
Computer science problems.

About the problems. The theme of this year’s problems is public key
cryptography, i.e. a cryptographic approach based on a pair of matching keys,
public and private, that have the property that what is encrypted by one can
be decrypted only by the other one. Specifically, we will look at the RSA
implementation of public key cryptography.

What you need to do. For these problems we ask you to write a program
(or programs), as well as write some “paper-and-pencil” solutions (use any text
editor that you see fit, or scan an actual handwritten solution; convert the result
to pdf format if possible). You may use any programming language you want
for your programs, as long as its full implementation is available at no cost and
with an easy installation for both a Mac and Windows. It is best to implement
each problem as a separate function so that we can run them separately. We
will be looking for the following in your submissions:

• Correct code that we can run. You need to send us all your code files,
including the header files for languages like C++. If you are using standard
libraries, make sure to include all “import” statements, as required by the
language you are using. Make sure to send the files under the correct
names, including the file extension (.java, .c, etc). Make sure that the file
names do not contain any identifying information about you, such as your
first or last name.

• Test data for your code that you have used (you can write it in comment
or in a separate file). Make sure to test your code well – you don’t want
it to fail our tests!

• Code documentation and instructions. Important: do not include
your name in comments or in any file names. If you are submitting
your answers to non-code problems in a separate file, also make sure that it
does not have your name in the contents or in the file name. The only place
where you specify your name is the zip file with your solutions which must
be of the form yourlastname-CS-solution.zip (replace yourlastname

by your actual last name). Make sure that you use zip compression,
and not any other one, such as tar. In the beginning of each file
specify, in comments:

1. Problem number(s) in the file. If you have a file with “helper” func-
tions, mark it as such.

2. The programming language, including the version (Java 1.7 or 1.8, for
instance), the development framework (such as Visual Studio) that
you used, unless you were using just a plaintext editor (notepad,
emacs, etc), and the platform (such as Windows, Mac, Linux)

3. Instructions for running your program (how to call individual func-
tions, pass the input (if any), etc), either in comments in your pro-
gram file or as a separate file, clearly named. Your program may get

input from the user (i.e. it asks to enter some data and then reads it)
or you may store the data in specific variables within your program.
You need to clearly explain how to input or set the data.

4. Some of your code may be commented out if it is not used in the
final run of your program. Make sure it is clear what needs to be
uncommented to run code for each of the problems.

5. All of your test data.

6. If you were using sources other than the ones listed here (i.e. text-
books, online resources, etc) for ideas for your solutions, please clearly
credit these contributions. This is a courtesy to work of others and
a part of ethics code for scholars.

• Clear, understandable, and well-organized code. This includes:

1. Clear separation between problems; comments that help find individ-
ual problems and explain how to run the corresponding functions.

2. Breaking down code into functions that are clearly named and de-
scribed (in comments), using meaningful names for variables and
function parameters. Your code should be as self-explanatory as
possible. While using comments helps, naming a variable average

is better that naming it x and writing a comment “x represents the
average”.

3. Minimization of code repetition. Rather than using a copy-paste
approach, use functions for repeated code and reuse these functions.

4. Using well-chosen storage structures (use an array or a list instead of
ten variables, for instance) and well-chosen programming constructs
(use loops or recursion when you can, rather than repeated code).

5. While we are not asking for the fastest program (it’s better to make
it more readable), you should avoid unnecessary overhead.

Overview of public key cryptography and its RSA implementation.
The most obvious approach to secure communications over an insecure channel
is symmetric cryptography: the two communicating parties share a secret key.
It is contrasted with public key cryprography (also known as asymmetric cryp-
tography). In asymmetric cryptography every participant has a pair of a private
and public keys: two numbers connected by a specific mathematical property. A
participant’s public key is publicly known, and their private key isn’t known to
anyone other than the participant themselves. Anything that is encrypted with
their public key can be decrypted with the corresponding private key, and vice
versa. Public key cryptography algorithms are based on problems that are be-
lieved to have no computationally feasible solutions: the only known approaches
to these problems are by checking all possible cases out a very large set, and
that takes a very long time. Here we will be exploring a widely used public key
cryptography system known as RSA, by the names of its designers Ron Rivest,
Adi Shamir, and Leonard Adleman.

The RSA scheme is based on computational difficulty of finding factors of a
very large number: there is no known algorithm to do it other than by checking
all potential factors, which becomes prohibitively slow for very large numbers
(such as 50-100 decimal digits and even higher). See [?] or any other modern
cryptography book for more details. Your goal for this problem set is to write
your own implementation of RSA and its applications.

Note that you will be working with very large numbers, so you might want
to choose a programming language that allows you to work with integers that
are longer than 32 bits. Writing your own implementation is also fine.

Also, please review modular arithmetic add a reference
Problem 1, part 1. The need to transmit information between two parties

secretly is quite common, especially on the Internet. Usually we assume that two
parties that need to communicate secretly to each other via insecure medium
(such as Internet) share a secret key and use it to encrypt information before
sending it. Once the information is received by the other party, the same key is
used to decrypt it. In this scenario every pair of participants share a key that
is known just to the two of them.

Suppose that in an organization of 100 people every person may need to
secretly communicate with any other person, so every two people come up with
a secret key that only the two of them share. How many secret keys total would
that organization need? What about an organization of 1000 people? Come up
with the formula for an organization of N people and prove it.

Part 2. In addition to the need to communicate secretly between pairs of
employees, there may be a need for three or more participants to have a secret
conversation that others wouldn’t be able to eavesdrop on what’s being sent.
Assuming that we also need a separate secret key for any group of 3 ≤ k ≤ N
participants, how many keys total would we need? Notice that we do need a
key for all N employees since we also need to protect information from outside
observers.

Part 3. Go back to the beginning of the problem set an re-read the descrip-
tion of public key cryptography. Since in the case of public key cryptography
each participant only needs one key set (that includes their public and private
key), the total number of key sets for a group of N people is N . In addition
to reducing the total number of keys, public key cryptography provides another
very important benefit. What is it? Please be specific.

Problem 2. Write a function that determines if a given number is prime.
Note that your numbers can be quite large. Test it on the following numbers to
determine if they are prime:

1. 58148527

2. 665999921

3. 1558438050556301

Can your algorithm handle a larger prime than any of the prime numbers given
above? If yes, give an example. Note that your algorithm must always give the

correct answer (there is an area of CS known as probabilistic primality testing
which determines whether a large number is prime with very high probability,
but we are not considering it here).

Problem 3.

1. How long (approximately) does your algorithm run on these numbers?

2. If you consider numbers of a given length (say, 10 decimal digits), in what
cases does the algorithm run the longest?

3. Approximately how does the worst-case time increase with addition of
one decimal digit to the number length (for instance, going from 10 digit
numbers to 11 digits)?

Please explain your answers. We are not looking for specific formulas, just for
distinction between polynomial time increase and exponential increase.

Problem 4. Another common algorithm in RSA cryptography is Extended
Euclidean Algorithm that is used to find the gcd (the greatest common divisor)
of two integer numbers. Any cryptography book describes it, you can also look
it up on wikipedia. Your task it to write your own implementation for large
numbers. Test your implementation on the following pairs of numbers (output
their gcd):

1. 1530864174490193 and 1324693829967097

2. 3478169421466939 and 18237769603176901

Problem 5. Extended Euclidean Algorithm is often used to find a multi-
plicative inverse of a number a modulo some number m. A multiplicative inverse
of a modulo m is a number x such that ax = 1 mod m. Equivalently this means
that ax − qm = 1 for some q. The latter equation can be solved by Extended
Euclidean Algorithms.

A multiplicative inverse of a modulo m exists if and only if gcd(a,m) = 1. In
this case a and m are called coprime numbers (also known as relatively prime).

Implement multiplicative inverse algorithm (you should use your Extended
Euclidean Algorithm implementation as a function). If multiplicative inverse
of a given number modulo a given m doesn’t exists, print a message that says
that. You may exit the program or return a specific value (e.g. −1), in addition
to printing the message.

Test your algorithm on inputs of your choosing, and also show its results on
the following pairs:

1. a = 7,m = 12

2. a = 3,m = 9988426849099

3. a = 65537,m = 9988426849099

https://en.wikipedia.org/wiki/Extended_Euclidean_algorithm

Approximately, how does the running time of the algorithm scale with the num-
ber of digits of m?

Problem 6. In your program you will perform computations modulo a
large number in order to encrypt and decrypt a message. Without using any
libraries and functions of your language that provide modular arithmetics, please
implement addition, multiplication, and raising to a power modulo m. Try to
make your computations efficient in time and memory.

Please be aware that the modulus operation in several programming lan-
guages does not correspond to the mathematical definition of a remainder on
negative numbers. An example of this is % operator in C, C++, and Java. If
you are using such languages, you might need to implement your own modulus
function.

What are the results of the following operations?

1. 100000000000000000 + 2000000000000000 mod 9988426849099

2. 100000000000000000 × 2000000000000000 mod 9988426849099

3. 1000000000000000002000000000000000 mod 9988426849099

Again, estimate the rate at which the running time increases with each extra
decimal digit of m.

Problem 7. RSA encryption keys are formed as following:

• Two distinct large primes p and q are chosen at random and are kept
secret.

• Their product n = pq is computed.

• An integer e is chosen so that it is coprime with φ(n) = (p − 1)(q − 1).
φ is Euler’s totient function, the general definition of it is given here:
https://en.wikipedia.org/wiki/Euler%27s totient function. We refer to e
as the public key exponent.

• The multiplicative inverse of e modulo φ(n) is computed, it is referred to
as d, the private key exponent.

The public part of the key (known to everyone) is n and e. The private part of
the key (known only to the person receiving the messages) is p, q, and d. The
encryption and decryption process is described in problem 9.

Part 1. Please write a function that computes a pair of private/public RSA
keys given prime numbers p, q and e. Use it to generate a key pair for

1. p = 10040238757, q = 12604798513, e = 23,

2. p = 10040238757, q = 12604798513, e = 65537

Note that a small value of e is not a problem, as long as p and q are sufficiently
large and randomly chosen. In practice p and q must be much larger than in
this example.

https://en.wikipedia.org/wiki/Euler%27s_totient_function

Part 2. The public exponent e is chosen to be coprime with φ(n) = (p −
1)(q− 1). Please explain why choosing e to be prime may not be sufficient, give
an example when this choice wouldn’t work. You may use small numbers for
your example.

Problem 8.

1. What parts of the key generation are fast for long numbers? What parts
are slower?

2. In real life RSA key generation probabilistic primality testing is used to
check that p, q are indeed prime. Probabilistic primality testing is polyno-
mial in the length of the number being checked, and gives a correct answer
with a very large probability (although not equal to 1). Why is it being
used, instead of the method you used in Problem 2?

Problem 9. If Alice wants to send a secret message to Bob, she encrypts
it with his public key n, e. The message has to be a number m such that
1 ≤ m ≤ n and gcd(m,n) = 1. In order to encrypt the message, she computes
c = me mod n.

In order to decrypt the message, Bob uses his secret key to compute cd. The
fact that ed = 1 mod φ(n) implies that med = m mod n. For the proof see
[?] or any other modern cryptography book.

Your goal is to implement encryption and decryption functions for large
integers.

The encryption function takes the message m and the public key parameters
n, e and returns c (the encrypted text). If m does not satisfy the required
conditions, an error is signaled and the program stops.

The decryption function may just take c, d, and n and compute m. However,
it would be more efficient to compute m using p and q to speed up the compu-
tation. This approach uses the mathematical result known as the Chinese re-
mained theorem (see https://en.wikipedia.org/wiki/Chinese remainder theorem
or [?] or any other modern cryptography book).

You can implement a computation using just n for a partial credit, or use
Chinese remainder theorem for full credit.

Test your functions on encrypting a message and then decrypting it with the
corresponding key. As always, submit all your test cases.

After that test your functions on the following examples and submit the
results:

1. Encrypt a message m = 123456789 with n = 178076698764316482877 and
e = 65537 (this value of e is frequently used in RSA cryptography).

2. Decrypt a message c = 7533231374898382904174 with the private key
p = 694420975411, q = 12583867141, d = 7272195257079707781473. Also
compute e.

3. Decrypt a message c = 4792189117479614137708 with the private key
p = 694420975411, q = 12583867141, d = 1028058975739840826753. Also
compute e.

https://en.wikipedia.org/wiki/Chinese_remainder_theorem

Problem 10. Please explain why it is fast to encrypt a message m using n
and e (even when n is very large, such as 50-100 decimal digits) and it is fast
to compute m from its encryption c and the private key d, but an attempt to
compute m from c without knowing d would take a very long time (and would
not be feasible for very large values of n).

Problem 11. Suppose Alice is a bank client, and Bob represents the bank.
Since RSA scheme can only encode numbers (and they have to be less than n),
Alice decides to develop a system of codes in which numbers refer to specific
instructions. For instance, 2 means “transfer”, 55 means “deposit”, etc. Each
of the instructions is sent encrypted (with Bob’s public key), followed by an
encrypted account number and an encrypted amount. More specifically, assum-
ing that Bob’s public key is n, e, Alice sends to Bob the following sequence of
numbers:

• ie mod n,

• ae mod n,

• ke mod n,

where i is the code for one of the instructions, a is an account number, and k is
the amount.

Oscar, a malicious attacker, records all messages that Alice sends to Bob.
He knows that Alice has just bought a very expensive car and instructed Bob
to transfer the cost of the car to the car dealer. He also tricks Alice to buy a
coffee mug from his own company for $5 and got a transfer from Alice’s account
at Bob’s bank. Oscar can send messages to Bob pretending to be Alice, and
Bob wouldn’t know the difference.

Is there anything Oscar can do to have a large amount of money be deposited
into his account? If yes, please be very specific about what Oscar needs to do
and how he knows this information. If he can’t, please explain why.

Problem 12. Alice decides that perhaps she would be safer if she combines
all of the message into one number and encrypt that number. She appends the
instruction (such as 2 for “transfer”), the account (always a 10-digit number),
and the amount to form one large decimal number m = i ◦a ◦ k, where ◦ stands
for string concatenation (appending one string to another). The result is still
smaller than n because n is at least 50 decimal digits long. Alice sends me

mod n to Bob.
Is there anything Oscar can do now to have money transferred to his account?

Once again, Oscar has access to all encrypted messages that Alice sends to
Bob and he can get Alice to make a purchase from him and to transfer the
payment into his account via Bob’s bank, and he can also send messages to Bob
pretending to be Alice.

As before, if Oscar can do something problematic to Alice, please clearly
state what it is, and if this is impossible, please explain why.

If you think that Oscar still can obtain money from Alice without her autho-
rization, or can harm Alice’s business in some other way, please explain what
would you change in the use of RSA in order to prevent this from happening.

Problem 13. Public key encryption can also be used for digital signatures:
an equivalent of real-life signatures that prove the authorship of a message. This
is done by using the private key to encrypt the message. If Bob signs his message
with his private key, anyone can decrypt the message using his public key, so the
message is not secret. However, it is guaranteed that Bob is the author of the
message since he is the only one who knows the private key (assuming that no
one stole it from him, but this is always an assumption in public key encryption
scheme).

Write two functions: one to digitally sign a message m with the private key
p, q, d (assume that 1 ≤ m ≤ n, gcd(m,n) = 1), and the other one to verify that
the digital signature c is indeed that of a plain-text message m and was indeed
signed by the owner of the private key corresponding to n, e.

Please test your functions to check if the following examples have correct
digital signatures for the given messages:

1. The signature is 111889714168449968140, the message is ”12345”, n =
178076698764316482877 and e = 65537 .

2. The signature is 68295009307484396257, the message is ”54321”, n =
178076698764316482877 and e = 65537 .

Problem 14. Please explain what computations in the digital signature
scheme are fast, and why it is fast to sign a message knowing the private key
and to verify a signature on a message m knowing only the public key, but it is
prohibitively slow to forge a digital signature on a desired message m knowing
only the public key.

Also explain why it is fast to obtain a valid pair of a message m and its
digital signature c knowing only the signer’s public key if it doesn’t matter to
the forger what m is. Can this be used to obtain any unauthorized information
or forge a signature on any meaningful message? If yes, what can be gained? If
no, why not?

Problem 15. Sometimes it is useful to obtain a digital signature on a
specific message in a way that the signer doesn’t know what the message is.
This is known as a blind signature. Note that this situation is different from the
one discussed in the previous problem since the message is known to the person
obtaining the signature, just not to the person providing the signature. Let us
assume that Alice would like Bob to sign a message m in such a way that Bob
doesn’t know what it is. Alice would then do the following:

1. Choose a random number r (it is called the blinding factor).

2. Compute m′ = mre mod n, where n, e are the public key of the signer.

3. Bob signs m′ by computing s′ = (m′)d mod n, where d is the private
exponent.

4. In order to obtain the signature on just m, Alice then computes s′r−1

mod n, where r−1 is the multiplicative inverse of r modulo n. This works
because red = r mod n, and r and r−1 cancel out.

Write and test a function for computing a message m′ and another function for
removing the blinding factor from the signature s′.

Show step-by-step how Alice can obtain a blind signature from Bob on the
message 33333333333 using only Bob’s public key, where Bob signs the mes-
sage without knowing what it is. Bob’s private key is p = 694420975411, q =
12583867141, d = 7272195257079707781473, you can compute his public key
from his private key. After removing the blinding factor, verify Bob’s signature
on the message.

Problem 16. Blind signatures can be used for anonymous financial trans-
actions, often referred to as digital cash. Suppose customers want to be able to
pay vendors from their accounts at Bob’s bank, but they don’t want the bank
to know who paid whom. Each customer can then generate $100 “bills”, each
with a random number chosen from a very large space so that the probability
of two numbers being the same is insignificantly small. Then each customer
brings their “bills” to the bank to sign. The bank should not know the random
numbers, so it would sign the bills blindly. Note that we assume that all bills
have the same denominations.

The bank needs to verify that the bills are well-formed and the random
numbers are all distinct. This is impossible to do if the bank cannot see what
it is signing. Therefore when Alice wants to have the bank sign her bills, she
prepares twice as many as she would actually need. The bank would randomly
choose a half of them and open them by asking Alice to provide the blinding
factors. If they are all correctly formed, the bank would sign the rest blindly
since the probability of Alice cheating at that point is very small. If Alice is
caught cheating she pays a large fine and is banned from using Bob’s bank
digital cash services. As the bank signs the bills, it also reduces the amount
in Alice’s account by the corresponding amount and transfers the money into a
“digital cash” pool.

Now Alice can “unblind” the signed bills and use them to pay any vendors
she wants. The vendors can verify that the bills are indeed guaranteed by Bob’s
bank which they trust, so they accept them from Alice after verifying the bank’s
signature. They also verify that all the bills they get from Alice are distinct
since they all have different random numbers (thus Alice cannot use 5 copies of
the same $100 bill to pay $500 to a vendor). Then the vendor brings the bills
back to Bob’s bank, and the bank credits their accounts accordingly. The bank
records and check the random number on the bill to make sure the vendor is
depositing different bills, and not copies of the same one. It also verifies that
the bills haven’t been used prior. However, the bank cannot tell who paid the
vendor: Alice or some other customer. Thus the transaction is anonymous on
the part of the buyer.

Is the digital signature scheme described above completely safe from double-
spending, i.e. using the same bill twice? If yes, why? If not, how can it
be cheated, and by whom? Assume that the bank is always trustworthy and
follows all the rules. Other participants, however, can cheat. If you think that
there is a possibility of cheating, please explain it in detail. You don’t need to
suggest a fix.

Problem 17. It is recommended that one uses different public/private
key pairs for digitally signing messages and for encryption, especially when
providing blind signatures. Please explain how a blind signatures service can be
maliciously misused if this rule isn’t followed. Be specific (what the attacker’s
goal is, what do they send to the blind signature service, what do they obtain).

