
An analysis of a directory entry cache in a high 
level language

Robert Cunningham
mentored by Cody Cutler



Background and Motivation



What languages are kernels generally written in?

C C C



Why is C so popular for kernels?



What are the disadvantages of C?

● The programmer must manage a large number of low level 
tasks and subsystems.

Examples of low level tasks?

● Memory management [malloc() and free()]
● Reference counting
● Pointer arithmetic
● etc.



An analogy.

Should racecar drivers be concerned about whether the wheels are bolted onto 
the car tightly enough?

Of course not. We want them to focus on the big picture.



How does this apply to programmers?

Forcing too much overhead onto a 
programmer, such as by forcing them to 

manage low level subsystems (as C does), 
can cause the creation of subtle bugs.

This can result in crashes, incorrect 
behavior, and security vulnerabilities.



How can we reduce complexity?

Let’s pick a new language...

Let’s use Go!

 that manages low level subsystems automatically!

However, it should also be pretty fast.



How can we test whether this will reduce complexity?

We will build a small part of an operating system to test this theory: a directory 
entry cache (“dcache”).



What is a dcache?



What is a dcache?

A dcache, also known as a Directory Name Lookup Cache, is responsible for 
caching directory paths.

In short, it caches recently looked up paths to RAM, so they don’t take expensive 
disk reads.

This speed up matters a lot for programs like GNU Make, which do lots of 
concurrent path lookups.



Example of a file lookup without a dcache.

Have you heard of /home/?

No, let me check the disk.. .. .. .. .. .. ..yes, it exists.

Have you heard of /home/robert?

No, let me check the disk.. .. .. .. .. .. ..yes, it exists.

Have you heard of /home/robert/cats/?

No, let me check the disk.. .. .. .. ..no, does not exist.



Example of a file lookup with a dcache

Have you heard of /home/?

Yes (dcache hit). 

Have you heard of /home/robert/?

Yes (dcache hit). 

Have you heard of /home/robert/cats/?

No, sorry (dcache miss). Let me check the disk to be sure.. 
.. .. .. Sorry, it does not exist. 



Concurrency in dcaches

It matters a lot that our dcache is capable 
of supporting requests concurrently and 
correctly.

Sequential path lookup would be a 
crippling performance hit.

However, this is nontrivial to implement.



A quick “history” lesson

● Until 2.5.10, Linux used a single global dcache_lock lock to control concurrent 
access to the dcache

○ Can barely be considered concurrent.
○ Correct, but slow.

● In 2.5.10, this global lock was replaced with a system of seqlocks.
○ Significantly better, but lots of reading and writing locks involved, which isn’t super fast.

● In 2.5.62, we got the modern system that we have today.
○ In most cases avoids reading and writing a lot of locks.



A path walking algorithm is responsible for taking paths like 

/home/robert/cats/fluffy.jpg 

and querying the dcache for the corresponding dentries. Modern dcaches use two 
such algorithms: RCU walk and REF walk.

What is a path walking algorithm?



How do state of the art dcaches manage concurrency?

2 separate path walking algorithms.

REF walk
● Takes locks
● Guaranteed to respond yes or 

no.
● Can not run concurrently with 

itself on the same directories
● Slow and safe.

RCU walk
● “Invisible:” takes no locks and 

doesn’t write to disk
● Might not find an answer
● Can run concurrently with itself 

on the same directories
● Fast and risky.



Path lookup

Try RCU walk

Have relevant directories 
changed since RCU walk 
started? Did RCU walk fail?

Yes No

Fall back onto REF walk

The result from RCU walk is correct

Interplay between 
REF and RCU walk



How does RCU walk check whether relevant 
directories have changed?

Seqlocks



What is a seqlock?

● Seqlocks allow us to check that data hasn’t changed between when some 
code begins and ends.



Can we simplify the 
implementation of a 
dcache using Go?



Yes.
The short answer



Comparison of C and Go for dcaches



● Each dentry has a special counter, called a 
lockref, which keeps track of how many 
references to a given dentry exist

● Whenever the programmer takes a new 
reference, he or she must remember to 
update the lockref.

● From time to time the programmer 
explicitly checks whether the lockref is at 0

Keeping track of which memory is in use

● The built-in garbage collector manages 
everything automatically.

C Go



● A complex system, Read Copy Update, 
provides an API for ensuring that all 
threads execute a context switch before 
any shared memory is freed

● The programmer must recognize and 
understand the problem cases and call the 
RCU functions appropriately

Ensuring that memory changes appear atomic

● The built-in garbage collector manages 
everything automatically.

C Go



● Use of pointer arithmetic and keeping 
various custom-made structs so string 
length is easy to pass around.

String support

● Strings are supported natively.

C Go



● Custom, error prone implementations of 
even the most basic functions like string 
compares.

String processing support

● strings package contains correct 
implementations of many useful functions.

C Go



Is there anywhere where Go falls short?

● Kind of. Go is lacking convenient preprocessor macros, which are opaque, but 
very useful and highly readable.

*Go technically does have a container_of implementation, but it runs counter to design principles of Go (clarity and readability), so we choose not to use it.



● C has convenient preprocessor macros, 
which are concise and highly readable, if 
opaque.

Custom loops

● Go’s design principles encourage 
transparency, which can sometimes get 
ugly.

C Go



● List nodes only hold pointers, and we can 
move outwards to their enclosing type 
when we’ve found the one we want using 
container_of.

Usefulness of container_of

● All list nodes must contain an ugly uncast 
reference to their parent datum, which we 
then cast back upon retrieval.

C Go



Are macros actually a simplification?

● Macros abstract away complexity. 
● This can be highly useful, since it makes the code easily human readable. 
● Serious risk of creating bugs through subtle misunderstanding or misuse.



Implementation Progress



Current status

Right now we have a functional single threaded dcache whose concurrency 
support is in progress.



Path resolution



File system API



General infrastructure

● Time consuming but important.
● Go implementation of spinlocks, seqlocks, linked lists, locking lists, striped 

maps, etc.



Conclusions



Conclusions

The combination of a garbage collector and other conventional of high level 
languages makes implementing a dcache in Go much simpler.

Although Go doesn’t support convenient macros, whether they actually offer a 
simplification is up for debate.



Future work

Ideally we’d finish the Go implementation of a concurrent dcache so we can 
quantify the performance implications of using a Go implementation versus a C 
dcache implementation.



Acknowledgements

None of this would be possible without...

● Cody Cutler
● MIT PRIMES
● Professor Kaashoek
● My parents



That’s all.



Questions?
Thanks for listening!





● a

question

● b

C Go


