
Investigating the scalability of Go’s 
garbage collector in multicore 
environments

Nihar Sheth



High level programming languages

● Examples include Go, Java, Python
● Greater abstraction from hardware
● Eliminate certain classes of bugs
● Code is:

○ Easier to write
○ Easier to maintain
○ Easier to debug

● Desirable from developer perspective, less so from performance perspective



Garbage collection

● Automatic reclamation of unused memory by runtime (rather than programmer)
● Programmer does not have to worry about freeing memory and tracking when 

it is used/unused
● Reduces risk of hard-to-debug issues such as memory leaks



Parallelization

● Modern machines have a lot of CPUs
● If we want efficient programs, they need to be parallel

https://cnet3.cbsistatic.com/hub/i/2011/09/13/97506276-fdb9-11e2-8c7c-d4ae52e62bcc/21196cc0e9bf31954c21004a3c1ee115/inside_intel_sandy_bridge_quad_core_processor.jpg



What if the garbage collector doesn’t scale?

● Can’t add CPUs to speed up application, even for perfectly scalable workloads!
○ Waste of extra CPUs

● Unable to take advantage of parallelism



Goal: find potential 
scaling problems in 
the Go garbage 
collector 



Approach

● Wrote microbenchmark to allocate at rates similar to what we would expect in 
a real-world setting

● Parallel allocation with varying numbers of threads
● Amount of garbage generated scaled proportionally with number of CPUs, so 

with true scalability, no increase in clock time would be expected



Benchmark Setup (1 CPU)



Benchmark Setup (2 CPUs)



Benchmark Setup (4 CPUs)



Benchmark setup (8 CPUs)



Results



Results



Conclusions

● Scalability of Go’s garbage collector leaves room for improvement
○ Scalability issues, even for reasonable rates of allocation

● Why does this happen?
○ Contention on central pool of free memory



Future Work

● Test more data structures -- not just arrays and binary search trees
● Test impact of different allocation patterns


