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Abstract. The most important geometric invariant of a degree-n complex ra-

tional function f(X) is its monodromy group, which is a set of permutations of

n objects. This monodromy group determines several properties of f(X). A

fundamental problem is to classify all degree-n rational functions which have

special behavior, meaning that their monodromy group G is not one of the

two “typical” groups, namely An or Sn. Many mathematicians have studied

this problem, including Oscar Zariski, John Thompson, Robert Guralnick, and

Michael Aschbacher. In this paper we bring this problem near completion by

solving it when G is in any of the classes of groups which previously seemed

intractable. We introduce new techniques combining methods from algebraic

geometry, Galois theory, group theory, representation theory, and combina-

torics. The classification of rational functions with special behavior will have

many consequences, including far-reaching generalizations of Mazur’s theorem

on uniform boundedness of rational torsion on elliptic curves and Nevanlinna’s

theorem on uniqueness of meromorphic functions with prescribed preimages of

five points. This improved understanding of rational functions has potential

significance in various fields of science and engineering where rational functions

arise.



1. Introduction

In many areas of math, a fundamental role is played by rational functions, namely ratios

between two polynomials. In this paper we consider rational functions with complex coef-

ficients, such as (πX2 + i)/X. Our goal is to identify the rational functions which behave

differently from “random” rational functions in a certain specific sense.

Many questions about complex rational functions may be answered once one knows two

important invariants of the rational function, namely its monodromy group and ramification

type. Crucially, there are only finitely many possibilities for the monodromy group and

ramification type of a rational function of prescribed degree, even though there are infinitely

many possibilities for the rational function itself; thus, these two invariants only contain a

small amount of the information contained in the rational function, but in many regards

they contain the most important information. To define these invariants, write C[X] (resp.,

C(X)) for the sets of polynomials (resp., rational functions) with complex coefficients. Recall

that if p, q ∈ C[X] have no common roots then the degree of the rational function p(X)/q(X)

is defined to be the maximum of the degrees of p(X) and q(X). If f(X) ∈ C(X) has degree

n > 0 then the monodromy group of f(X) is a certain group of permutations of n objects,

which is defined as the image of the monodromy representation of the fundamental group of

S2 \B, where B is the set of critical values of f(X). The ramification multiset of f(X) over

a point P is the collection Ef (P ) of multiplicities under f of all the f -preimages of P ; the

ramification type of f(X) is the collection of all the Ef (P )’s as P varies over the points in

B. Thus, the ramification type consists of at most 2n− 2 batches of positive integers, where

the sum of the integers in each batch is n.

The use of monodromy groups and ramification types to answer questions about rational

functions dates back at least to the work of Ritt [22] and Schur [23] in the 1920’s. Some

examples of results proved by means of these tools are:

(1) If f, g ∈ C[X] each have degree at least 2, and there exist α, β ∈ C[X] for which

the orbits {α, f(α), f(f(α)), . . . } and {β, g(β), g(g(β)), . . . } have infinite intersection,

then f and g have a common iterate. [9, 10]

(2) The first general result on center conditions at infinity for Abel differential equations.

[5]

(3) Classification of f, g ∈ Z[X] for which the equation f(X) = g(Y ) has infinitely many

integer solutions. [4]

(4) Classification of f, g ∈ C[X] for which there exist infinite compact subsets A,B $ C
such that f−1(A) = g−1(B). [20]
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The reason these results address polynomials rather than rational functions is that rational

functions are not sufficiently well understood. The present paper comes close to remedying

this situation. We focus on indecomposable rational functions, namely rational functions of

degree at least 2 which cannot be written as g(h(X)) where g, h ∈ C(X) each have degree

at least 2. These indecomposable rational functions may be viewed as the building blocks of

all rational functions, since every rational function of degree at least 2 is the composition of

indecomposable rational functions. Moreover, once one understands indecomposable rational

functions, one may use an inductive procedure to prove results about arbitrary rational

functions. Our main result is as follows.

Theorem 1.1. If f(X) ∈ C(X) is indecomposable of degree n, and G is the monodromy

group of f(X), then one of the following holds:

(1) G ∈ {An, Sn}
(2) n is either a prime, a square, or a triangular number d(d− 1)/2 with d an integer

(3) n ≤ 455

(4) L ≤ G ≤ Aut(L) for some nonabelian non-alternating simple group L of bounded

size.

Moreover, we know all possibilities for both the monodromy group and ramification type of

f(X) in case neither (1) nor (4) holds.

A team of group theorists led by Guralnick is currently addressing case (4), and they

expect to resolve that case within a year (in the sense of determining the possibilities for the

monodromy group and ramification type). Once that is done, we will have a complete list

of the possibilities for the monodromy group and ramification type of any indecomposable

degree-n rational function whose monodromy group is not An or Sn; this will be a powerful

tool which should make it possible to prove many results about rational functions. We note

that degree-n rational functions with monodromy group An or Sn behave like random degree-

n rational functions in many regards, so the above result may be interpreted as saying that

the non-random rational functions are those which are decomposable or satisfy one of (2)–(4)

(but do not satisfy (1)). In addition to rational function analogues of the above-mentioned

polynomial results, two other expected consequences of this classification of non-random

rational functions are:

(1) For any rational map f : C → D between curves over Q, the induced map on rational

points C(Q)→ D(Q) is (≤ 32)-to-1 over all but finitely many points.

(2) A classification of solutions to f ◦ p = f ◦ q with f ∈ C(X) and p, q meromorphic on

C.
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The significance of (1) can be seen from the fact that the case of genus-1 curves is equivalent

to Mazur’s theorem on uniform boundedness of rational torsion on elliptic curves [17]. The

significance of (2) comes from the recent result that, for nonconstant meromorphic p, q on C,

there exists f as in (2) if and only if there exist five disjoint nonempty finite sets T1, . . . , T5 ⊂
C such that, for each i, the collection of p-preimages of Ti (counting multiplicities) equals

the collection of q-preimages of Ti (counting multiplicities); when such Ti’s exist, f may be

chosen to have degree bounded by a function of the sizes of the Ti’s. In case each Ti has size

1, this result implies that p = q, which is a celebrated result of Nevanlinna’s [19]. Thus, these

two consequences represent vast generalizations of major results by Mazur and Nevanlinna.

Theorem 1.1 builds on the work of several previous authors. The first progress in this

direction was made in the first decades of the 20th century by Chisini [7], Ritt [21], and

Zariski [29], who addressed the problem whenG is a solvable group; intuitively, the solvability

condition means that the group is especially convenient to work with. The bulk of the

examples they found had prime degree, and up to changing variables were Xn, Chebyshev

polynomials Tn(X), and maps on x-coordinates induced by elliptic curve isogenies. Around

1990, Guralnick and Thompson [13] realized that the improved understanding of finite groups

achieved during the 20th century could be applied to this topic. They first noted that, by a

theorem of Aschbacher and Scott [3], the monodromy group of an indecomposable rational

function must come from one of five classes of groups. Four of these classes were handled

almost immediately by Guralnick–Thompson, Aschbacher, and Shih [2, 13, 24], yielding

only a few low-degree examples besides the solvable examples known to Zariski. However,

as Guralnick and Thompson wrote, “the analysis of case C3 promises to be tough”. This

case C3 is the fifth Aschbacher–Scott class of groups, and is the focus of the present paper.

It consists of those groups G for which there is a nonabelian simple group L contained in S`

such that Lt ≤ G ≤ N oSt := N toSt, where N is the normalizer of L in S`, the action of St

on N t is by permuting coordinates, and G is identified with a subgroup of S`t by permuting

t-tuples of elements of {1, 2, . . . , `}. We divide case C3 into three subcases:

(C3.1) t = 1 and L is non-alternating

(C3.2) t = 1 and L is alternating

(C3.3) t ≥ 2.

A long series of papers by many authors, culminating in the major papers [8, 15], concluded

that an indecomposable rational function of sufficiently large degree cannot have monodromy

group as in (C3.1). These papers did not produce a bound on this degree, which is why there

is no explicit bound in item (4) of Theorem 1.1. The recent paper [18] resolved cases (C3.2)

and (C3.3) in degree at least 103000; this yielded examples in every such degree which is either
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square or triangular, and proved three conjectures of Guralnick and Shareshian [12]. Our

work resolves (C3.2) and (C3.3) completely, and hence proves Theorem 1.1 by combining

some ideas and tools from these previous papers with several new ingredients.

In case (C3.2) the monodromy group must be Ad or Sd when d > 6, since Aut(Ad) = Sd.

We show:

Theorem 1.2. If f(X) ∈ C(X) is indecomposable of degree n, and the monodromy group G

of f(X) is Ad or Sd for some d 6= n, then either n = d(d− 1)/2 or d ≤ 15, where in either

case we know all possibilities for the permutation action of G and the ramification type of

f(X).

In particular, there are cases where d = 15, described in Section 7. In Case (C3.3) we

show the following result.

Theorem 1.3. If an indecomposable degree-n rational function f(X) has monodromy group

satisfying (C3.3), then either n = 125 or t = 2, and in either case we know all possibilities

for both the monodromy group and ramification type of f(X).

The remainder of the paper is organized as follows. Section 2 presents notation. Section 3

shows that Theorem 1.2 follows from three auxiliary results. Section 4 proves the hardest of

these auxiliary results, contingent on results from Section 5; the proofs of the other auxiliary

results are similar but easier. Section 5 presents our methods for determining whether

potential ramification types correspond to rational functions. Section 6 outlines the proof

of Theorem 1.3. Section 7 gives special examples found in case (C3.2). Section 8 gives our

future work and conclusions. Finally, Section 9 is the acknowledgements.

2. Notation and Definitions

We identify the extended complex plane C∗ := C ∪ {∞} as a sphere by “pulling in the

sides”. Let f(X) ∈ C(X) have degree n > 1. For any r ∈ C, the numerator of f(X) − r
is a nonzero polynomial which we may factor as c(X − r1)e1(X − r2)e2 . . . (X − ru)eu , where

the ri’s are distinct complex numbers, the ei’s are positive integers, and c ∈ C is nonzero.

If this numerator has degree n then we define the ramification multiset Ef (r) of f(X) over

r to be the collection of integers [e1, e2, . . . , eu]. If the numerator does not have degree n

then we define Ef (r) to be [e1, e2, . . . , eu, n− e1− e2− · · ·− eu]. We also define Ef (∞) to be

E1/f (0). In each case, Ef (r) is the collection of local multiplicities of the map f : C∗ → C∗

at all preimages of r. In particular, Ef (r) is a collection of positive integers whose sum is

n. Here Ef (r) is a multiset, or a set-with-multiplicities, which means that the ordering of

the elements of Ef (r) is irrelevant but Ef (r) may contain multiple copies of a single integer.
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We use exponents to indicate this number of copies; for example, the multiset [1, 1, 1, 2] is

denoted [13, 2]. The critical values of f(X) are the points r ∈ C∗ with Ef (r) 6= [1n]. Finally,

the ramification type of f(X) is the collection of all multisets Ef (r) with r a critical value.

All but at most two critical values of f(X) have the form f(s) where f ′(s) = 0, so there

are finitely many critical values. Let p be any point in C∗ which is not a critical value of

f . Then p has exactly n distinct f -preimages in C∗, say f−1(p) = {z1, z2, . . . , zn}. Let τ

be a loop in C∗ which starts and ends at p, and does not go through any critical values of

f(X). For each zi, there is a unique path σi starting at zi which maps to τ under f . Since

τ starts and ends at p, the ending point of σi is some zj = zπ(i), where π is a permutation

of [n] := {1, 2, . . . , n}. The set of π’s produced from all such loops τ forms a group G of

permutations of [n], called the monodromy group of f(X).

The monodromy group G of f(X) is determined by the behavior of f near its critical

values, in the following sense. Let xi be the permutation of [n] induced by a loop based at

p which goes around the i-th critical value exactly once in a counterclockwise direction but

does not go around any other critical values (that is, xi is a “local monodromy element”).

From basic algebraic topology we know that

• G is generated by x1, x2, . . . , xs.

• The product x1x2 . . . xs = 1.

• G is a transitive subgroup of Sn, in the sense that for each i, j ∈ [n] there is at least

one element of G which maps i 7→ j.

We will frequently use the Riemann–Hurwitz Formula, which is defined as follows. Let

S and S ′ be compact Riemann surfaces, and let f : S ′ → S be a degree-n holomorphic

map. If g(S) is the genus of S, then 2g(S ′) − 2 = n(2g(S) − 2) +
∑

P∈S(n − #f−1(P )).

The Riemann–Hurwitz formula for a function field extension E/F is obtained from this by

letting S and S ′ be the Riemann surfaces defined by F and E, respectively.

3. Proof of Theorem 1.2

In this section we deduce Theorem 1.2 from three auxiliary results that are later proven.

A major difficulty in proving Theorem 1.2 is that we must consider every (faithful) primitive

permutation representation of Ad and Sd. In this section we reduce Theorem 1.2 to an

analysis of three special representations, which correspond to the three auxiliary results

mentioned above.

3.1. Galois Theory. Let f be a degree-n indecomposable rational function with mon-

odromy group Ad or Sd and d 6= n. Let x be a root of f(X) − t, where t is transcendental

over C. Then let N = C(x). Let Ω be the Galois closure of (N/C(t)), or the minimal field
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such that (Ω/C(t)) is a Galois extension. If G = Gal (Ω/C(t)), or the Galois group of the

extension Ω/C(t), then G is the monodromy group of f . We first relate G to deg f via a

natural field extension.

Lemma 3.1. If H = Gal (Ω/N), then deg f = [G : H].

3.2. Riemann–Hurwitz Calculations. Let Gk be a k-set stabilizer of G; that is, all per-

mutations in G for which the subset {1, 2, . . . , k} of [d] is mapped to the subset {1, 2, . . . , k}
of [d]. Let the local monodromy elements of f be x1, x2, . . . , xs. Now, consider the groups

Gk, which are k-set stabilizers of G. By applying the Riemann–Hurwitz formula to the field

extensions ΩGk/ΩG, we obtain (where gk is the genus of the field ΩGk for k ≥ 1)

(3.2) 2gk − 2 = −2

(
d

k

)
+

s∑
i=1

((
d

k

)
− ok(xi)

)
,

where ok(xi) is the number of orbits of the group 〈xi〉 on the left cosets of G/Gk (which

can be represented by the size k sets of elements from [d], [d]k). It can be shown that

ok(x) is invariant under conjugation by elements in G; to this end, let P1, P2, . . . , Ps be the

cycle structures of xi on G/G1 = [d], and define ok(Pi) to be ok(xi) if xi is chosen to be a

permutation acting on [d] with cycle structure Pi. Let ok be the number of orbits of H on

[d]k.

From results of [12] proven with representation theory, we may conclude that:

Corollary 3.3. Each k with d/2 ≥ k ≥ 2 satisfies either gk = gk−1 or ok = ok−1.

In addition, we have proven two theorems and one lemma which limit the ramification

types.

Theorem 3.4. If g2 − g1 ≤ 0, then either d ≤ 28 or the ramification type belongs to F ,

which will be discussed in Remark 3.5.

Remark 3.5. For brevity we will not list F , but we will select representative examples. In

this discussion, let 1 ≤ a < d be an integer such that gcd (a, d) = 1. hk means k instances

of the value h. Moreover, for each ramification type in F , g2 = g1 = 0.

• {[1d−2, 2], [a, d− a], [d]}
• {[1d−2, 2], [13, 2(d−3)/2], [1, 2(d−1)/2], [d]}
• {[1d−2, 2], [12, 2(d−2)/2], [2d/2], [a, d− a]}
• {1d−2, 2], [13, 2(d−3)/2], [1, 2(d−1)/2], [1, 2(d−1)/2], [1, 2(d−1)/2]}
• {[12, 2(d−2)/2], [1, 3, 4(d−4)/4], [4d/4]}
• {[1, 2(d−1)/2], [1, 3(d−1)/3], [3, 4, 6(d−7)/6]}

Theorem 3.6. If d ≥ 28 then g3 − g2 ≥ 1.
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Lemma 3.7. Every ramification type in F has g4 − g3 ≥ 1.

3.3. Proof of Theorem 1.2. Consider H = Gal (Ω/N). The indecomposability of f implies

that N/C(t) is a minimal extension, meaning that there are no intermediate fields, so H is

a maximal subgroup of G = Ad or G = Sd. We claim that if d > 28, then H is either a

2-set stabilizer or a 1-set stabilizer. By Lemma 3.1, this will imply our result since deg f =

[G : H] = d(d − 1)/2 or d. The cases where d ≤ 28 are easy to treat, and examples are

mentioned in Section 5. We use casework, first on whether H acts transitively on [d], and

second on whether H acts primitively on [d]. A group acts primitively if it preserves no

nontrivial partition of [d]. First, since g3 − g2 ≥ 1, Corollary 3.6 implies that o3 = o2.

3.3.1. Case 1: The group H acts intransitively. In this case, the group H must preserve a

set of size k. Therefore, it must also preserve the remaining set of d− k elements. Since H

is a maximal subgroup of G, it must arbitrarily permute both the set of size k and the set

of size d − k, so H = (Sk × Sd−k) ∩ G. One can see that if k ≥ 3, then o2 = 3 and o3 = 4,

which is contradiction.

3.3.2. Case 2: The group H acts transitively.

Case 2a: The group H acts imprimitively. If H is transitive but imprimitive, it must pre-

serve a partition, of which one block has size k. Due to transitivity, all blocks have size k.

By maximality, the permutation action on these blocks is symmetric, so H = (Sk oSn/k)∩G.

Here, we can see that o2 = 2 and that o3 = 3 unless k = 2 or k = d
2
, when o3 = 2. Therefore,

unless k = 2 or k = d
2
, there is a contradiction. Due to the transitivity of H, 2 = o2 6= o1 = 1.

Therefore, g2 = g1 by Corollary 3.3. By Lemma 3.4, the ramification type is in F and by

Lemma 3.7 g4 − g3 ≥ 1. Thus, by Corollary 3.3 o4 = o3, which can be easily disproven; in

particular, if k = 2 or k = n
2
, o4 = 3.

Case 2b: The group H acts primitively. It was proven in [6] that for a primitive group ac-

tion, o3 = o2 implies that o3 = 1, that is, the group H is 3-homogeneous and a maximal

subgroup of Sd or Ad. The following folk result severely limits possibilities for H.

Lemma 3.8. Let H be a 3-homogenous nonalternating maximal subgroup of G = Sd or Ad.

Then, one of the following is true:

(1) PSL2(q) ≤ H ≤ PΓL2(q) and d = q + 1.

(2) H ≤ AGLk(2) and d = 2k.

(3) H is a Mathieu group Md; d = 22, 23, 24 in these cases.

(4) H = M11 acting on cosets of PSL2(11) and d = 12.

(5) H ≤ AGL1(q) with q = d ∈ {8, 32}.
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Remark 3.9. Here, PSL2(q), PΓL2(q), and AGLk(2) are the usual groups of linear, semi-

linear, and affine transformations. More information about these groups is in [16, Section

VI.1].

Of these, cases 3, 4, 5 are easy to treat, since there are only finitely many possibilities.

Let E = {x1, x2, . . . , xr} be the multiset of local monodromy elements for the rational

function f(X). For x in G, let ClG(x) be the conjugacy class of x in G, let o(x) be the

number of orbits of x on G/H, and let Fix(x) be the number of fixed points of x on G/H.

Then, Riemann–Hurwitz on ΩH/ΩG gives

(3.10) − 2 = −2[G : H] +
∑
x∈E

([G : H]− o(x)).

If Ord(x) = k is the smallest positive integer that xk = 1, Burnside’s Lemma gives

o(x) =
1

Ord(x)

Ord(x)∑
j=1

Fix(xj).

The following lemma allows us to bound the number of fixed points of x.

Lemma 3.11. For x ∈ G and all i ∈ N,

Fix(x) <
|G|

|ClG(xi)|
Proof. Observe that

Fix(x) =
|{g ∈ G, xgH = gH}|

|H|
=
|{g ∈ G, g−1xg ∈ H}|

|H|

=
|ClG(x) ∩H| · |CG(x)|

|H|
< |CG(x)| ≤ |CG(xi)| = |G|

|ClG(xi)|
,

where CG(x) is the centralizer of x with respect to G. �

The following results ensure that ClG(xi) is relatively large. The first exploits the linear

structure of the group H, whereas the second uses results on sizes of conjugacy classes of Sd.

Lemma 3.12. [12, Lemma 8.0.61] If H satisfies cases 1 or 2 of Lemma 3.8, every non-

identity element x ∈ H fixes at most half the elements in the usual action of G.

Lemma 3.13. [12, Corollary 8.0.59] If d > 5 and x ∈ Sd has prime order and has at most
d
2

fixed points in the usual degree-d action, then

|ClSd
(x)| ≥ e

2

(2d

e

)d/4
.

We now bound Fix(xj). If xj is not conjugate to an element of H, then Fix(xj) = 0, since

xj(gH) = gH implies g−1xjg ∈ H. Otherwise, let xi be a power of xj which has prime order.

Since xi is conjugate to an element of H, it has at most d/2 fixed points by Lemma 3.12.

As 2 · |ClG(xi)| ≥ |ClSd
(xi)|,

|ClG(xi)| ≥ e

4

(2d

e

)d/4
.
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Thus, we bound (using Lemma 3.11 and Lemma 3.13)

Fix(xj) <
|G|

|ClG(xi)|
<

|G|
e/4(2d/e)d/4

= [G : H]
|H|

e/4(2d/e)d/4

We compute that

o(x) =
1

Ord(x)

Ord(x)∑
j=1

Fix(xj) <
[G : H]

Ord(x)

(
1 +

(Ord(x)− 1)|H|
e/4(2d/e)d/4

)
.

Combining this with (3.10), we get

−2 = −2[G : H] +
∑
x∈E

([G : H]− o(x))

> [G : H]

(
−2 +

∑
x∈E

(
1− 1

Ord(x)
− Ord(x)− 1

Ord(x)

|H|
e/4(2d/e)d/4

))

= [G : H]

(
−2 +

∑
x∈E

(
1− 1

Ord(x)

)
·
(

1− |H|
e/4(2d/e)d/4

))
We provide the following bound on

∑
x∈E

(
1− 1

Ord(x)

)
:

Lemma 3.14. If d > 5, ∑
x∈E

(
1− 1

Ord(x)

)
≥ 85

42
.

Proof. Let g be the genus of Ω. Then by applying Riemann–Hurwitz to Ω/ΩG, we have

(2g− 2) = −2|G|+
∑
x∈E

(|G| − ǒ(x)),

where ǒ(x) is the number of orbits of x on G. Since |G|
Ord(x)

= ǒ(x), this equation becomes

2 +
2g− 2

|G|
=
∑
x∈E

(
1− 1

Ord(x)

)
,

after division by |G|. If g > 1 our result follows easily by casework. If g ≤ 1, it is known

that the group G is solvable or A5, neither of which are Ad or Sd with d > 5. �

It suffices to show

(
1− |H|

(e/4)(2d/e)d/4

)
≥ 84

85
, or |H| ≤ (1/85)(e/4)(2d/e)d/4. We prove

this for all d ≥ 23 and treat the remaining cases manually. In case 1 of Lemma 3.8,

|H| ≤ |PΓL2(d− 1)| = (d− 2)(d− 1)(d) logp(d− 1) ≤ d3 log2(d)

where p is a prime dividing d− 1. This is smaller than (1/85)e/4(2d/e)d/4 whenever d > 23.

In case 2 of Lemma 3.8,

|H| ≤ |AGLk(2)| = 2k
k−1∏
i=0

(2k − 2i) < 2(k(k+1)) = d1+log2(d).

This is smaller than (1/85)e/4(2d/e)d/4 for all powers of two higher than 16.

Theorem 3.4 is proven in Section 4, Theorem 3.6 is proven with similar methods to The-

orem 3.4, Lemma 3.7 is a direct computation, and we may conclude.
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4. Proof of Theorem 3.4

Instead of determining only valid ramification types, we instead determine all collections

of multisets P1, P2, . . . , Ps such that g2 − g1 ≤ 0, and g2 ≥ 0, g1 ≥ 0. We then synthesize

which of these collections are ramification types in Section 5. By (3.2) for k = 1 and k = 2,

2g1 − 2 = −2d+
∑
k

(d− o1(Pk)) = −2d+
∑
k

(d− |Pk|)

and

(4.1) 2g2 − 2 = −2

(
d

2

)
+
∑
k

((
d

2

)
− o2(Pk)

)
Define the non-negative function Qk for a multiset as follows:

Qk =

∑
i∈Pk
i even

(i− 2) +
∑
i∈Pk
i odd

(i− 1) +
∑
i,j∈Pk

(i− (i, j))

 .

We prove a computational result about this Qk.

Lemma 4.2.

4(g2 − g1) = (2d− 8)g1 − (4d− 8) +
∑
k

Qk.

Proof. We first express o2(Pk) in terms of Pk. Also, take cycle indices modulo the size of

the cycle, and let xk be a permutation with cycle structure Pk. First, consider sets in [d]2

in which both elements lie in the same cycle of xk on [d]. Write this cycle as (y1, y2, . . . , yi).

The orbit under xk of the set {ya, yb} with a 6= b consists of all the sets {ya+r, yb+r}. If i

is odd then there are i−1
2

orbits, and if i is even then there are i
2

orbits. Summing over all

cycles of xk on {1, 2, . . . , d}, the number of orbits of xk on sets in [d]2 which consist of two

elements lying in the same orbit of xk on [d] is∑
i∈Pk
i odd

i− 1

2
+
∑
i∈Pk
i even

i

2
=
d

2
− Ok

2

where Ok denotes the number of odd elements in Pk. Next, consider sets in [d]2 consisting of

elements from two different cycles of xk on [d]. Letting Y = (y1, . . . , yi) and Z = (z1, . . . , zj)

be distinct cycles of xk on [d], then for any ya and zb the xk orbit of {ya, zb} has size lcm (i, j),

so the number of orbits on the collection of sets in [d]2 having one element in Y and Z is

ij/ lcm (i, j) = gcd (i, j). Thus, the contribution from different cycles of xk on [d] is
1

2

∑
i,j∈Pk

gcd (i, j)− 1

2

∑
i∈Pk

gcd (i, i) =
1

2

∑
i,j∈Pk

gcd (i, j)− d

2
.

Adding this to the previous count yields the formula

o2(xk) =
1

2

∑
i,j∈Pk

gcd (i, j)− Ok

2
.
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Hence, by (4.1),

4g2 − 4 = −2d(d− 1) +
∑
k

(d(d− 1) +Ok −
∑
i,j∈Pk

gcd (i, j)).

Next we compute

4(g2 − 1)− (2d− 4)(g1 − 1) = (d− 2)(2d−
∑
k

(d− |Pk|))− 2d(d− 1)

+
∑
k

(
d(d− 1) +Ok −

∑
i,j∈Pk

gcd (i, j)

)

= −2d+
∑
k

∑
i∈Pk
i even

(i− 2) +
∑
i∈Pk
i odd

(i− 1) +
∑
i,j∈Pk

(i− (i, j))

 ,

so that

4(g2 − g1) = (2d− 8)g1 − (4d− 8) +
∑
k

Qk. �

Clearly, we may restrict our attention to cases in which g1 ≤ 2, or else clearly g2− g1 > 0.

Although the statement and proof of Lemma 4.2 are elementary, this identity (and the

definition of Qk) is a key innovation enabling us to prove Theorem 3.4. Lemma 4.2 is powerful

because Qk is always nonnegative and thus whenever Qk > 4d− 8 for a multiset Pk we can

rule it out from being present in a collection of multisets in which g2− g1 ≤ 0. For example,

we can show none of Pk can be [15, d− 5], or else Qk ≥ 6d− 37.

This intuition is captured in the following lemma.

Lemma 4.3. Assume that the multiset P has ` elements less than or equal to k, and the

sum of these elements is R. Then,∑
i≤k,j>k
i,j∈P

(j − (i, j)) ≥ `(d−R)/2.

Proof. For j > k but i ≤ k, then j − (i, j) is at least j
2

since (i, j) cannot exceed j − (i, j).

Thus, ∑
i≤k,j>k
i,j∈P

(j − (i, j)) ≥
∑

i≤k,j>k
i,j∈P

(j/2) = `(d−R)/2. �

We developed a computer program which first found all multisets Pk that satisfy Qk ≤
4d − 4 with a depth-first search, an algorithm which has the advantages of highly efficient

memory management and recursive implementation. For each i, it kept track of the number

of appearances of 1, 2, . . . , i, represented by f1, f2, . . . , fi. Then, Lemma 4.3 often allowed it

to eliminate these as possibilities. Finally, the program put these together to form collections
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of multisets satisfying our conditions [27]. We found several infinite families (including F)

in addition to sporadic cases. We then used various techniques, described in Section 5, to

determine which of these collections corresponded to indecomposable rational functions with

monodromy group Ad or Sd.

5. Existence of Rational Functions with Specified Ramification Type

5.1. Conditions for Existence. The proof of Theorem 1.2 in Section 3 concludes with

several batches of multisets, but does not show which of these are actually the ramification

type of a rational function. In [18], the elements of the family F and some other families

are treated; however, we need additional methods to handle some of the other batches of

multisets arising in our work.

First, we state a consequence of Riemann’s Existence Theorem and basic algebraic topol-

ogy, which provides necessary and sufficient conditions for the existence of an indecomposable

rational function with specified local monodromy elements.

Theorem 5.1. [1, Theorem 15.9.4] For any subgroup G of Sn and any x1, x2, . . . , xs ∈ Sn,

there exists a degree-n indecomposable rational function f(X) with local monodromy elements

x1, x2, . . . , xs and monodromy group G if and only if all of the following hold:

(1) x1, x2, . . . , xs generate G;

(2) x1x2 . . . xs = 1;

(3) 2n− 2 =
∑s

i=1(n− o(xs));

(4) G is a primitive subgroup of Sn.

Since the ramification type gives us the cycle structures of each local monodromy el-

ement, we will often have to answer the following question. Given the cycle structures

of x1, x2, . . . , xs on [d], does there exist x1, x2, . . . , xs ∈ Sd such that x1x2 . . . xs = 1 and

x1, x2, . . . , xs generate Ad or Sd?

After we have found these x1, x2, . . . , xs, we will then “lift them” by viewing them as

permuting the left cosets G/H, where H is the previously described maximal subgroup of

G. This creates a new set of permutations x′1, x
′
2, . . . , x

′
s in S[G:H]. If we verify the numerical

condition (condition (3) in Theorem 5.1) for both x1, x2, . . . , xs and x′1, x
′
2, . . . , x

′
s, then we

have a degree-[G : H] rational function with monodromy group G = Sd or Ad, since changing

the representation of the elements x1, x2, . . . , xs does not change the group they generate or

their product, verifying conditions (1) and (2). Since H is maximal, the action of G on the

cosets G/H is primitive, verifying condition (4).

We present two methods for eliminating collections which do not correspond to rational

functions, one based on complex analysis and one based on representation theory.

Wang, Franklyn, STS
12



5.2. Proving Nonexistence.

5.2.1. Using Complex Analysis. Assume that a ramification type candidate contains multi-

sets P1 and P2 of size at least 2, and that there exists an integer g which divides all elements

in each of P1 and P2. Then, we claim that if for a rational function f , Ef (p1) = P1 and

Ef (p2) = P2 for points p1 and p2, the rational function f is not indecomposable, violating

the hypotheses of Theorem 1.2.

Proof. Apply a Möbius transformation to f and the points p1 and p2 which takes f to h, p1

to 0 and p2 to∞ such that Eh(0) = P1 and Eh(∞) = P2. If h = P/Q, then this implies P is

a g-th power and Q is a g-th power, which means h is the g-th power of a rational function

and thus decomposable. �

We used both this result and several more complicated variants, all of which showed that

certain candidate ramification types could not occur for indecomposable rational functions.

5.2.2. Using Representation Theory. We focus on the product-one condition, which is rela-

tively well understood. We use the following formula, due to Frobenius.

Theorem 5.1. [14, Theorem A.1.9] Let G be a finite group and let C1, C2, . . . , Cs be con-

jugacy classes in G. Then the number of product-one tuples (x1, x2, . . . , xs) with xi ∈ Ci

is
|C1||C2| · · · |Cs|

|G|
∑
χ

χ(C1)χ(C2) · · ·χ(Cs)

χ(1)s−2
,

where the sum is taken over all irreducible complex characters χ of G.

Note that Frobenius’s formula does not determine the group generated by the elements

x1, x2, . . . , xs. To work around this, we use enumerative combinatorics. To this end, assume

that we calculate the number of product-one tuples (x1, x2, . . . , xs) where xi ∈ Ci as the value

v. Then, assume that we have subgroups G1, G2, . . . , Gk of G such that the sum over j of the

number of product-one tuples x1, x2, . . . , xs ∈ Gj and xi ∈ (Ci ∩ Gj) is the value v, but for

each distinct j, k there are no product-one tuples with each xi being in Ci∩Gj∩Gk. Then we

would be able to rule out the existence of a product-one tuple x1, x2, . . . , xs ∈ G = Ad or Sd

which generates G, because all such product one triples generate subgroups of G1, G2, . . . , Gk,

not G.

For example, consider the ramification type candidate [14, 38], [74], [214] which satisfies all

of our numerical conditions in which G = A28 and H = G2, a two-set stabilizer, since

g2 = g1 = 0. The only way to eliminate this as a ramification type candidate is through the

previously described method. First, we determine through Frobenius’s formula on A28 the

number of product-one tuples x1, x2, x3 ∈ A28 with cycle structures [14, 38], [74], [214]. Fixing
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x2 as (1, 2, 3, 4, 5, 6, 7)(8, 9, 10, 11, 12, 13, 14)(15, 16, 17, 18, 19, 20, 21)(22, 23, 24, 25,

26, 27, 28), we find that there are 115248 3-tuples which satisfy x1x2x3 = 1 with Frobenius’s

formula. Applying Frobenius’s formula with these conjugacy classes to a group L with order

1092 and a group O with order 1344, we obtained that there were 28812 solutions in which

the group generated by x1, x2, x3 was a subgroup of L and 86436 in which the group generated

by x1, x2, x3 was a subgroup of O. Applying Frobenius’s formula to the maximal subgroups

of both L and O gives zero, so there are exactly 115248 product-one triples (x1, x2, x3) in

which the group generated is L or O, allowing us to rule out [14, 38], [74], [214] as a possible

ramification type. These counts were done in Magma [28].

6. Outline of Proof of Theorem 1.3

For the sake of simplicity, we give the proof of Theorem 1.3 only in the case of t = 2. In

this case, f is a degree-`2 indecomposable rational function with monodromy group G, and

G is in Case (C3.3), meaning that it is of product type. In particular, this means that we can

view G as acting on the set of ordered tuples (i, j) ∈ [`]× [`], where 1 ≤ i, j ≤ `, and that G

acts transitively on this set. G must be a subgroup of S` o S2 = S2
` o S2, so we can represent

each element of G as (u, v) or (u, v)σ, where u, v ∈ S` and the semidirect action acts by

σ(a, b) = (b, a), where (a, b) ∈ [`]× [`]. In addition, this action satisfies σ(u, v)σ = (v, u). To

see this, observe that

σ(u, v)σ(i, j) = σ(u, v)(j, i) = σ(u(j), v(i)) = (v(i), u(j)) = (v, u)(i, j).

Recall that G acts transitively on the set of `2 letters, since deg f = `2. Let H be the

point stabilizer of G, or the group of all elements which fix the tuple (1, 1). Then, the coset

space G/H can be represented as [`]× [`]. Let K be the kernel of the homomorphism from

G to S2, or G ∩ S2
` . Thus, G/K is a subgroup of S2, so [G : K] is 1 or 2. The coset space

G/(H ∩K) can be represented as (i, j) or (i, j)σ, where elements in K are in the coset space

G/H prescribes and elements not in K in the coset (i, j) of G/H are in the coset (i, j)σ of

G/(H ∩K).

Lemma 6.1. K is a normal subgroup of G of index 2.

Proof. Suppose that K = G, or that G is a subgroup of S2
` . From results of [25, p. 47]

we see that since f is indecomposable, G must act primitively on the coset space G/H. If

K = G, then one can partition the coset space G/H into the ` blocks B1, B2, . . . , B`, where

Bi consists of the elements (i, j) and j ∈ [`]. This would imply that G is imprimitive, so

K 6= G. This implies that σ is in G, so that [G : K] = 2, whence K is normal in G. �

We will now show that every element of G is the product of an element from H and K;

in other words, G = HK. It suffices to show that K acts transitively on the coset space
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G/H. Recall that G acts transitively on the coset space G/H. This means that for each

(i, j) ∈ [`] × [`], either (u, v)σ(1, 1) = (i, j) or (u, v)(1, 1) = (i, j). If the second case holds,

then the result is clear. Otherwise, observe that the first result is still equivalent to the

second case, since σ(1, 1) = (1, 1). This shows that the orbit of K on (1, 1) is all of (i, j),

and we may conclude.

Let K1 and K2 be the elements of K which fix the set of the cosets of G/H of the form

(1, i) and (i, 1), where i ∈ [`], respectively.

We now prove the following results relating the sizes of the aforementioned groups. These

will later be used in the Riemann–Hurwitz formula.

Lemma 6.2. [G : H] = `2, [G : H ∩K] = 2`2, [K : K1] = [K : K2] = `.

Proof. The first result follows directly from defining H as the point stabilizer of G. The

second follows because G = HK and K is a normal subgroup of G. This means that
|G|2

2`2
= |H||K| = |G||H ∩K|,

so that [G : H ∩K] = 2`2. The final result follows from the transitivity of K on G/H. �

6.1. Riemann–Hurwitz in various extensions. Applying the Riemann–Hurwitz genus

formula to the extension ΩH/ΩG yields

(6.3) − 2 = −2[G : H] +
r∑
i=1

(
[G : H]− o(gi)

)
= −2`2 +

r∑
i=1

(
`2 − o(gi)

)
,

where g1, . . . , gr are elements of G and o(gi) denotes the number of orbits of the group 〈gi〉 on

the set G/H of left cosets of H in G. Here the gi are local monodromy elements associated to

the critical values P1, . . . , Pr of the rational function that corresponds to the field extension

ΩH/ΩG. Thus we may assume that the product g1g2 . . . gr equals 1, and that G is generated

by g1, g2, . . . , gr.

Writing g for the genus of ΩH∩K , Riemann–Hurwitz for ΩH∩K/ΩG says

(6.4) 2g− 2 = −4`2 +
r∑
i=1

(
2`2 − ô(gi)

)
,

where ô(gi) denotes the number of orbits of 〈gi〉 on the set G/(H ∩K).

Writing g0 for the genus of ΩK , Riemann–Hurwitz for ΩK/ΩG yields

(6.5) 2g0 − 2 = −4 + |{i : 1 ≤ i ≤ r, gi /∈ K}|,
since gi acts as a 2-cycle on the cosets G/K if gi /∈ K, and gi acts as the identity otherwise.

Write gj for the genus of ΩKj . If gi ∈ K then write gi = (ui, vi) with ui, vi ∈ S`. In this

case Pi lies under two points of ΩK , and the local monodromy elements of these points in

Ω/ΩK are (ui, vi) and (vi, ui). If gi /∈ K then write gi = (ui, vi)σ with ui, vi ∈ S`. In this

case Pi lies under a single point of ΩK , and the local monodromy element of this point in

Ω/ΩK is (uivi, viui). Note that uivi and viui are conjugate in S`, and hence have the same
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orbit lengths. Let I be the set of integers i with 1 ≤ i ≤ r for which gi ∈ K, and let J be the

set of i’s for which gi /∈ K. For i ∈ I, let Ai (resp., Bi) be the multiset of orbit-lengths of ui

(resp., vi) in the usual degree-` action of S`. For i ∈ J , let Ci be the multiset of orbit-lengths

of uivi in the usual degree-` action of S`. Then Riemann–Hurwitz for ΩKj/ΩK yields

(6.6) 2gj − 2 = `(2g0 − 2) +
∑
i∈I

(
`− |Ai|+ `− |Bi|

)
+
∑
i∈J

(
`− |Ci|

)
,

and Riemann–Hurwitz for ΩH∩K/ΩK2 yields

2g− 2 = `(2g2 − 2) +
∑
i∈I

∑
a∈Ai
b∈Bi

(
a− (a, b) + b− (a, b)

)
+
∑
i∈J

∑
a,b∈Ci

(
a− (a, b)

)
.

(6.7)

6.2. Bounding the genus of ΩH∩K. In this section we prove

Proposition 6.8. g ≤ 2`+ 1.

The proof relies on the following lemma, which relates the actions of elements of G on

the coset spaces G/H and G/(H ∩K); we will prove Proposition 6.8 by applying this to the

elements gi, in combination with Riemann–Hurwitz for ΩH∩K/ΩG and ΩH/ΩG.

Lemma 6.9. Any g ∈ K satisfies 2o(g) = ô(g). For g ∈ G\K, if we write g2 = (w,w′) with

w,w′ ∈ S` then 2o(g) − ô(g) is the number of odd-length orbits of w on {1, 2, . . . , `}, which

equals the number of odd-length orbits of w′ on {1, 2, . . . , `}, and also equals the number of

odd-length orbits of g on G/H.

Proof. Pick any g ∈ K and let O be an orbit of 〈g〉 on G/H. We may view O as consisting of

pairs (i, j) of elements of {1, 2, . . . , `}, in which case both O and Oσ := {(i, j)σ : (i, j) ∈ O}
are orbits of 〈g〉 on G/(H ∩K). Thus ô(g) = 2o(g).

Henceforth suppose that g is in G \K, and write g = (u, v)σ with u, v ∈ S`. Here g maps

(i, j) 7→ (u(j), v(i))σ and (i, j)σ 7→ (u(j), v(i)). It follows that if O := (w1, . . . , wr) is an

orbit of 〈g〉 on G/H then in its action on G/(H ∩ K) g maps wi 7→ wi+1σ 7→ wi+2, where

indices are taken mod r. Therefore if r is even then O ∪ Oσ is the union of two 〈g〉-orbits

each of length r, while if r is odd then O ∪ Oσ is a single 〈g〉-orbit of length 2r. Thus

2o(g)− ô(g) is the number of odd-length orbits of g on G/H.

Suppose that the orbit of (i, j) ∈ G/H under (u, v)σ has odd length. Say this length is r.

Note that the square of (u, v)σ is (uv, vu), since σ(u, v)σ = (v, u), so that (u, v)σ(u, v)σ =

(u, v)(v, u) = (uv, vu). Hence the orbit of (i, j) under (uv, vu) has length r. This means that

r is the least common multiple of the lengths of the uv-orbit of i and the vu-orbit of j. We

claim that these two orbits have the same length. The condition that r is also the length
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of the (u, v)σ-orbit of (i, j) ∈ G/H implies that i = (uv)
r−1
2 uj and j = v(uv)

r−1
2 i. For any

z > 0, if (uv)z fixes i then

(vu)zj = (vu)zv(uv)
r−1
2 i = v(uv)z+

r−1
2 i = v(uv)

r−1
2 i = j,

so that (vu)z fixes j; and likewise if (vu)z fixes j then (uv)z fixes i. Hence r is the length

of the uv-orbit of i. Since j := v(uv)
r−1
2 i is uniquely determined by the values of u, v, i, it

follows that 2o(g)− ô(g) is the number of odd-length orbits of uv, which equals the number

of odd-length orbits of vu. �

Corollary 6.10. Every g ∈ G satisfies

`2 − o(g) ≥ `− 1

2

(
2o(g)− ô(g)

)
.

Proof. If g ∈ K then the result follows from Lemma 6.9. Henceforth assume g ∈ G \ K.

Writing k := 2o(g) − ô(g), Lemma 6.9 implies that k ≤ ` and also k is the number of

odd-length orbits of g on G/H. Hence g has at most ` fixed points on G/H, so that

o(g) ≤ `+ `2−`
2

= `2+`
2

, whence

`2 − o(g) ≥ `2 − `
2
≥ k · `− 1

2
,

which completes the proof of Corollary 6.10. �

Proof of Proposition 6.8. Multiplying both sides of equation (6.3) by 2 and subtracting the

resulting equation from (6.4) yields

2g + 2 =
r∑
i=1

(
2o(gi)− ô(gi)

)
.

By Corollary 6.10 and equation (6.3), it follows that

2g + 2 =
r∑
i=1

(
2o(gi)− ô(gi)

)
≤ 2

`− 1

r∑
i=1

(
`2 − o(gi)

)
=

2

`− 1
· (2`2 − 2) = 4`+ 4,

so that g ≤ 2`+ 1. �

6.3. Restricting the ramification in ΩKj/ΩK. We will now use Proposition 6.8 in order

to deduce constraints on the ramification in the extensions ΩK1/ΩK . Recall that I and J

are finite sets and that for each i ∈ I the multisets Ai and Bi are partitions of n, while for

each i ∈ J the multiset Ci is a partition of n. Combining (6.7) with Proposition 6.8 yields

(6.11) `(6− 2g2) ≥
∑
i∈I

∑
a∈Ai
b∈Bi

(
a+ b− 2(a, b)

)
+
∑
i∈J

∑
a,b∈Ci

(
a− (a, b)

)
.

Likewise, by (6.3), (6.4), and Lemma 6.9,

2g− 2 = −4 +
∑
i∈J

(# of odds in Ci) = `(2g2 − 2) +
∑
i∈I

∑
a∈Ai
b∈Bi

(
a+ b− 2(a, b)

)
+
∑
i∈J

∑
a,b∈Ci

(
a− (a, b)

)
.

(6.12)
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We will use this in combination with (6.5) and (6.6) in order to deduce strong restrictions

on the possibilities for the Ai’s, Bi’s, and Ci’s.

6.4. A bound on the Riemann-Hurwitz contribution. To proceed, we must bound the

Riemann-Hurwitz contribution from each multiset and pairs of multisets.

Lemma 6.13.

4` ≥
∑
i∈I

∑
a∈Ai
b∈Bi

(
a+ b− 2(a, b)

)
+
∑
i∈J

∑
a,b∈Ci

(
a− (a, b)

)
.

Proof. First, note that if g2 > 0 the result is immediate from (6.11). If g2 = 0 then g0 = 0,

since otherwise the two sides of (6.6) would have different signs. Now (6.5) implies that

exactly two of the gi’s are not in K, so |J | = 2. Then we have

4`− 4 ≥ 2`− 4 +
∑
i∈J

(# of odds in Ci) =
∑
i∈I

∑
a∈Ai
b∈Bi

(
a+ b− 2(a, b)

)
+
∑
i∈J

∑
a,b∈Ci

(
a− (a, b)

)
. �

Analogously to Lemma 4.2, we can use this lemma to massively restrict the pairs of

multisets (Ai, Bi) and Ci in the ramification type. Restricting the multisets Ci can be done

analogously as in Lemma 4.3, so we fix our attention on the pairs of multisets (Ai, Bi). From

Lemma 6.13, we can see that

4` ≥
∑
a∈Ai
b∈Bi

(
a+ b− 2(a, b)

)
.

We will generate Ai’s and Bi’s by first counting the number of 1’s in Ai and in Bi, the

number of twos, and so on. Searching this entire state space will take far too long, so we use

a modified version of Lemma 4.3. Observe that

4` ≥
∑
a∈Ai
b∈Bi

(
a+ b− 2(a, b)

)
≥

∑
a∈Ai,a≤k
b∈Bi,b≤k

(
a+ b− 2(a, b)

)
+

∑
a∈Ai,a≤k
b∈Bi,b>k

(
a+ b− 2(a, b)

)
+

∑
a∈Ai,a>k
b∈Bi,b≤k

(
a+ b− 2(a, b)

)

≥
∑

a∈Ai,a≤k
b∈Bi,b≤k

(
a+ b− 2(a, b)

)
+

∑
a∈Ai,a≤k
b∈Bi,b>k

b

2
+

∑
a∈Ai,a>k
b∈Bi,b≤k

a

2

=
∑

a∈Ai,a≤k
b∈Bi,b≤k

(
a+ b− 2(a, b)

)
+

1

2

( ∑
a∈Ai,a≤k

(
`−

∑
b∈Bi,b≤k

b

)
+

∑
b∈Bi,b≤k

(
`−

∑
a∈Ai,a≤k

a

))
.

We implemented this in a C++ program: [26]. One can show that the ramification types

produced will either have ` < 350 or be present in [18]. In the case where ` < 350, the

largest case not present in [18] has ` = 19, so deg f = 361.
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6.5. Commentary on the cases t ≥ 3. The cases in which t ≥ 3 are algebraically more

involved but the bounding used is much simpler as t increases. For example, it had already

been shown in [11] that there are no solutions when t > 8. Using similar methods to the

above, we found that there were no rational functions which monodromy groups in Case

(C3.3) when 4 ≤ t ≤ 8, but exactly one in which t = 3. The degree of this rational function

is 53 = 125.

7. Notable Examples of Rational Functions

We provide examples of ways to lift the local monodromy elements x1, x2, . . . , xs to

x′1, x
′
2, . . . , x

′
s as described in (5.1). First we give an explicit rational function.

Consider the rational function

f1(X) =
(X2 + 8X − 2)3

X2
.

The ramification data is Ef1(0) = [32], Ef1(−729) = [13, 3], and Ef1(∞) = [2, 4]. The

monodromy group is A6. Performing the lifting action just mentioned, we find that if H

is a two-set stabilizer, then G/H = [6]2 and the ramification types will be Ef2(0) = [35],

Ef2(−729) = [13, 34], Ef2(∞) = [1, 2, 43]. One rational function with these ramification types

and with monodromy group A6 is

f2(X) =
(4X5 − 9X4 − 108X3 − 234X2 − 216X − 81)3

(X3 + 3X2 + 5X + 3)4(2X + 3)2
.

Note that this expression for f2(X) is fairly complicated, even though the degree is small.

Higher-degree examples will generally be much more complicated. However, in practice,

when proving results about rational functions one does not make use of the coefficients

of the rational function, but instead only uses the values of crucial invariants such as the

monodromy group and ramification type. In the examples that follow, we will be content to

describe these invariants.

Now, we give more implicit representations of these rational functions, by stating the group

G, a maximal subgroup H, the elements of the group x1, x2, . . . , xs, verifying the numerical

condition (3), and either giving x′1, x
′
2, . . . , x

′
s or describing their cycle structures.

We present an example in which G = A15, and H is a three-set stabilizer, so deg f =(
15

3

)
= 455 and G/H = [15]3. Let x1, x2, x3 ∈ G be the elements x1 = (4, 5)(6, 7)(8, 9)(10,

11)(12, 13)(14, 15), x2 = (1, 14, 6)(2, 12, 5)(3, 7, 13)(4, 8, 15)(9, 10, 11), and x3 = (x1x2)
−1, so

that x1x2x3 = 1 and G = 〈x1, x2, x3〉. In the action on G/H, the cycle structures of x1, x2, x3

are [119, 2218], [15, 3150], and [765]. We may check condition (3) of Theorem 5.1, since

2(455)− 2 = (455− 237) + (455− 155) + (455− 65).

We present an example in which G = A8, with size 20160, and H is the group ASL3(F2),

which has size 8(7)(6)(4) = 1344, so deg f = 20160/1344 = 15. Let x1, x2, x3, x4 ∈ G be the
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elements x1 = (5, 6)(7, 8), x2 = (3, 6)(4, 8), x3 = (1, 4, 7, 2)(3, 6, 5, 8), x4 = (1, 2, 7)(4, 5, 8),

so that x1x2x3x4 = 1 and G = 〈x1, x2, x3, x4〉. Since G/H cannot be easily represented in

this case, we explicitly determine the actions of the liftings of x1, x2, x3, x4 on G/H. We get

that they are

x′1 = (1, 10)(2, 3)(4, 6)(5, 12)(7, 13)(8, 9), x′2 = (1, 4)(3, 15)(5, 12)(6, 7)(8, 11)(10, 13),

x′3 = (2, 10, 4, 14)(3, 7)(5, 6, 11, 8)(9, 13), x′4 = (1, 9, 6)(2, 15, 7)(3, 14, 4)(5, 8, 13).

We may check condition (3) of Theorem 5.1, since

2(15)− 2 = (15− 9) + (15− 9) + (15− 7) + (15− 7).

8. Conclusions and Future Work

We have determined all possibilities for the monodromy group and ramification type of an

indecomposable degree-n rational function, under the assumption that the monodromy group

is not in {An, Sn} and satisfies case (C3.2) or (C3.3) of the Aschbacher–Scott classification of

primitive groups. These two cases seemed intractable before our work. The only remaining

case is (C3.1), which has been resolved for sufficiently large n via methods that are expected

to extend to all n; a team of group theorists is currently completing case (C3.1). In future

work we will look into various places where rational functions arise in math, science, and

engineering, and identify settings where this new classification of unusually-behaved rational

functions can have an impact.
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