-C (Fig-
ure 9b). We also show the performance of serial logging algorithms
for reference. For both YCSB and TPC-C, when only a single logger
exists, the logging performance of Taurus is almost the same as that
of serial baselines. However, due to the overhead of dependency
tracking in Taurus (discussed in more details in Section 6.6), the per-
formance can be slightly worse. As the number of loggers increase,
the performance of Taurus keeps increasing while serial baselines
cannot leverage the extra I/O devices. We argue that serial logging
would be a good fit for machines with a single persistent storage
device but Taurus would perform better for machines with more
than one such devices. Taurus can also significantly speed up the
recovery process by leveraging parallelism.
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Figure 8: Recovery throughput using YCSB and TPC-C benchmarks.
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Figure 9: Logging performance with different number of loggers at 64
threads.

6.6 Dependency Tracking Overhead
In this section, we discuss the overheads of dependency tracking

in Taurus. We discuss this in terms of logging overhead and recovery
overhead.

During the logging process, the extra metadata requirement was
discussed in Section 4.1. Specifically, each tuple requires a last
writer field and we need a commit dependency table to track pre-
decessor vectors for uncommitted transactions. The required in-
memory space of these two structures are not significant. Some
extra computation is required to manage these structures but the
overhead is small in general as shown in Figure 5 and Figure 6.

One source of overhead in Taurus is the dependency information
(e.g., predecessor list) in each log record, which was not required
for serial logging algorithms. Table 1 shows the average log record
size breakdown of both Taurus Data and Taurus Cmd on YCSB
and TPC-C. For YCSB, the REDO information has almost the same
size for data and command logging. The dependency information of
command logging is higher since it includes the commit timestamp
of the transaction which is used for garbage collection (cf. Sec-
tion 5.3). Overall, the dependency information only adds about 10%
storage overhead.

For TPC-C, Taurus Data logs more REDO information than
YCSB and the dependency information only incurs a small overhead.
For Taurus Cmd, however, the REDO information is very small and
as a result the dependency information comprises a big portion of
log data. This does not kill Taurus’s performance since the log data
can distribute to multiple devices. For each device, the amount of
log data is still less than that of Serial Cmd.

Bytes/Record Taurus Data Taurus Cmd
REDO Dep. Info. REDO Dep. Info.

YCSB 252.0 20.5 244.0 30.6
TPC-C 1899.7 68.5 196.9 77.8

Table 1: Average log record size (in Bytes) for Taurus.

It is possible to compress the predecessor list of a transaction by
sacrificing the available parallelism during recovery. For example,
instead of precisely tracking each individual predecessor, we can
just track the predecessors with the maximal address in each log file.
So for predecessors in the same file, only one of them is tracked.
During recovery, however, we can no longer construct the complete
dependency graph. A transaction can start recovery not only after
its predecessors, but also after all transactions from the same log
file before its predecessors. For certain workloads, the recovery
process may still show abundant parallelism even after predecessor
compression. For these workloads, it is worthwhile to trade some
recovery parallelism for storage efficiency.

7. RELATED WORK
ARIES [19] has been the gold standard in database logging and

has been widely implemented. The scalability of logging in multi-
core processors has been studied recently by some related work [13,
23, 24, 27]. Aether [13] optimized the implementation of ARIES by
removing lock related bottlenecks, but still uses a singe logger. [27]
and [24] allow the logging algorithm to take advantage of multiple
persistent devices by logging transactions in batches. Each batch
can be flushed to multiple devices in parallel. They also removed
the global LSN allocation bottleneck. However, both algorithms
only work for data logging.

Pure logical logging and recovery were first proposed in [17]
which logs the table IDs and keys of modified tuples instead of page
IDs. The algorithm, however, still uses data logging. Command
logging was first proposed in [18] which pushes logical logging
to extremes. Command logging has been applied to systems like
Hyper [15], H-Store [14] and its commercial successor VoltDB [3].
Current command logging algorithms are implemented on parti-
tioned databases where different partitions can log and recover in
parallel. Taurus enables parallel command logging for unpartitioned
databases.

Adaptive logging [25] proposed parallel recovery for command
logging based on the dependency graph in a distributed partitioned
database. Different from Taurus, it does not directly maintain the
dependency information, but rather infers it from the transactions’
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read/write set. Adaptive logging also requires each transaction to
log their start and end time which requires clocks to be synchronized
across the system.

Fast crash recovery based on NVM (Non-Volatile Memory) has
been a active research area recently [4, 5, 11, 7, 16]. This line of
work leverages the high read/write throughput and byte-addressable
nature of NVM to accelerate the logging and recovery performance.
The dependency tracking technique in Taurus can be applied to
NVM based systems to leverage the large number of loggers for
parallel logging and recovery.

Early lock release (ELR) [9, 21] allows a transaction to release
locks before flushing to log files. [9] also uses dependency tracking
to paralell log flushing. But unlike Taurus, it does not log depen-
dency information to the log records. This leads to two shortcomings.
First, dependent transactions have to be flushed to persistent storage
in order. This is hard to achieve when the dependency graph is
complex [13]. Second, it is hard to recovery transactions in parallel.

8. CONCLUSION
This paper proposed a new logging algorithm Taurus that breaks

the sequential abstraction in traditional data and command logging
algorithms. By tracking and logging fine-grained dependency infor-
mation among transactions, Taurus allows log records to be written
to multiple persistent devices in arbitrary order. It also speeds up
the crash recovery by recovering independent transactions in par-
allel. Taurus shows the good potential of fine-grained dependency
tracking in building fault tolerant systems.
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